L(s) = 1 | + 1.13·5-s + (−1.77 − 1.96i)7-s − 2.65i·11-s + (1.59 + 0.920i)13-s + (−0.267 + 0.463i)17-s + (2.57 − 1.48i)19-s − 0.969i·23-s − 3.71·25-s + (2.66 − 1.54i)29-s + (−0.682 + 0.394i)31-s + (−2.00 − 2.22i)35-s + (−1.73 − 3.00i)37-s + (−2.22 + 3.85i)41-s + (−0.849 − 1.47i)43-s + (5.14 − 8.90i)47-s + ⋯ |
L(s) = 1 | + 0.506·5-s + (−0.670 − 0.742i)7-s − 0.801i·11-s + (0.442 + 0.255i)13-s + (−0.0648 + 0.112i)17-s + (0.590 − 0.340i)19-s − 0.202i·23-s − 0.743·25-s + (0.495 − 0.286i)29-s + (−0.122 + 0.0707i)31-s + (−0.339 − 0.376i)35-s + (−0.284 − 0.493i)37-s + (−0.347 + 0.602i)41-s + (−0.129 − 0.224i)43-s + (0.750 − 1.29i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.370638144\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.370638144\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.77 + 1.96i)T \) |
good | 5 | \( 1 - 1.13T + 5T^{2} \) |
| 11 | \( 1 + 2.65iT - 11T^{2} \) |
| 13 | \( 1 + (-1.59 - 0.920i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.267 - 0.463i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.57 + 1.48i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.969iT - 23T^{2} \) |
| 29 | \( 1 + (-2.66 + 1.54i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.682 - 0.394i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.73 + 3.00i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.22 - 3.85i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.849 + 1.47i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.14 + 8.90i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (11.9 + 6.87i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.64 + 6.31i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.74 + 1.00i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.20 - 2.08i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.3iT - 71T^{2} \) |
| 73 | \( 1 + (-7.05 - 4.07i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.58 - 4.47i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.56 + 13.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.52 + 11.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.44 + 0.832i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.848957211831308003275428301109, −8.061530538009264549590036337517, −7.15956295471682486789284497583, −6.40676088103203255758705268551, −5.81242897087940372615417312294, −4.79631566670544646928365925846, −3.75677981637095959053056382544, −3.07767976846476535116289187865, −1.77796650907160191858445441587, −0.46967258149604069171757230935,
1.43500087380046852807613603891, 2.51605170501802040163055210495, 3.37636752882024724030236789590, 4.47641090799125806367287711059, 5.47811909230944889482364073274, 6.03498865048149126694719038094, 6.85364471096045525425618469405, 7.70715246035266085445599744224, 8.562803228479529947071942224925, 9.431505984048539117955143016790