Properties

Label 225.8.b.n.199.4
Level $225$
Weight $8$
Character 225.199
Analytic conductor $70.287$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(199,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.199"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-138,0,0,0,0,0,0,-6896] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.2866307339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{601})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 301x^{2} + 22500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.4
Root \(12.7577i\) of defining polynomial
Character \(\chi\) \(=\) 225.199
Dual form 225.8.b.n.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.7577i q^{2} -120.304 q^{4} +34.4284i q^{7} +121.278i q^{8} +3963.55 q^{11} +5606.30i q^{13} -542.511 q^{14} -17309.9 q^{16} -19906.7i q^{17} +49993.7 q^{19} +62456.2i q^{22} -109762. i q^{23} -88342.2 q^{26} -4141.86i q^{28} +192477. q^{29} +125541. q^{31} -257240. i q^{32} +313683. q^{34} +74353.6i q^{37} +787784. i q^{38} -577802. q^{41} +264291. i q^{43} -476829. q^{44} +1.72959e6 q^{46} -306207. i q^{47} +822358. q^{49} -674458. i q^{52} +446219. i q^{53} -4175.41 q^{56} +3.03299e6i q^{58} +1.97951e6 q^{59} -1.27494e6 q^{61} +1.97824e6i q^{62} +1.83783e6 q^{64} +4.12943e6i q^{67} +2.39485e6i q^{68} +2.81187e6 q^{71} +4.01991e6i q^{73} -1.17164e6 q^{74} -6.01442e6 q^{76} +136459. i q^{77} +1.32785e6 q^{79} -9.10480e6i q^{82} +1.91033e6i q^{83} -4.16460e6 q^{86} +480691. i q^{88} +8.00695e6 q^{89} -193016. q^{91} +1.32047e7i q^{92} +4.82511e6 q^{94} +3.89241e6i q^{97} +1.29584e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 138 q^{4} - 6896 q^{11} - 24528 q^{14} - 48990 q^{16} + 99168 q^{19} - 432308 q^{26} + 363544 q^{29} + 608464 q^{31} + 879844 q^{34} - 1262344 q^{41} - 1714136 q^{44} + 3772944 q^{46} - 290980 q^{49}+ \cdots + 6825472 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.7577i 1.39279i 0.717657 + 0.696396i \(0.245214\pi\)
−0.717657 + 0.696396i \(0.754786\pi\)
\(3\) 0 0
\(4\) −120.304 −0.939872
\(5\) 0 0
\(6\) 0 0
\(7\) 34.4284i 0.0379380i 0.999820 + 0.0189690i \(0.00603838\pi\)
−0.999820 + 0.0189690i \(0.993962\pi\)
\(8\) 121.278i 0.0837465i
\(9\) 0 0
\(10\) 0 0
\(11\) 3963.55 0.897863 0.448931 0.893566i \(-0.351805\pi\)
0.448931 + 0.893566i \(0.351805\pi\)
\(12\) 0 0
\(13\) 5606.30i 0.707742i 0.935294 + 0.353871i \(0.115135\pi\)
−0.935294 + 0.353871i \(0.884865\pi\)
\(14\) −542.511 −0.0528397
\(15\) 0 0
\(16\) −17309.9 −1.05651
\(17\) − 19906.7i − 0.982717i −0.870958 0.491358i \(-0.836501\pi\)
0.870958 0.491358i \(-0.163499\pi\)
\(18\) 0 0
\(19\) 49993.7 1.67216 0.836080 0.548607i \(-0.184842\pi\)
0.836080 + 0.548607i \(0.184842\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 62456.2i 1.25054i
\(23\) − 109762.i − 1.88107i −0.339703 0.940533i \(-0.610326\pi\)
0.339703 0.940533i \(-0.389674\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −88342.2 −0.985738
\(27\) 0 0
\(28\) − 4141.86i − 0.0356568i
\(29\) 192477. 1.46550 0.732752 0.680496i \(-0.238236\pi\)
0.732752 + 0.680496i \(0.238236\pi\)
\(30\) 0 0
\(31\) 125541. 0.756870 0.378435 0.925628i \(-0.376462\pi\)
0.378435 + 0.925628i \(0.376462\pi\)
\(32\) − 257240.i − 1.38776i
\(33\) 0 0
\(34\) 313683. 1.36872
\(35\) 0 0
\(36\) 0 0
\(37\) 74353.6i 0.241322i 0.992694 + 0.120661i \(0.0385013\pi\)
−0.992694 + 0.120661i \(0.961499\pi\)
\(38\) 787784.i 2.32897i
\(39\) 0 0
\(40\) 0 0
\(41\) −577802. −1.30929 −0.654644 0.755937i \(-0.727182\pi\)
−0.654644 + 0.755937i \(0.727182\pi\)
\(42\) 0 0
\(43\) 264291.i 0.506923i 0.967345 + 0.253462i \(0.0815691\pi\)
−0.967345 + 0.253462i \(0.918431\pi\)
\(44\) −476829. −0.843876
\(45\) 0 0
\(46\) 1.72959e6 2.61993
\(47\) − 306207.i − 0.430203i −0.976592 0.215101i \(-0.930992\pi\)
0.976592 0.215101i \(-0.0690082\pi\)
\(48\) 0 0
\(49\) 822358. 0.998561
\(50\) 0 0
\(51\) 0 0
\(52\) − 674458.i − 0.665186i
\(53\) 446219.i 0.411702i 0.978583 + 0.205851i \(0.0659962\pi\)
−0.978583 + 0.205851i \(0.934004\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4175.41 −0.00317717
\(57\) 0 0
\(58\) 3.03299e6i 2.04114i
\(59\) 1.97951e6 1.25481 0.627403 0.778695i \(-0.284118\pi\)
0.627403 + 0.778695i \(0.284118\pi\)
\(60\) 0 0
\(61\) −1.27494e6 −0.719175 −0.359587 0.933111i \(-0.617083\pi\)
−0.359587 + 0.933111i \(0.617083\pi\)
\(62\) 1.97824e6i 1.05416i
\(63\) 0 0
\(64\) 1.83783e6 0.876345
\(65\) 0 0
\(66\) 0 0
\(67\) 4.12943e6i 1.67737i 0.544619 + 0.838684i \(0.316674\pi\)
−0.544619 + 0.838684i \(0.683326\pi\)
\(68\) 2.39485e6i 0.923627i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.81187e6 0.932377 0.466188 0.884685i \(-0.345627\pi\)
0.466188 + 0.884685i \(0.345627\pi\)
\(72\) 0 0
\(73\) 4.01991e6i 1.20945i 0.796436 + 0.604723i \(0.206716\pi\)
−0.796436 + 0.604723i \(0.793284\pi\)
\(74\) −1.17164e6 −0.336111
\(75\) 0 0
\(76\) −6.01442e6 −1.57162
\(77\) 136459.i 0.0340631i
\(78\) 0 0
\(79\) 1.32785e6 0.303009 0.151505 0.988457i \(-0.451588\pi\)
0.151505 + 0.988457i \(0.451588\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 9.10480e6i − 1.82357i
\(83\) 1.91033e6i 0.366721i 0.983046 + 0.183361i \(0.0586976\pi\)
−0.983046 + 0.183361i \(0.941302\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.16460e6 −0.706039
\(87\) 0 0
\(88\) 480691.i 0.0751929i
\(89\) 8.00695e6 1.20393 0.601966 0.798522i \(-0.294384\pi\)
0.601966 + 0.798522i \(0.294384\pi\)
\(90\) 0 0
\(91\) −193016. −0.0268503
\(92\) 1.32047e7i 1.76796i
\(93\) 0 0
\(94\) 4.82511e6 0.599183
\(95\) 0 0
\(96\) 0 0
\(97\) 3.89241e6i 0.433029i 0.976279 + 0.216515i \(0.0694689\pi\)
−0.976279 + 0.216515i \(0.930531\pi\)
\(98\) 1.29584e7i 1.39079i
\(99\) 0 0
\(100\) 0 0
\(101\) −1.07779e7 −1.04090 −0.520450 0.853892i \(-0.674236\pi\)
−0.520450 + 0.853892i \(0.674236\pi\)
\(102\) 0 0
\(103\) − 1.93103e7i − 1.74124i −0.491952 0.870622i \(-0.663717\pi\)
0.491952 0.870622i \(-0.336283\pi\)
\(104\) −679921. −0.0592709
\(105\) 0 0
\(106\) −7.03137e6 −0.573415
\(107\) − 6.90473e6i − 0.544883i −0.962172 0.272442i \(-0.912169\pi\)
0.962172 0.272442i \(-0.0878312\pi\)
\(108\) 0 0
\(109\) −2.39533e7 −1.77163 −0.885814 0.464040i \(-0.846399\pi\)
−0.885814 + 0.464040i \(0.846399\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 595953.i − 0.0400820i
\(113\) 9.56587e6i 0.623663i 0.950137 + 0.311831i \(0.100942\pi\)
−0.950137 + 0.311831i \(0.899058\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.31557e7 −1.37738
\(117\) 0 0
\(118\) 3.11925e7i 1.74768i
\(119\) 685357. 0.0372823
\(120\) 0 0
\(121\) −3.77744e6 −0.193843
\(122\) − 2.00900e7i − 1.00166i
\(123\) 0 0
\(124\) −1.51031e7 −0.711360
\(125\) 0 0
\(126\) 0 0
\(127\) 1.19412e7i 0.517290i 0.965972 + 0.258645i \(0.0832759\pi\)
−0.965972 + 0.258645i \(0.916724\pi\)
\(128\) − 3.96685e6i − 0.167190i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.60064e6 0.0622077 0.0311039 0.999516i \(-0.490098\pi\)
0.0311039 + 0.999516i \(0.490098\pi\)
\(132\) 0 0
\(133\) 1.72121e6i 0.0634384i
\(134\) −6.50701e7 −2.33623
\(135\) 0 0
\(136\) 2.41424e6 0.0822991
\(137\) 2.88030e7i 0.957008i 0.878085 + 0.478504i \(0.158821\pi\)
−0.878085 + 0.478504i \(0.841179\pi\)
\(138\) 0 0
\(139\) 2.14740e6 0.0678204 0.0339102 0.999425i \(-0.489204\pi\)
0.0339102 + 0.999425i \(0.489204\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.43085e7i 1.29861i
\(143\) 2.22209e7i 0.635455i
\(144\) 0 0
\(145\) 0 0
\(146\) −6.33444e7 −1.68451
\(147\) 0 0
\(148\) − 8.94501e6i − 0.226811i
\(149\) 4.96813e6 0.123038 0.0615192 0.998106i \(-0.480405\pi\)
0.0615192 + 0.998106i \(0.480405\pi\)
\(150\) 0 0
\(151\) −2.10485e7 −0.497511 −0.248756 0.968566i \(-0.580022\pi\)
−0.248756 + 0.968566i \(0.580022\pi\)
\(152\) 6.06313e6i 0.140038i
\(153\) 0 0
\(154\) −2.15027e6 −0.0474428
\(155\) 0 0
\(156\) 0 0
\(157\) 2.61392e7i 0.539069i 0.962991 + 0.269534i \(0.0868698\pi\)
−0.962991 + 0.269534i \(0.913130\pi\)
\(158\) 2.09239e7i 0.422029i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.77893e6 0.0713638
\(162\) 0 0
\(163\) − 1.01817e8i − 1.84147i −0.390194 0.920733i \(-0.627592\pi\)
0.390194 0.920733i \(-0.372408\pi\)
\(164\) 6.95116e7 1.23056
\(165\) 0 0
\(166\) −3.01024e7 −0.510766
\(167\) 6.14576e7i 1.02110i 0.859848 + 0.510550i \(0.170558\pi\)
−0.859848 + 0.510550i \(0.829442\pi\)
\(168\) 0 0
\(169\) 3.13179e7 0.499101
\(170\) 0 0
\(171\) 0 0
\(172\) − 3.17951e7i − 0.476443i
\(173\) 2.74394e7i 0.402914i 0.979497 + 0.201457i \(0.0645677\pi\)
−0.979497 + 0.201457i \(0.935432\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −6.86087e7 −0.948604
\(177\) 0 0
\(178\) 1.26171e8i 1.67683i
\(179\) 4.05126e7 0.527964 0.263982 0.964528i \(-0.414964\pi\)
0.263982 + 0.964528i \(0.414964\pi\)
\(180\) 0 0
\(181\) 9.66189e7 1.21112 0.605560 0.795800i \(-0.292949\pi\)
0.605560 + 0.795800i \(0.292949\pi\)
\(182\) − 3.04148e6i − 0.0373969i
\(183\) 0 0
\(184\) 1.33117e7 0.157533
\(185\) 0 0
\(186\) 0 0
\(187\) − 7.89012e7i − 0.882345i
\(188\) 3.68378e7i 0.404335i
\(189\) 0 0
\(190\) 0 0
\(191\) 1.42378e8 1.47852 0.739260 0.673420i \(-0.235175\pi\)
0.739260 + 0.673420i \(0.235175\pi\)
\(192\) 0 0
\(193\) 1.27527e8i 1.27688i 0.769671 + 0.638441i \(0.220420\pi\)
−0.769671 + 0.638441i \(0.779580\pi\)
\(194\) −6.13352e7 −0.603120
\(195\) 0 0
\(196\) −9.89326e7 −0.938519
\(197\) − 1.23507e8i − 1.15096i −0.817816 0.575479i \(-0.804816\pi\)
0.817816 0.575479i \(-0.195184\pi\)
\(198\) 0 0
\(199\) 7.46881e7 0.671839 0.335920 0.941891i \(-0.390953\pi\)
0.335920 + 0.941891i \(0.390953\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 1.69834e8i − 1.44976i
\(203\) 6.62670e6i 0.0555982i
\(204\) 0 0
\(205\) 0 0
\(206\) 3.04286e8 2.42519
\(207\) 0 0
\(208\) − 9.70446e7i − 0.747739i
\(209\) 1.98153e8 1.50137
\(210\) 0 0
\(211\) 1.24482e8 0.912257 0.456128 0.889914i \(-0.349236\pi\)
0.456128 + 0.889914i \(0.349236\pi\)
\(212\) − 5.36818e7i − 0.386947i
\(213\) 0 0
\(214\) 1.08802e8 0.758910
\(215\) 0 0
\(216\) 0 0
\(217\) 4.32219e6i 0.0287141i
\(218\) − 3.77448e8i − 2.46751i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.11603e8 0.695510
\(222\) 0 0
\(223\) 2.17519e8i 1.31350i 0.754109 + 0.656749i \(0.228069\pi\)
−0.754109 + 0.656749i \(0.771931\pi\)
\(224\) 8.85637e6 0.0526487
\(225\) 0 0
\(226\) −1.50736e8 −0.868633
\(227\) 1.39021e8i 0.788840i 0.918930 + 0.394420i \(0.129054\pi\)
−0.918930 + 0.394420i \(0.870946\pi\)
\(228\) 0 0
\(229\) −1.06507e8 −0.586076 −0.293038 0.956101i \(-0.594666\pi\)
−0.293038 + 0.956101i \(0.594666\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.33433e7i 0.122731i
\(233\) 3.55655e7i 0.184197i 0.995750 + 0.0920986i \(0.0293575\pi\)
−0.995750 + 0.0920986i \(0.970642\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.38143e8 −1.17936
\(237\) 0 0
\(238\) 1.07996e7i 0.0519265i
\(239\) −8.12794e7 −0.385113 −0.192556 0.981286i \(-0.561678\pi\)
−0.192556 + 0.981286i \(0.561678\pi\)
\(240\) 0 0
\(241\) 1.78776e8 0.822717 0.411359 0.911474i \(-0.365054\pi\)
0.411359 + 0.911474i \(0.365054\pi\)
\(242\) − 5.95236e7i − 0.269983i
\(243\) 0 0
\(244\) 1.53379e8 0.675932
\(245\) 0 0
\(246\) 0 0
\(247\) 2.80280e8i 1.18346i
\(248\) 1.52254e7i 0.0633852i
\(249\) 0 0
\(250\) 0 0
\(251\) 3.53343e7 0.141039 0.0705195 0.997510i \(-0.477534\pi\)
0.0705195 + 0.997510i \(0.477534\pi\)
\(252\) 0 0
\(253\) − 4.35047e8i − 1.68894i
\(254\) −1.88165e8 −0.720477
\(255\) 0 0
\(256\) 2.97750e8 1.10921
\(257\) − 4.18029e8i − 1.53617i −0.640345 0.768087i \(-0.721209\pi\)
0.640345 0.768087i \(-0.278791\pi\)
\(258\) 0 0
\(259\) −2.55988e6 −0.00915525
\(260\) 0 0
\(261\) 0 0
\(262\) 2.52223e7i 0.0866425i
\(263\) − 2.02813e8i − 0.687466i −0.939067 0.343733i \(-0.888308\pi\)
0.939067 0.343733i \(-0.111692\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.71222e7 −0.0883565
\(267\) 0 0
\(268\) − 4.96785e8i − 1.57651i
\(269\) −2.88920e8 −0.904993 −0.452496 0.891766i \(-0.649466\pi\)
−0.452496 + 0.891766i \(0.649466\pi\)
\(270\) 0 0
\(271\) 3.61648e8 1.10381 0.551904 0.833908i \(-0.313902\pi\)
0.551904 + 0.833908i \(0.313902\pi\)
\(272\) 3.44583e8i 1.03825i
\(273\) 0 0
\(274\) −4.53867e8 −1.33291
\(275\) 0 0
\(276\) 0 0
\(277\) 3.16424e8i 0.894522i 0.894404 + 0.447261i \(0.147600\pi\)
−0.894404 + 0.447261i \(0.852400\pi\)
\(278\) 3.38379e7i 0.0944597i
\(279\) 0 0
\(280\) 0 0
\(281\) 3.81619e7 0.102603 0.0513013 0.998683i \(-0.483663\pi\)
0.0513013 + 0.998683i \(0.483663\pi\)
\(282\) 0 0
\(283\) − 5.36394e8i − 1.40680i −0.710796 0.703398i \(-0.751665\pi\)
0.710796 0.703398i \(-0.248335\pi\)
\(284\) −3.38278e8 −0.876314
\(285\) 0 0
\(286\) −3.50149e8 −0.885057
\(287\) − 1.98928e7i − 0.0496718i
\(288\) 0 0
\(289\) 1.40615e7 0.0342681
\(290\) 0 0
\(291\) 0 0
\(292\) − 4.83610e8i − 1.13672i
\(293\) − 5.38585e8i − 1.25088i −0.780270 0.625442i \(-0.784919\pi\)
0.780270 0.625442i \(-0.215081\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −9.01745e6 −0.0202098
\(297\) 0 0
\(298\) 7.82860e7i 0.171367i
\(299\) 6.15358e8 1.33131
\(300\) 0 0
\(301\) −9.09911e6 −0.0192316
\(302\) − 3.31676e8i − 0.692930i
\(303\) 0 0
\(304\) −8.65387e8 −1.76666
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.10303e7i − 0.120382i −0.998187 0.0601910i \(-0.980829\pi\)
0.998187 0.0601910i \(-0.0191710\pi\)
\(308\) − 1.64165e7i − 0.0320149i
\(309\) 0 0
\(310\) 0 0
\(311\) −5.75355e8 −1.08461 −0.542306 0.840181i \(-0.682449\pi\)
−0.542306 + 0.840181i \(0.682449\pi\)
\(312\) 0 0
\(313\) 7.32396e8i 1.35002i 0.737807 + 0.675011i \(0.235861\pi\)
−0.737807 + 0.675011i \(0.764139\pi\)
\(314\) −4.11893e8 −0.750811
\(315\) 0 0
\(316\) −1.59746e8 −0.284790
\(317\) − 1.67850e7i − 0.0295947i −0.999891 0.0147973i \(-0.995290\pi\)
0.999891 0.0147973i \(-0.00471031\pi\)
\(318\) 0 0
\(319\) 7.62894e8 1.31582
\(320\) 0 0
\(321\) 0 0
\(322\) 5.95470e7i 0.0993950i
\(323\) − 9.95211e8i − 1.64326i
\(324\) 0 0
\(325\) 0 0
\(326\) 1.60440e9 2.56478
\(327\) 0 0
\(328\) − 7.00746e7i − 0.109648i
\(329\) 1.05422e7 0.0163210
\(330\) 0 0
\(331\) −1.08406e9 −1.64306 −0.821532 0.570163i \(-0.806880\pi\)
−0.821532 + 0.570163i \(0.806880\pi\)
\(332\) − 2.29820e8i − 0.344671i
\(333\) 0 0
\(334\) −9.68427e8 −1.42218
\(335\) 0 0
\(336\) 0 0
\(337\) − 7.36350e7i − 0.104804i −0.998626 0.0524022i \(-0.983312\pi\)
0.998626 0.0524022i \(-0.0166878\pi\)
\(338\) 4.93496e8i 0.695145i
\(339\) 0 0
\(340\) 0 0
\(341\) 4.97590e8 0.679565
\(342\) 0 0
\(343\) 5.66658e7i 0.0758214i
\(344\) −3.20526e7 −0.0424530
\(345\) 0 0
\(346\) −4.32380e8 −0.561176
\(347\) − 2.99713e8i − 0.385082i −0.981289 0.192541i \(-0.938327\pi\)
0.981289 0.192541i \(-0.0616728\pi\)
\(348\) 0 0
\(349\) 4.00569e8 0.504415 0.252208 0.967673i \(-0.418843\pi\)
0.252208 + 0.967673i \(0.418843\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1.01958e9i − 1.24602i
\(353\) 5.93100e8i 0.717657i 0.933404 + 0.358828i \(0.116824\pi\)
−0.933404 + 0.358828i \(0.883176\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −9.63264e8 −1.13154
\(357\) 0 0
\(358\) 6.38383e8i 0.735344i
\(359\) 8.77947e8 1.00147 0.500735 0.865601i \(-0.333063\pi\)
0.500735 + 0.865601i \(0.333063\pi\)
\(360\) 0 0
\(361\) 1.60550e9 1.79612
\(362\) 1.52249e9i 1.68684i
\(363\) 0 0
\(364\) 2.32205e7 0.0252358
\(365\) 0 0
\(366\) 0 0
\(367\) − 4.65347e8i − 0.491412i −0.969344 0.245706i \(-0.920980\pi\)
0.969344 0.245706i \(-0.0790198\pi\)
\(368\) 1.89997e9i 1.98737i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.53626e7 −0.0156191
\(372\) 0 0
\(373\) − 2.88096e8i − 0.287446i −0.989618 0.143723i \(-0.954093\pi\)
0.989618 0.143723i \(-0.0459074\pi\)
\(374\) 1.24330e9 1.22892
\(375\) 0 0
\(376\) 3.71362e7 0.0360280
\(377\) 1.07909e9i 1.03720i
\(378\) 0 0
\(379\) 8.21572e8 0.775190 0.387595 0.921830i \(-0.373306\pi\)
0.387595 + 0.921830i \(0.373306\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.24355e9i 2.05927i
\(383\) 6.41573e8i 0.583513i 0.956493 + 0.291757i \(0.0942397\pi\)
−0.956493 + 0.291757i \(0.905760\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00952e9 −1.77843
\(387\) 0 0
\(388\) − 4.68270e8i − 0.406992i
\(389\) −1.25481e9 −1.08082 −0.540411 0.841401i \(-0.681731\pi\)
−0.540411 + 0.841401i \(0.681731\pi\)
\(390\) 0 0
\(391\) −2.18500e9 −1.84855
\(392\) 9.97338e7i 0.0836260i
\(393\) 0 0
\(394\) 1.94618e9 1.60305
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.29837e9i − 1.04144i −0.853729 0.520718i \(-0.825664\pi\)
0.853729 0.520718i \(-0.174336\pi\)
\(398\) 1.17691e9i 0.935733i
\(399\) 0 0
\(400\) 0 0
\(401\) −2.16310e9 −1.67522 −0.837610 0.546268i \(-0.816048\pi\)
−0.837610 + 0.546268i \(0.816048\pi\)
\(402\) 0 0
\(403\) 7.03823e8i 0.535668i
\(404\) 1.29662e9 0.978313
\(405\) 0 0
\(406\) −1.04421e8 −0.0774368
\(407\) 2.94704e8i 0.216674i
\(408\) 0 0
\(409\) 1.26448e9 0.913864 0.456932 0.889502i \(-0.348948\pi\)
0.456932 + 0.889502i \(0.348948\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.32310e9i 1.63655i
\(413\) 6.81516e7i 0.0476048i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.44217e9 0.982174
\(417\) 0 0
\(418\) 3.12242e9i 2.09110i
\(419\) −1.84627e9 −1.22616 −0.613080 0.790021i \(-0.710070\pi\)
−0.613080 + 0.790021i \(0.710070\pi\)
\(420\) 0 0
\(421\) 2.24531e9 1.46652 0.733262 0.679947i \(-0.237997\pi\)
0.733262 + 0.679947i \(0.237997\pi\)
\(422\) 1.96154e9i 1.27058i
\(423\) 0 0
\(424\) −5.41165e7 −0.0344786
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.38941e7i − 0.0272840i
\(428\) 8.30664e8i 0.512120i
\(429\) 0 0
\(430\) 0 0
\(431\) 1.63983e9 0.986568 0.493284 0.869868i \(-0.335796\pi\)
0.493284 + 0.869868i \(0.335796\pi\)
\(432\) 0 0
\(433\) 2.53503e9i 1.50063i 0.661078 + 0.750317i \(0.270099\pi\)
−0.661078 + 0.750317i \(0.729901\pi\)
\(434\) −6.81076e7 −0.0399928
\(435\) 0 0
\(436\) 2.88167e9 1.66510
\(437\) − 5.48740e9i − 3.14544i
\(438\) 0 0
\(439\) −1.74546e8 −0.0984655 −0.0492327 0.998787i \(-0.515678\pi\)
−0.0492327 + 0.998787i \(0.515678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.75860e9i 0.968701i
\(443\) 1.13523e9i 0.620400i 0.950671 + 0.310200i \(0.100396\pi\)
−0.950671 + 0.310200i \(0.899604\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3.42758e9 −1.82943
\(447\) 0 0
\(448\) 6.32736e7i 0.0332468i
\(449\) 2.28121e9 1.18933 0.594665 0.803973i \(-0.297285\pi\)
0.594665 + 0.803973i \(0.297285\pi\)
\(450\) 0 0
\(451\) −2.29015e9 −1.17556
\(452\) − 1.15081e9i − 0.586163i
\(453\) 0 0
\(454\) −2.19064e9 −1.09869
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.93541e9i − 1.43867i −0.694663 0.719335i \(-0.744447\pi\)
0.694663 0.719335i \(-0.255553\pi\)
\(458\) − 1.67830e9i − 0.816282i
\(459\) 0 0
\(460\) 0 0
\(461\) 6.32918e8 0.300881 0.150440 0.988619i \(-0.451931\pi\)
0.150440 + 0.988619i \(0.451931\pi\)
\(462\) 0 0
\(463\) − 1.41260e9i − 0.661431i −0.943730 0.330716i \(-0.892710\pi\)
0.943730 0.330716i \(-0.107290\pi\)
\(464\) −3.33177e9 −1.54832
\(465\) 0 0
\(466\) −5.60429e8 −0.256549
\(467\) − 3.77542e8i − 0.171536i −0.996315 0.0857682i \(-0.972666\pi\)
0.996315 0.0857682i \(-0.0273344\pi\)
\(468\) 0 0
\(469\) −1.42170e8 −0.0636359
\(470\) 0 0
\(471\) 0 0
\(472\) 2.40071e8i 0.105086i
\(473\) 1.04753e9i 0.455147i
\(474\) 0 0
\(475\) 0 0
\(476\) −8.24509e7 −0.0350406
\(477\) 0 0
\(478\) − 1.28077e9i − 0.536382i
\(479\) 4.30550e9 1.78999 0.894993 0.446080i \(-0.147180\pi\)
0.894993 + 0.446080i \(0.147180\pi\)
\(480\) 0 0
\(481\) −4.16849e8 −0.170793
\(482\) 2.81710e9i 1.14587i
\(483\) 0 0
\(484\) 4.54440e8 0.182187
\(485\) 0 0
\(486\) 0 0
\(487\) − 8.36858e8i − 0.328322i −0.986434 0.164161i \(-0.947508\pi\)
0.986434 0.164161i \(-0.0524917\pi\)
\(488\) − 1.54622e8i − 0.0602284i
\(489\) 0 0
\(490\) 0 0
\(491\) −3.30420e9 −1.25974 −0.629870 0.776700i \(-0.716892\pi\)
−0.629870 + 0.776700i \(0.716892\pi\)
\(492\) 0 0
\(493\) − 3.83159e9i − 1.44017i
\(494\) −4.41656e9 −1.64831
\(495\) 0 0
\(496\) −2.17311e9 −0.799643
\(497\) 9.68084e7i 0.0353725i
\(498\) 0 0
\(499\) −3.42619e9 −1.23441 −0.617205 0.786802i \(-0.711735\pi\)
−0.617205 + 0.786802i \(0.711735\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.56786e8i 0.196438i
\(503\) − 2.20556e9i − 0.772734i −0.922345 0.386367i \(-0.873730\pi\)
0.922345 0.386367i \(-0.126270\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.85531e9 2.35234
\(507\) 0 0
\(508\) − 1.43656e9i − 0.486186i
\(509\) 1.55340e9 0.522122 0.261061 0.965322i \(-0.415928\pi\)
0.261061 + 0.965322i \(0.415928\pi\)
\(510\) 0 0
\(511\) −1.38399e8 −0.0458839
\(512\) 4.18409e9i 1.37770i
\(513\) 0 0
\(514\) 6.58715e9 2.13957
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.21367e9i − 0.386263i
\(518\) − 4.03377e7i − 0.0127514i
\(519\) 0 0
\(520\) 0 0
\(521\) −5.82978e9 −1.80601 −0.903005 0.429629i \(-0.858644\pi\)
−0.903005 + 0.429629i \(0.858644\pi\)
\(522\) 0 0
\(523\) − 1.98399e9i − 0.606433i −0.952922 0.303216i \(-0.901940\pi\)
0.952922 0.303216i \(-0.0980605\pi\)
\(524\) −1.92563e8 −0.0584673
\(525\) 0 0
\(526\) 3.19586e9 0.957498
\(527\) − 2.49912e9i − 0.743788i
\(528\) 0 0
\(529\) −8.64284e9 −2.53841
\(530\) 0 0
\(531\) 0 0
\(532\) − 2.07067e8i − 0.0596239i
\(533\) − 3.23933e9i − 0.926638i
\(534\) 0 0
\(535\) 0 0
\(536\) −5.00809e8 −0.140474
\(537\) 0 0
\(538\) − 4.55271e9i − 1.26047i
\(539\) 3.25946e9 0.896570
\(540\) 0 0
\(541\) −7.16394e9 −1.94519 −0.972594 0.232511i \(-0.925306\pi\)
−0.972594 + 0.232511i \(0.925306\pi\)
\(542\) 5.69872e9i 1.53737i
\(543\) 0 0
\(544\) −5.12080e9 −1.36377
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.97289e9i − 0.515403i −0.966225 0.257702i \(-0.917035\pi\)
0.966225 0.257702i \(-0.0829652\pi\)
\(548\) − 3.46510e9i − 0.899464i
\(549\) 0 0
\(550\) 0 0
\(551\) 9.62266e9 2.45056
\(552\) 0 0
\(553\) 4.57160e7i 0.0114956i
\(554\) −4.98611e9 −1.24588
\(555\) 0 0
\(556\) −2.58339e8 −0.0637424
\(557\) − 6.01464e9i − 1.47474i −0.675487 0.737372i \(-0.736067\pi\)
0.675487 0.737372i \(-0.263933\pi\)
\(558\) 0 0
\(559\) −1.48169e9 −0.358771
\(560\) 0 0
\(561\) 0 0
\(562\) 6.01342e8i 0.142904i
\(563\) − 1.43964e9i − 0.339996i −0.985444 0.169998i \(-0.945624\pi\)
0.985444 0.169998i \(-0.0543762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8.45231e9 1.95938
\(567\) 0 0
\(568\) 3.41018e8i 0.0780833i
\(569\) −4.34990e9 −0.989889 −0.494944 0.868925i \(-0.664812\pi\)
−0.494944 + 0.868925i \(0.664812\pi\)
\(570\) 0 0
\(571\) −3.91778e9 −0.880671 −0.440336 0.897833i \(-0.645141\pi\)
−0.440336 + 0.897833i \(0.645141\pi\)
\(572\) − 2.67325e9i − 0.597246i
\(573\) 0 0
\(574\) 3.13464e8 0.0691825
\(575\) 0 0
\(576\) 0 0
\(577\) 5.57477e9i 1.20812i 0.796938 + 0.604062i \(0.206452\pi\)
−0.796938 + 0.604062i \(0.793548\pi\)
\(578\) 2.21577e8i 0.0477284i
\(579\) 0 0
\(580\) 0 0
\(581\) −6.57698e7 −0.0139127
\(582\) 0 0
\(583\) 1.76861e9i 0.369652i
\(584\) −4.87526e8 −0.101287
\(585\) 0 0
\(586\) 8.48683e9 1.74222
\(587\) 3.96579e9i 0.809275i 0.914477 + 0.404638i \(0.132602\pi\)
−0.914477 + 0.404638i \(0.867398\pi\)
\(588\) 0 0
\(589\) 6.27628e9 1.26561
\(590\) 0 0
\(591\) 0 0
\(592\) − 1.28705e9i − 0.254959i
\(593\) − 1.59443e9i − 0.313988i −0.987600 0.156994i \(-0.949820\pi\)
0.987600 0.156994i \(-0.0501804\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.97683e8 −0.115640
\(597\) 0 0
\(598\) 9.69660e9i 1.85424i
\(599\) 1.99503e9 0.379276 0.189638 0.981854i \(-0.439269\pi\)
0.189638 + 0.981854i \(0.439269\pi\)
\(600\) 0 0
\(601\) 5.69444e9 1.07002 0.535008 0.844847i \(-0.320308\pi\)
0.535008 + 0.844847i \(0.320308\pi\)
\(602\) − 1.43381e8i − 0.0267857i
\(603\) 0 0
\(604\) 2.53221e9 0.467597
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.61948e9i − 0.293910i −0.989143 0.146955i \(-0.953053\pi\)
0.989143 0.146955i \(-0.0469472\pi\)
\(608\) − 1.28604e10i − 2.32055i
\(609\) 0 0
\(610\) 0 0
\(611\) 1.71669e9 0.304472
\(612\) 0 0
\(613\) − 8.66201e8i − 0.151882i −0.997112 0.0759412i \(-0.975804\pi\)
0.997112 0.0759412i \(-0.0241961\pi\)
\(614\) 9.61694e8 0.167667
\(615\) 0 0
\(616\) −1.65494e7 −0.00285267
\(617\) − 8.93265e9i − 1.53102i −0.643421 0.765512i \(-0.722486\pi\)
0.643421 0.765512i \(-0.277514\pi\)
\(618\) 0 0
\(619\) 3.70947e9 0.628630 0.314315 0.949319i \(-0.398225\pi\)
0.314315 + 0.949319i \(0.398225\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 9.06625e9i − 1.51064i
\(623\) 2.75667e8i 0.0456747i
\(624\) 0 0
\(625\) 0 0
\(626\) −1.15408e10 −1.88030
\(627\) 0 0
\(628\) − 3.14464e9i − 0.506656i
\(629\) 1.48014e9 0.237151
\(630\) 0 0
\(631\) 1.11559e9 0.176767 0.0883834 0.996087i \(-0.471830\pi\)
0.0883834 + 0.996087i \(0.471830\pi\)
\(632\) 1.61039e8i 0.0253760i
\(633\) 0 0
\(634\) 2.64492e8 0.0412192
\(635\) 0 0
\(636\) 0 0
\(637\) 4.61039e9i 0.706723i
\(638\) 1.20214e10i 1.83267i
\(639\) 0 0
\(640\) 0 0
\(641\) −4.96276e8 −0.0744252 −0.0372126 0.999307i \(-0.511848\pi\)
−0.0372126 + 0.999307i \(0.511848\pi\)
\(642\) 0 0
\(643\) − 8.93408e8i − 0.132529i −0.997802 0.0662646i \(-0.978892\pi\)
0.997802 0.0662646i \(-0.0211081\pi\)
\(644\) −4.54619e8 −0.0670728
\(645\) 0 0
\(646\) 1.56822e10 2.28872
\(647\) 3.05033e9i 0.442774i 0.975186 + 0.221387i \(0.0710584\pi\)
−0.975186 + 0.221387i \(0.928942\pi\)
\(648\) 0 0
\(649\) 7.84590e9 1.12664
\(650\) 0 0
\(651\) 0 0
\(652\) 1.22489e10i 1.73074i
\(653\) 1.29545e10i 1.82064i 0.413908 + 0.910319i \(0.364164\pi\)
−0.413908 + 0.910319i \(0.635836\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00017e10 1.38328
\(657\) 0 0
\(658\) 1.66121e8i 0.0227318i
\(659\) 8.43740e9 1.14844 0.574222 0.818700i \(-0.305305\pi\)
0.574222 + 0.818700i \(0.305305\pi\)
\(660\) 0 0
\(661\) 7.97949e9 1.07466 0.537328 0.843373i \(-0.319434\pi\)
0.537328 + 0.843373i \(0.319434\pi\)
\(662\) − 1.70822e10i − 2.28845i
\(663\) 0 0
\(664\) −2.31681e8 −0.0307116
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.11267e10i − 2.75671i
\(668\) − 7.39357e9i − 0.959702i
\(669\) 0 0
\(670\) 0 0
\(671\) −5.05328e9 −0.645720
\(672\) 0 0
\(673\) − 4.53364e9i − 0.573317i −0.958033 0.286658i \(-0.907456\pi\)
0.958033 0.286658i \(-0.0925444\pi\)
\(674\) 1.16032e9 0.145971
\(675\) 0 0
\(676\) −3.76765e9 −0.469091
\(677\) 1.06085e9i 0.131400i 0.997839 + 0.0656998i \(0.0209280\pi\)
−0.997839 + 0.0656998i \(0.979072\pi\)
\(678\) 0 0
\(679\) −1.34009e8 −0.0164282
\(680\) 0 0
\(681\) 0 0
\(682\) 7.84084e9i 0.946493i
\(683\) − 1.53865e9i − 0.184785i −0.995723 0.0923924i \(-0.970549\pi\)
0.995723 0.0923924i \(-0.0294514\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.92920e8 −0.105603
\(687\) 0 0
\(688\) − 4.57485e9i − 0.535571i
\(689\) −2.50164e9 −0.291379
\(690\) 0 0
\(691\) −5.67788e9 −0.654656 −0.327328 0.944911i \(-0.606148\pi\)
−0.327328 + 0.944911i \(0.606148\pi\)
\(692\) − 3.30105e9i − 0.378688i
\(693\) 0 0
\(694\) 4.72278e9 0.536339
\(695\) 0 0
\(696\) 0 0
\(697\) 1.15021e10i 1.28666i
\(698\) 6.31202e9i 0.702546i
\(699\) 0 0
\(700\) 0 0
\(701\) −3.43469e9 −0.376595 −0.188298 0.982112i \(-0.560297\pi\)
−0.188298 + 0.982112i \(0.560297\pi\)
\(702\) 0 0
\(703\) 3.71722e9i 0.403528i
\(704\) 7.28433e9 0.786837
\(705\) 0 0
\(706\) −9.34587e9 −0.999547
\(707\) − 3.71066e8i − 0.0394897i
\(708\) 0 0
\(709\) 1.79411e10 1.89055 0.945273 0.326281i \(-0.105796\pi\)
0.945273 + 0.326281i \(0.105796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.71065e8i 0.100825i
\(713\) − 1.37797e10i − 1.42372i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.87381e9 −0.496218
\(717\) 0 0
\(718\) 1.38344e10i 1.39484i
\(719\) −5.25757e9 −0.527514 −0.263757 0.964589i \(-0.584962\pi\)
−0.263757 + 0.964589i \(0.584962\pi\)
\(720\) 0 0
\(721\) 6.64825e8 0.0660593
\(722\) 2.52989e10i 2.50162i
\(723\) 0 0
\(724\) −1.16236e10 −1.13830
\(725\) 0 0
\(726\) 0 0
\(727\) − 7.82419e9i − 0.755212i −0.925966 0.377606i \(-0.876747\pi\)
0.925966 0.377606i \(-0.123253\pi\)
\(728\) − 2.34086e7i − 0.00224862i
\(729\) 0 0
\(730\) 0 0
\(731\) 5.26116e9 0.498162
\(732\) 0 0
\(733\) 4.35449e9i 0.408388i 0.978930 + 0.204194i \(0.0654574\pi\)
−0.978930 + 0.204194i \(0.934543\pi\)
\(734\) 7.33278e9 0.684435
\(735\) 0 0
\(736\) −2.82351e10 −2.61046
\(737\) 1.63672e10i 1.50605i
\(738\) 0 0
\(739\) −4.46423e9 −0.406903 −0.203452 0.979085i \(-0.565216\pi\)
−0.203452 + 0.979085i \(0.565216\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 2.42079e8i − 0.0217542i
\(743\) − 1.19060e9i − 0.106489i −0.998581 0.0532447i \(-0.983044\pi\)
0.998581 0.0532447i \(-0.0169563\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 4.53971e9 0.400352
\(747\) 0 0
\(748\) 9.49210e9i 0.829291i
\(749\) 2.37719e8 0.0206718
\(750\) 0 0
\(751\) −1.78291e9 −0.153599 −0.0767997 0.997047i \(-0.524470\pi\)
−0.0767997 + 0.997047i \(0.524470\pi\)
\(752\) 5.30042e9i 0.454515i
\(753\) 0 0
\(754\) −1.70039e10 −1.44460
\(755\) 0 0
\(756\) 0 0
\(757\) 5.28551e9i 0.442844i 0.975178 + 0.221422i \(0.0710699\pi\)
−0.975178 + 0.221422i \(0.928930\pi\)
\(758\) 1.29460e10i 1.07968i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.71171e9 0.552061 0.276030 0.961149i \(-0.410981\pi\)
0.276030 + 0.961149i \(0.410981\pi\)
\(762\) 0 0
\(763\) − 8.24675e8i − 0.0672120i
\(764\) −1.71286e10 −1.38962
\(765\) 0 0
\(766\) −1.01097e10 −0.812713
\(767\) 1.10978e10i 0.888079i
\(768\) 0 0
\(769\) −1.25190e10 −0.992725 −0.496363 0.868115i \(-0.665331\pi\)
−0.496363 + 0.868115i \(0.665331\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 1.53419e10i − 1.20011i
\(773\) − 1.89490e9i − 0.147556i −0.997275 0.0737781i \(-0.976494\pi\)
0.997275 0.0737781i \(-0.0235056\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.72063e8 −0.0362647
\(777\) 0 0
\(778\) − 1.97729e10i − 1.50536i
\(779\) −2.88865e10 −2.18934
\(780\) 0 0
\(781\) 1.11450e10 0.837146
\(782\) − 3.44304e10i − 2.57465i
\(783\) 0 0
\(784\) −1.42349e10 −1.05499
\(785\) 0 0
\(786\) 0 0
\(787\) 2.12095e10i 1.55103i 0.631331 + 0.775513i \(0.282509\pi\)
−0.631331 + 0.775513i \(0.717491\pi\)
\(788\) 1.48583e10i 1.08175i
\(789\) 0 0
\(790\) 0 0
\(791\) −3.29338e8 −0.0236605
\(792\) 0 0
\(793\) − 7.14769e9i − 0.508990i
\(794\) 2.04593e10 1.45050
\(795\) 0 0
\(796\) −8.98524e9 −0.631443
\(797\) 5.56395e9i 0.389295i 0.980873 + 0.194647i \(0.0623563\pi\)
−0.980873 + 0.194647i \(0.937644\pi\)
\(798\) 0 0
\(799\) −6.09558e9 −0.422767
\(800\) 0 0
\(801\) 0 0
\(802\) − 3.40854e10i − 2.33323i
\(803\) 1.59331e10i 1.08592i
\(804\) 0 0
\(805\) 0 0
\(806\) −1.10906e10 −0.746075
\(807\) 0 0
\(808\) − 1.30712e9i − 0.0871718i
\(809\) 6.34040e9 0.421014 0.210507 0.977592i \(-0.432488\pi\)
0.210507 + 0.977592i \(0.432488\pi\)
\(810\) 0 0
\(811\) 1.06272e10 0.699597 0.349798 0.936825i \(-0.386250\pi\)
0.349798 + 0.936825i \(0.386250\pi\)
\(812\) − 7.97215e8i − 0.0522552i
\(813\) 0 0
\(814\) −4.64385e9 −0.301782
\(815\) 0 0
\(816\) 0 0
\(817\) 1.32129e10i 0.847657i
\(818\) 1.99253e10i 1.27282i
\(819\) 0 0
\(820\) 0 0
\(821\) −2.17793e10 −1.37355 −0.686773 0.726872i \(-0.740973\pi\)
−0.686773 + 0.726872i \(0.740973\pi\)
\(822\) 0 0
\(823\) 2.93033e10i 1.83239i 0.400734 + 0.916194i \(0.368755\pi\)
−0.400734 + 0.916194i \(0.631245\pi\)
\(824\) 2.34192e9 0.145823
\(825\) 0 0
\(826\) −1.07391e9 −0.0663036
\(827\) 1.35378e10i 0.832301i 0.909296 + 0.416150i \(0.136621\pi\)
−0.909296 + 0.416150i \(0.863379\pi\)
\(828\) 0 0
\(829\) 5.06434e9 0.308732 0.154366 0.988014i \(-0.450666\pi\)
0.154366 + 0.988014i \(0.450666\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.03034e10i 0.620226i
\(833\) − 1.63704e10i − 0.981302i
\(834\) 0 0
\(835\) 0 0
\(836\) −2.38385e10 −1.41110
\(837\) 0 0
\(838\) − 2.90929e10i − 1.70779i
\(839\) −7.42054e9 −0.433779 −0.216890 0.976196i \(-0.569591\pi\)
−0.216890 + 0.976196i \(0.569591\pi\)
\(840\) 0 0
\(841\) 1.97977e10 1.14770
\(842\) 3.53808e10i 2.04256i
\(843\) 0 0
\(844\) −1.49756e10 −0.857404
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.30051e8i − 0.00735399i
\(848\) − 7.72401e9i − 0.434968i
\(849\) 0 0
\(850\) 0 0
\(851\) 8.16119e9 0.453942
\(852\) 0 0
\(853\) − 5.19233e9i − 0.286444i −0.989691 0.143222i \(-0.954254\pi\)
0.989691 0.143222i \(-0.0457464\pi\)
\(854\) 6.91668e8 0.0380010
\(855\) 0 0
\(856\) 8.37391e8 0.0456321
\(857\) − 3.38094e10i − 1.83486i −0.397892 0.917432i \(-0.630258\pi\)
0.397892 0.917432i \(-0.369742\pi\)
\(858\) 0 0
\(859\) −1.19130e10 −0.641277 −0.320639 0.947202i \(-0.603897\pi\)
−0.320639 + 0.947202i \(0.603897\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.58398e10i 1.37408i
\(863\) 1.42156e10i 0.752882i 0.926441 + 0.376441i \(0.122852\pi\)
−0.926441 + 0.376441i \(0.877148\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −3.99461e10 −2.09007
\(867\) 0 0
\(868\) − 5.19975e8i − 0.0269876i
\(869\) 5.26302e9 0.272061
\(870\) 0 0
\(871\) −2.31508e10 −1.18714
\(872\) − 2.90501e9i − 0.148368i
\(873\) 0 0
\(874\) 8.64686e10 4.38095
\(875\) 0 0
\(876\) 0 0
\(877\) 2.34323e9i 0.117305i 0.998278 + 0.0586525i \(0.0186804\pi\)
−0.998278 + 0.0586525i \(0.981320\pi\)
\(878\) − 2.75043e9i − 0.137142i
\(879\) 0 0
\(880\) 0 0
\(881\) −1.08237e9 −0.0533288 −0.0266644 0.999644i \(-0.508489\pi\)
−0.0266644 + 0.999644i \(0.508489\pi\)
\(882\) 0 0
\(883\) − 1.55829e10i − 0.761705i −0.924636 0.380852i \(-0.875631\pi\)
0.924636 0.380852i \(-0.124369\pi\)
\(884\) −1.34262e10 −0.653690
\(885\) 0 0
\(886\) −1.78886e10 −0.864088
\(887\) − 1.48785e10i − 0.715858i −0.933749 0.357929i \(-0.883483\pi\)
0.933749 0.357929i \(-0.116517\pi\)
\(888\) 0 0
\(889\) −4.11116e8 −0.0196249
\(890\) 0 0
\(891\) 0 0
\(892\) − 2.61683e10i − 1.23452i
\(893\) − 1.53084e10i − 0.719368i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.36572e8 0.00634286
\(897\) 0 0
\(898\) 3.59465e10i 1.65649i
\(899\) 2.41639e10 1.10919
\(900\) 0 0
\(901\) 8.88276e9 0.404586
\(902\) − 3.60873e10i − 1.63731i
\(903\) 0 0
\(904\) −1.16013e9 −0.0522296
\(905\) 0 0
\(906\) 0 0
\(907\) 3.01866e10i 1.34335i 0.740848 + 0.671673i \(0.234424\pi\)
−0.740848 + 0.671673i \(0.765576\pi\)
\(908\) − 1.67247e10i − 0.741408i
\(909\) 0 0
\(910\) 0 0
\(911\) 3.12329e10 1.36867 0.684334 0.729168i \(-0.260093\pi\)
0.684334 + 0.729168i \(0.260093\pi\)
\(912\) 0 0
\(913\) 7.57170e9i 0.329265i
\(914\) 4.62551e10 2.00377
\(915\) 0 0
\(916\) 1.28132e10 0.550836
\(917\) 5.51076e7i 0.00236004i
\(918\) 0 0
\(919\) 1.27737e10 0.542891 0.271446 0.962454i \(-0.412498\pi\)
0.271446 + 0.962454i \(0.412498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 9.97330e9i 0.419064i
\(923\) 1.57642e10i 0.659882i
\(924\) 0 0
\(925\) 0 0
\(926\) 2.22592e10 0.921237
\(927\) 0 0
\(928\) − 4.95129e10i − 2.03376i
\(929\) −3.36628e10 −1.37751 −0.688755 0.724994i \(-0.741843\pi\)
−0.688755 + 0.724994i \(0.741843\pi\)
\(930\) 0 0
\(931\) 4.11127e10 1.66975
\(932\) − 4.27866e9i − 0.173122i
\(933\) 0 0
\(934\) 5.94917e9 0.238915
\(935\) 0 0
\(936\) 0 0
\(937\) − 3.94639e9i − 0.156715i −0.996925 0.0783577i \(-0.975032\pi\)
0.996925 0.0783577i \(-0.0249676\pi\)
\(938\) − 2.24026e9i − 0.0886317i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.71604e10 0.671373 0.335686 0.941974i \(-0.391032\pi\)
0.335686 + 0.941974i \(0.391032\pi\)
\(942\) 0 0
\(943\) 6.34206e10i 2.46286i
\(944\) −3.42652e10 −1.32572
\(945\) 0 0
\(946\) −1.65066e10 −0.633926
\(947\) 2.96234e10i 1.13347i 0.823900 + 0.566735i \(0.191794\pi\)
−0.823900 + 0.566735i \(0.808206\pi\)
\(948\) 0 0
\(949\) −2.25368e10 −0.855976
\(950\) 0 0
\(951\) 0 0
\(952\) 8.31186e7i 0.00312226i
\(953\) 2.70351e9i 0.101182i 0.998719 + 0.0505910i \(0.0161105\pi\)
−0.998719 + 0.0505910i \(0.983889\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 9.77821e9 0.361957
\(957\) 0 0
\(958\) 6.78446e10i 2.49308i
\(959\) −9.91642e8 −0.0363069
\(960\) 0 0
\(961\) −1.17520e10 −0.427148
\(962\) − 6.56856e9i − 0.237880i
\(963\) 0 0
\(964\) −2.15074e10 −0.773248
\(965\) 0 0
\(966\) 0 0
\(967\) − 3.15584e10i − 1.12233i −0.827703 0.561167i \(-0.810353\pi\)
0.827703 0.561167i \(-0.189647\pi\)
\(968\) − 4.58120e8i − 0.0162336i
\(969\) 0 0
\(970\) 0 0
\(971\) −2.06410e10 −0.723540 −0.361770 0.932267i \(-0.617827\pi\)
−0.361770 + 0.932267i \(0.617827\pi\)
\(972\) 0 0
\(973\) 7.39315e7i 0.00257297i
\(974\) 1.31869e10 0.457285
\(975\) 0 0
\(976\) 2.20690e10 0.759817
\(977\) 3.75871e10i 1.28946i 0.764410 + 0.644731i \(0.223030\pi\)
−0.764410 + 0.644731i \(0.776970\pi\)
\(978\) 0 0
\(979\) 3.17359e10 1.08097
\(980\) 0 0
\(981\) 0 0
\(982\) − 5.20664e10i − 1.75456i
\(983\) 6.64465e9i 0.223118i 0.993758 + 0.111559i \(0.0355844\pi\)
−0.993758 + 0.111559i \(0.964416\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 6.03769e10 2.00586
\(987\) 0 0
\(988\) − 3.37187e10i − 1.11230i
\(989\) 2.90090e10 0.953556
\(990\) 0 0
\(991\) 1.79433e10 0.585657 0.292829 0.956165i \(-0.405403\pi\)
0.292829 + 0.956165i \(0.405403\pi\)
\(992\) − 3.22943e10i − 1.05035i
\(993\) 0 0
\(994\) −1.52547e9 −0.0492666
\(995\) 0 0
\(996\) 0 0
\(997\) 9.85820e8i 0.0315039i 0.999876 + 0.0157520i \(0.00501421\pi\)
−0.999876 + 0.0157520i \(0.994986\pi\)
\(998\) − 5.39887e10i − 1.71928i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.8.b.n.199.4 4
3.2 odd 2 75.8.b.d.49.1 4
5.2 odd 4 45.8.a.i.1.1 2
5.3 odd 4 225.8.a.t.1.2 2
5.4 even 2 inner 225.8.b.n.199.1 4
15.2 even 4 15.8.a.c.1.2 2
15.8 even 4 75.8.a.e.1.1 2
15.14 odd 2 75.8.b.d.49.4 4
60.47 odd 4 240.8.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.8.a.c.1.2 2 15.2 even 4
45.8.a.i.1.1 2 5.2 odd 4
75.8.a.e.1.1 2 15.8 even 4
75.8.b.d.49.1 4 3.2 odd 2
75.8.b.d.49.4 4 15.14 odd 2
225.8.a.t.1.2 2 5.3 odd 4
225.8.b.n.199.1 4 5.4 even 2 inner
225.8.b.n.199.4 4 1.1 even 1 trivial
240.8.a.p.1.2 2 60.47 odd 4