| L(s) = 1 | + 15.7i·2-s − 120.·4-s + 34.4i·7-s + 121. i·8-s + 3.96e3·11-s + 5.60e3i·13-s − 542.·14-s − 1.73e4·16-s − 1.99e4i·17-s + 4.99e4·19-s + 6.24e4i·22-s − 1.09e5i·23-s − 8.83e4·26-s − 4.14e3i·28-s + 1.92e5·29-s + ⋯ |
| L(s) = 1 | + 1.39i·2-s − 0.939·4-s + 0.0379i·7-s + 0.0837i·8-s + 0.897·11-s + 0.707i·13-s − 0.0528·14-s − 1.05·16-s − 0.982i·17-s + 1.67·19-s + 1.25i·22-s − 1.88i·23-s − 0.985·26-s − 0.0356i·28-s + 1.46·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(4)\) |
\(\approx\) |
\(2.420812590\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.420812590\) |
| \(L(\frac{9}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 - 15.7iT - 128T^{2} \) |
| 7 | \( 1 - 34.4iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.96e3T + 1.94e7T^{2} \) |
| 13 | \( 1 - 5.60e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 1.99e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 4.99e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + 1.09e5iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.92e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.25e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 7.43e4iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 5.77e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 2.64e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 3.06e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 - 4.46e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.97e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 1.27e6T + 3.14e12T^{2} \) |
| 67 | \( 1 - 4.12e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 2.81e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 4.01e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 1.32e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 1.91e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 8.00e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 3.89e6iT - 8.07e13T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.51355541114629267104353111233, −10.03166839593843714442859498396, −9.013632992201285209792132222865, −8.229654861455619193627158250894, −6.99614588616581928351046795599, −6.54806219016323654647546534355, −5.27366995458270352275682031688, −4.35357191689740150340510669542, −2.66917995629102675971266168448, −0.898396346144851675230545645353,
0.814973160406954973559761704327, 1.64654424709276606288962593271, 3.09317842944145676434825262458, 3.81658100018673203283756549064, 5.22156326652218239123584645169, 6.57906358886868567681739730830, 7.84498998690371004183621979472, 9.120744411135915329430567602760, 9.916959798427501802322011636748, 10.70406574393632592795422038183