Properties

Label 225.4.e.a.151.2
Level $225$
Weight $4$
Character 225.151
Analytic conductor $13.275$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(76,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.76"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.2
Root \(1.68614 - 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 225.151
Dual form 225.4.e.a.76.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18614 - 2.05446i) q^{2} +(1.50000 - 4.97494i) q^{3} +(1.18614 + 2.05446i) q^{4} +(-8.44158 - 8.98266i) q^{6} +(3.68614 - 6.38458i) q^{7} +24.6060 q^{8} +(-22.5000 - 14.9248i) q^{9} +(2.06930 - 3.58413i) q^{11} +(12.0000 - 2.81929i) q^{12} +(-39.4891 - 68.3972i) q^{13} +(-8.74456 - 15.1460i) q^{14} +(19.6970 - 34.1162i) q^{16} +33.3070 q^{17} +(-57.3505 + 28.5223i) q^{18} +89.3070 q^{19} +(-26.2337 - 27.9152i) q^{21} +(-4.90895 - 8.50256i) q^{22} +(-99.7812 - 172.826i) q^{23} +(36.9090 - 122.413i) q^{24} -187.359 q^{26} +(-108.000 + 89.5489i) q^{27} +17.4891 q^{28} +(-25.2405 + 43.7179i) q^{29} +(3.00000 + 5.19615i) q^{31} +(51.6970 + 89.5419i) q^{32} +(-14.7269 - 15.6708i) q^{33} +(39.5068 - 68.4278i) q^{34} +(3.97420 - 63.9282i) q^{36} +290.277 q^{37} +(105.931 - 183.477i) q^{38} +(-399.505 + 93.8602i) q^{39} +(26.6684 + 46.1911i) q^{41} +(-88.4674 + 20.7846i) q^{42} +(-149.194 + 258.412i) q^{43} +9.81791 q^{44} -473.418 q^{46} +(-209.452 + 362.782i) q^{47} +(-140.181 - 149.166i) q^{48} +(144.325 + 249.978i) q^{49} +(49.9605 - 165.700i) q^{51} +(93.6793 - 162.257i) q^{52} -399.228 q^{53} +(55.8710 + 328.099i) q^{54} +(90.7011 - 157.099i) q^{56} +(133.961 - 444.297i) q^{57} +(59.8776 + 103.711i) q^{58} +(-49.1209 - 85.0799i) q^{59} +(341.797 - 592.011i) q^{61} +14.2337 q^{62} +(-178.227 + 88.6382i) q^{63} +560.432 q^{64} +(-49.6631 + 11.6679i) q^{66} +(112.750 + 195.289i) q^{67} +(39.5068 + 68.4278i) q^{68} +(-1009.47 + 237.166i) q^{69} +512.951 q^{71} +(-553.634 - 367.239i) q^{72} +994.318 q^{73} +(344.310 - 596.362i) q^{74} +(105.931 + 183.477i) q^{76} +(-15.2554 - 26.4232i) q^{77} +(-281.038 + 932.097i) q^{78} +(100.853 - 174.683i) q^{79} +(283.500 + 671.617i) q^{81} +126.530 q^{82} +(553.822 - 959.247i) q^{83} +(26.2337 - 87.0073i) q^{84} +(353.931 + 613.026i) q^{86} +(179.633 + 191.147i) q^{87} +(50.9171 - 88.1909i) q^{88} +372.269 q^{89} -582.250 q^{91} +(236.709 - 409.992i) q^{92} +(30.3505 - 7.13058i) q^{93} +(496.880 + 860.622i) q^{94} +(523.011 - 122.877i) q^{96} +(-69.6156 + 120.578i) q^{97} +684.758 q^{98} +(-100.052 + 49.7590i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 6 q^{3} - q^{4} - 51 q^{6} + 9 q^{7} + 18 q^{8} - 90 q^{9} + 37 q^{11} + 48 q^{12} - 112 q^{13} - 12 q^{14} + 119 q^{16} - 154 q^{17} - 126 q^{18} + 70 q^{19} - 36 q^{21} + 101 q^{22} - 267 q^{23}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18614 2.05446i 0.419364 0.726360i −0.576512 0.817089i \(-0.695586\pi\)
0.995876 + 0.0907292i \(0.0289198\pi\)
\(3\) 1.50000 4.97494i 0.288675 0.957427i
\(4\) 1.18614 + 2.05446i 0.148268 + 0.256807i
\(5\) 0 0
\(6\) −8.44158 8.98266i −0.574377 0.611193i
\(7\) 3.68614 6.38458i 0.199033 0.344735i −0.749182 0.662364i \(-0.769553\pi\)
0.948215 + 0.317629i \(0.102887\pi\)
\(8\) 24.6060 1.08744
\(9\) −22.5000 14.9248i −0.833333 0.552771i
\(10\) 0 0
\(11\) 2.06930 3.58413i 0.0567197 0.0982414i −0.836271 0.548316i \(-0.815269\pi\)
0.892991 + 0.450074i \(0.148603\pi\)
\(12\) 12.0000 2.81929i 0.288675 0.0678216i
\(13\) −39.4891 68.3972i −0.842486 1.45923i −0.887787 0.460254i \(-0.847758\pi\)
0.0453014 0.998973i \(-0.485575\pi\)
\(14\) −8.74456 15.1460i −0.166934 0.289139i
\(15\) 0 0
\(16\) 19.6970 34.1162i 0.307766 0.533066i
\(17\) 33.3070 0.475185 0.237592 0.971365i \(-0.423642\pi\)
0.237592 + 0.971365i \(0.423642\pi\)
\(18\) −57.3505 + 28.5223i −0.750981 + 0.373488i
\(19\) 89.3070 1.07834 0.539169 0.842197i \(-0.318738\pi\)
0.539169 + 0.842197i \(0.318738\pi\)
\(20\) 0 0
\(21\) −26.2337 27.9152i −0.272603 0.290076i
\(22\) −4.90895 8.50256i −0.0475724 0.0823978i
\(23\) −99.7812 172.826i −0.904601 1.56682i −0.821452 0.570278i \(-0.806835\pi\)
−0.0831494 0.996537i \(-0.526498\pi\)
\(24\) 36.9090 122.413i 0.313917 1.04114i
\(25\) 0 0
\(26\) −187.359 −1.41323
\(27\) −108.000 + 89.5489i −0.769800 + 0.638285i
\(28\) 17.4891 0.118041
\(29\) −25.2405 + 43.7179i −0.161622 + 0.279938i −0.935451 0.353457i \(-0.885006\pi\)
0.773828 + 0.633395i \(0.218339\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.0173812 + 0.0301050i 0.874585 0.484872i \(-0.161134\pi\)
−0.857204 + 0.514977i \(0.827800\pi\)
\(32\) 51.6970 + 89.5419i 0.285588 + 0.494654i
\(33\) −14.7269 15.6708i −0.0776854 0.0826648i
\(34\) 39.5068 68.4278i 0.199275 0.345155i
\(35\) 0 0
\(36\) 3.97420 63.9282i 0.0183991 0.295964i
\(37\) 290.277 1.28976 0.644882 0.764282i \(-0.276906\pi\)
0.644882 + 0.764282i \(0.276906\pi\)
\(38\) 105.931 183.477i 0.452217 0.783262i
\(39\) −399.505 + 93.8602i −1.64031 + 0.385376i
\(40\) 0 0
\(41\) 26.6684 + 46.1911i 0.101583 + 0.175947i 0.912337 0.409440i \(-0.134276\pi\)
−0.810754 + 0.585387i \(0.800943\pi\)
\(42\) −88.4674 + 20.7846i −0.325019 + 0.0763604i
\(43\) −149.194 + 258.412i −0.529114 + 0.916453i 0.470309 + 0.882502i \(0.344142\pi\)
−0.999424 + 0.0339510i \(0.989191\pi\)
\(44\) 9.81791 0.0336388
\(45\) 0 0
\(46\) −473.418 −1.51743
\(47\) −209.452 + 362.782i −0.650038 + 1.12590i 0.333075 + 0.942900i \(0.391914\pi\)
−0.983113 + 0.182998i \(0.941420\pi\)
\(48\) −140.181 149.166i −0.421528 0.448546i
\(49\) 144.325 + 249.978i 0.420772 + 0.728798i
\(50\) 0 0
\(51\) 49.9605 165.700i 0.137174 0.454955i
\(52\) 93.6793 162.257i 0.249827 0.432712i
\(53\) −399.228 −1.03468 −0.517342 0.855779i \(-0.673078\pi\)
−0.517342 + 0.855779i \(0.673078\pi\)
\(54\) 55.8710 + 328.099i 0.140798 + 0.826826i
\(55\) 0 0
\(56\) 90.7011 157.099i 0.216436 0.374879i
\(57\) 133.961 444.297i 0.311290 1.03243i
\(58\) 59.8776 + 103.711i 0.135557 + 0.234792i
\(59\) −49.1209 85.0799i −0.108390 0.187737i 0.806728 0.590923i \(-0.201236\pi\)
−0.915118 + 0.403186i \(0.867903\pi\)
\(60\) 0 0
\(61\) 341.797 592.011i 0.717421 1.24261i −0.244597 0.969625i \(-0.578656\pi\)
0.962018 0.272985i \(-0.0880109\pi\)
\(62\) 14.2337 0.0291561
\(63\) −178.227 + 88.6382i −0.356420 + 0.177260i
\(64\) 560.432 1.09459
\(65\) 0 0
\(66\) −49.6631 + 11.6679i −0.0926228 + 0.0217609i
\(67\) 112.750 + 195.289i 0.205591 + 0.356094i 0.950321 0.311272i \(-0.100755\pi\)
−0.744730 + 0.667366i \(0.767422\pi\)
\(68\) 39.5068 + 68.4278i 0.0704545 + 0.122031i
\(69\) −1009.47 + 237.166i −1.76125 + 0.413789i
\(70\) 0 0
\(71\) 512.951 0.857410 0.428705 0.903445i \(-0.358970\pi\)
0.428705 + 0.903445i \(0.358970\pi\)
\(72\) −553.634 367.239i −0.906200 0.601105i
\(73\) 994.318 1.59419 0.797096 0.603852i \(-0.206368\pi\)
0.797096 + 0.603852i \(0.206368\pi\)
\(74\) 344.310 596.362i 0.540881 0.936833i
\(75\) 0 0
\(76\) 105.931 + 183.477i 0.159883 + 0.276925i
\(77\) −15.2554 26.4232i −0.0225782 0.0391065i
\(78\) −281.038 + 932.097i −0.407965 + 1.35307i
\(79\) 100.853 174.683i 0.143631 0.248777i −0.785230 0.619204i \(-0.787455\pi\)
0.928862 + 0.370427i \(0.120789\pi\)
\(80\) 0 0
\(81\) 283.500 + 671.617i 0.388889 + 0.921285i
\(82\) 126.530 0.170401
\(83\) 553.822 959.247i 0.732408 1.26857i −0.223444 0.974717i \(-0.571730\pi\)
0.955851 0.293850i \(-0.0949367\pi\)
\(84\) 26.2337 87.0073i 0.0340754 0.113015i
\(85\) 0 0
\(86\) 353.931 + 613.026i 0.443783 + 0.768655i
\(87\) 179.633 + 191.147i 0.221364 + 0.235553i
\(88\) 50.9171 88.1909i 0.0616793 0.106832i
\(89\) 372.269 0.443375 0.221688 0.975118i \(-0.428843\pi\)
0.221688 + 0.975118i \(0.428843\pi\)
\(90\) 0 0
\(91\) −582.250 −0.670729
\(92\) 236.709 409.992i 0.268246 0.464616i
\(93\) 30.3505 7.13058i 0.0338409 0.00795061i
\(94\) 496.880 + 860.622i 0.545205 + 0.944323i
\(95\) 0 0
\(96\) 523.011 122.877i 0.556037 0.130636i
\(97\) −69.6156 + 120.578i −0.0728700 + 0.126215i −0.900158 0.435563i \(-0.856549\pi\)
0.827288 + 0.561778i \(0.189882\pi\)
\(98\) 684.758 0.705826
\(99\) −100.052 + 49.7590i −0.101571 + 0.0505148i
\(100\) 0 0
\(101\) −985.872 + 1707.58i −0.971267 + 1.68228i −0.279525 + 0.960139i \(0.590177\pi\)
−0.691742 + 0.722145i \(0.743156\pi\)
\(102\) −281.164 299.186i −0.272935 0.290429i
\(103\) 906.353 + 1569.85i 0.867045 + 1.50177i 0.865002 + 0.501768i \(0.167317\pi\)
0.00204255 + 0.999998i \(0.499350\pi\)
\(104\) −971.668 1682.98i −0.916153 1.58682i
\(105\) 0 0
\(106\) −473.541 + 820.197i −0.433909 + 0.751552i
\(107\) 259.217 0.234201 0.117100 0.993120i \(-0.462640\pi\)
0.117100 + 0.993120i \(0.462640\pi\)
\(108\) −312.077 115.664i −0.278052 0.103053i
\(109\) 775.556 0.681512 0.340756 0.940152i \(-0.389317\pi\)
0.340756 + 0.940152i \(0.389317\pi\)
\(110\) 0 0
\(111\) 435.416 1444.11i 0.372323 1.23486i
\(112\) −145.212 251.514i −0.122511 0.212195i
\(113\) −107.628 186.417i −0.0895997 0.155191i 0.817742 0.575585i \(-0.195225\pi\)
−0.907342 + 0.420393i \(0.861892\pi\)
\(114\) −753.892 802.215i −0.619373 0.659073i
\(115\) 0 0
\(116\) −119.755 −0.0958534
\(117\) −132.310 + 2128.30i −0.104547 + 1.68172i
\(118\) −233.057 −0.181819
\(119\) 122.774 212.652i 0.0945774 0.163813i
\(120\) 0 0
\(121\) 656.936 + 1137.85i 0.493566 + 0.854881i
\(122\) −810.840 1404.42i −0.601721 1.04221i
\(123\) 269.800 63.3872i 0.197781 0.0464669i
\(124\) −7.11684 + 12.3267i −0.00515412 + 0.00892721i
\(125\) 0 0
\(126\) −29.2989 + 471.297i −0.0207155 + 0.333226i
\(127\) −2424.76 −1.69420 −0.847098 0.531436i \(-0.821652\pi\)
−0.847098 + 0.531436i \(0.821652\pi\)
\(128\) 251.175 435.048i 0.173445 0.300415i
\(129\) 1061.79 + 1129.85i 0.724694 + 0.771145i
\(130\) 0 0
\(131\) −130.247 225.595i −0.0868684 0.150461i 0.819317 0.573340i \(-0.194353\pi\)
−0.906186 + 0.422880i \(0.861019\pi\)
\(132\) 14.7269 48.8435i 0.00971067 0.0322067i
\(133\) 329.198 570.188i 0.214625 0.371741i
\(134\) 534.949 0.344870
\(135\) 0 0
\(136\) 819.552 0.516735
\(137\) −202.319 + 350.427i −0.126170 + 0.218533i −0.922190 0.386738i \(-0.873602\pi\)
0.796020 + 0.605271i \(0.206935\pi\)
\(138\) −710.127 + 2355.23i −0.438044 + 1.45283i
\(139\) 883.841 + 1530.86i 0.539327 + 0.934141i 0.998940 + 0.0460221i \(0.0146545\pi\)
−0.459614 + 0.888119i \(0.652012\pi\)
\(140\) 0 0
\(141\) 1490.64 + 1586.19i 0.890316 + 0.947383i
\(142\) 608.432 1053.84i 0.359567 0.622788i
\(143\) −326.859 −0.191142
\(144\) −952.361 + 473.641i −0.551135 + 0.274098i
\(145\) 0 0
\(146\) 1179.40 2042.78i 0.668547 1.15796i
\(147\) 1460.11 343.040i 0.819237 0.192472i
\(148\) 344.310 + 596.362i 0.191230 + 0.331220i
\(149\) −960.344 1663.36i −0.528016 0.914551i −0.999467 0.0326584i \(-0.989603\pi\)
0.471450 0.881893i \(-0.343731\pi\)
\(150\) 0 0
\(151\) 1262.28 2186.33i 0.680284 1.17829i −0.294611 0.955617i \(-0.595190\pi\)
0.974894 0.222668i \(-0.0714767\pi\)
\(152\) 2197.49 1.17263
\(153\) −749.408 497.101i −0.395987 0.262668i
\(154\) −72.3804 −0.0378739
\(155\) 0 0
\(156\) −666.701 709.435i −0.342172 0.364104i
\(157\) 971.350 + 1682.43i 0.493772 + 0.855238i 0.999974 0.00717683i \(-0.00228447\pi\)
−0.506202 + 0.862415i \(0.668951\pi\)
\(158\) −239.252 414.397i −0.120468 0.208656i
\(159\) −598.842 + 1986.13i −0.298687 + 0.990634i
\(160\) 0 0
\(161\) −1471.23 −0.720181
\(162\) 1716.08 + 214.193i 0.832270 + 0.103880i
\(163\) 1051.21 0.505134 0.252567 0.967579i \(-0.418725\pi\)
0.252567 + 0.967579i \(0.418725\pi\)
\(164\) −63.2650 + 109.578i −0.0301230 + 0.0521745i
\(165\) 0 0
\(166\) −1313.82 2275.60i −0.614291 1.06398i
\(167\) −1408.22 2439.11i −0.652524 1.13020i −0.982508 0.186218i \(-0.940377\pi\)
0.329985 0.943986i \(-0.392956\pi\)
\(168\) −645.505 686.880i −0.296439 0.315440i
\(169\) −2020.28 + 3499.23i −0.919564 + 1.59273i
\(170\) 0 0
\(171\) −2009.41 1332.89i −0.898616 0.596074i
\(172\) −707.861 −0.313802
\(173\) −721.225 + 1249.20i −0.316958 + 0.548987i −0.979852 0.199726i \(-0.935995\pi\)
0.662894 + 0.748713i \(0.269328\pi\)
\(174\) 605.772 142.321i 0.263928 0.0620075i
\(175\) 0 0
\(176\) −81.5179 141.193i −0.0349128 0.0604707i
\(177\) −496.948 + 116.754i −0.211033 + 0.0495804i
\(178\) 441.563 764.809i 0.185936 0.322050i
\(179\) 1534.89 0.640912 0.320456 0.947263i \(-0.396164\pi\)
0.320456 + 0.947263i \(0.396164\pi\)
\(180\) 0 0
\(181\) −3650.43 −1.49908 −0.749542 0.661956i \(-0.769726\pi\)
−0.749542 + 0.661956i \(0.769726\pi\)
\(182\) −690.630 + 1196.21i −0.281280 + 0.487191i
\(183\) −2432.52 2588.44i −0.982606 1.04559i
\(184\) −2455.21 4252.56i −0.983700 1.70382i
\(185\) 0 0
\(186\) 21.3505 70.8117i 0.00841665 0.0279149i
\(187\) 68.9221 119.377i 0.0269523 0.0466828i
\(188\) −993.760 −0.385518
\(189\) 173.629 + 1019.62i 0.0668235 + 0.392417i
\(190\) 0 0
\(191\) −678.644 + 1175.45i −0.257094 + 0.445300i −0.965462 0.260543i \(-0.916098\pi\)
0.708368 + 0.705843i \(0.249432\pi\)
\(192\) 840.648 2788.11i 0.315982 1.04799i
\(193\) −901.520 1561.48i −0.336232 0.582371i 0.647488 0.762075i \(-0.275819\pi\)
−0.983721 + 0.179704i \(0.942486\pi\)
\(194\) 165.148 + 286.044i 0.0611181 + 0.105860i
\(195\) 0 0
\(196\) −342.379 + 593.018i −0.124774 + 0.216114i
\(197\) 263.403 0.0952624 0.0476312 0.998865i \(-0.484833\pi\)
0.0476312 + 0.998865i \(0.484833\pi\)
\(198\) −16.4476 + 264.573i −0.00590344 + 0.0949614i
\(199\) 492.853 0.175565 0.0877824 0.996140i \(-0.472022\pi\)
0.0877824 + 0.996140i \(0.472022\pi\)
\(200\) 0 0
\(201\) 1140.67 267.991i 0.400283 0.0940429i
\(202\) 2338.77 + 4050.86i 0.814629 + 1.41098i
\(203\) 186.080 + 322.300i 0.0643363 + 0.111434i
\(204\) 399.684 93.9022i 0.137174 0.0322278i
\(205\) 0 0
\(206\) 4300.25 1.45443
\(207\) −334.320 + 5377.80i −0.112255 + 1.80572i
\(208\) −3111.27 −1.03715
\(209\) 184.803 320.088i 0.0611630 0.105937i
\(210\) 0 0
\(211\) 500.772 + 867.362i 0.163387 + 0.282994i 0.936081 0.351784i \(-0.114425\pi\)
−0.772695 + 0.634778i \(0.781092\pi\)
\(212\) −473.541 820.197i −0.153410 0.265714i
\(213\) 769.426 2551.90i 0.247513 0.820907i
\(214\) 307.468 532.551i 0.0982155 0.170114i
\(215\) 0 0
\(216\) −2657.44 + 2203.44i −0.837112 + 0.694097i
\(217\) 44.2337 0.0138377
\(218\) 919.919 1593.35i 0.285802 0.495023i
\(219\) 1491.48 4946.67i 0.460204 1.52632i
\(220\) 0 0
\(221\) −1315.27 2278.11i −0.400336 0.693403i
\(222\) −2450.40 2607.46i −0.740810 0.788294i
\(223\) 280.574 485.969i 0.0842540 0.145932i −0.820819 0.571188i \(-0.806483\pi\)
0.905073 + 0.425256i \(0.139816\pi\)
\(224\) 762.250 0.227366
\(225\) 0 0
\(226\) −510.646 −0.150300
\(227\) −1953.23 + 3383.09i −0.571103 + 0.989180i 0.425350 + 0.905029i \(0.360151\pi\)
−0.996453 + 0.0841506i \(0.973182\pi\)
\(228\) 1071.68 251.783i 0.311290 0.0731347i
\(229\) −1498.45 2595.40i −0.432405 0.748947i 0.564675 0.825313i \(-0.309001\pi\)
−0.997080 + 0.0763664i \(0.975668\pi\)
\(230\) 0 0
\(231\) −154.337 + 36.2601i −0.0439594 + 0.0103279i
\(232\) −621.067 + 1075.72i −0.175755 + 0.304416i
\(233\) −4194.30 −1.17930 −0.589651 0.807658i \(-0.700735\pi\)
−0.589651 + 0.807658i \(0.700735\pi\)
\(234\) 4215.57 + 2796.29i 1.17769 + 0.781194i
\(235\) 0 0
\(236\) 116.529 201.833i 0.0321414 0.0556705i
\(237\) −717.757 763.763i −0.196723 0.209332i
\(238\) −291.255 504.469i −0.0793247 0.137394i
\(239\) 83.2362 + 144.169i 0.0225276 + 0.0390190i 0.877069 0.480364i \(-0.159495\pi\)
−0.854542 + 0.519383i \(0.826162\pi\)
\(240\) 0 0
\(241\) −307.272 + 532.210i −0.0821291 + 0.142252i −0.904164 0.427185i \(-0.859505\pi\)
0.822035 + 0.569437i \(0.192839\pi\)
\(242\) 3116.87 0.827935
\(243\) 3766.50 402.970i 0.994325 0.106381i
\(244\) 1621.68 0.425481
\(245\) 0 0
\(246\) 189.795 629.479i 0.0491906 0.163147i
\(247\) −3526.66 6108.35i −0.908485 1.57354i
\(248\) 73.8179 + 127.856i 0.0189010 + 0.0327374i
\(249\) −3941.46 4194.10i −1.00313 1.06743i
\(250\) 0 0
\(251\) −6136.16 −1.54307 −0.771536 0.636185i \(-0.780511\pi\)
−0.771536 + 0.636185i \(0.780511\pi\)
\(252\) −393.505 261.022i −0.0983671 0.0652493i
\(253\) −825.908 −0.205235
\(254\) −2876.11 + 4981.57i −0.710485 + 1.23060i
\(255\) 0 0
\(256\) 1645.87 + 2850.73i 0.401824 + 0.695979i
\(257\) 2725.20 + 4720.19i 0.661453 + 1.14567i 0.980234 + 0.197842i \(0.0633932\pi\)
−0.318781 + 0.947828i \(0.603273\pi\)
\(258\) 3580.66 841.244i 0.864040 0.202998i
\(259\) 1070.00 1853.30i 0.256705 0.444627i
\(260\) 0 0
\(261\) 1220.39 606.942i 0.289427 0.143942i
\(262\) −617.967 −0.145718
\(263\) −391.620 + 678.305i −0.0918186 + 0.159035i −0.908276 0.418371i \(-0.862601\pi\)
0.816458 + 0.577405i \(0.195935\pi\)
\(264\) −362.369 385.596i −0.0844782 0.0898930i
\(265\) 0 0
\(266\) −780.951 1352.65i −0.180012 0.311790i
\(267\) 558.403 1852.01i 0.127991 0.424499i
\(268\) −267.474 + 463.279i −0.0609649 + 0.105594i
\(269\) 141.019 0.0319632 0.0159816 0.999872i \(-0.494913\pi\)
0.0159816 + 0.999872i \(0.494913\pi\)
\(270\) 0 0
\(271\) 6375.83 1.42917 0.714583 0.699551i \(-0.246616\pi\)
0.714583 + 0.699551i \(0.246616\pi\)
\(272\) 656.049 1136.31i 0.146246 0.253305i
\(273\) −873.375 + 2896.66i −0.193623 + 0.642174i
\(274\) 479.958 + 831.312i 0.105822 + 0.183290i
\(275\) 0 0
\(276\) −1684.62 1792.60i −0.367400 0.390949i
\(277\) 3411.59 5909.04i 0.740008 1.28173i −0.212482 0.977165i \(-0.568155\pi\)
0.952491 0.304567i \(-0.0985118\pi\)
\(278\) 4193.44 0.904697
\(279\) 10.0516 161.688i 0.00215689 0.0346953i
\(280\) 0 0
\(281\) −294.846 + 510.689i −0.0625945 + 0.108417i −0.895624 0.444811i \(-0.853271\pi\)
0.833030 + 0.553228i \(0.186604\pi\)
\(282\) 5026.86 1181.02i 1.06151 0.249392i
\(283\) −2988.01 5175.39i −0.627629 1.08709i −0.988026 0.154286i \(-0.950692\pi\)
0.360397 0.932799i \(-0.382641\pi\)
\(284\) 608.432 + 1053.84i 0.127126 + 0.220189i
\(285\) 0 0
\(286\) −387.701 + 671.517i −0.0801581 + 0.138838i
\(287\) 393.214 0.0808736
\(288\) 173.212 2786.26i 0.0354397 0.570076i
\(289\) −3803.64 −0.774199
\(290\) 0 0
\(291\) 495.443 + 527.200i 0.0998055 + 0.106203i
\(292\) 1179.40 + 2042.78i 0.236367 + 0.409400i
\(293\) 4028.74 + 6977.99i 0.803282 + 1.39133i 0.917445 + 0.397864i \(0.130248\pi\)
−0.114162 + 0.993462i \(0.536418\pi\)
\(294\) 1027.14 3406.63i 0.203755 0.675777i
\(295\) 0 0
\(296\) 7142.55 1.40254
\(297\) 97.4705 + 572.389i 0.0190431 + 0.111830i
\(298\) −4556.41 −0.885724
\(299\) −7880.55 + 13649.5i −1.52423 + 2.64004i
\(300\) 0 0
\(301\) 1099.90 + 1905.09i 0.210622 + 0.364808i
\(302\) −2994.48 5186.59i −0.570573 0.988261i
\(303\) 7016.30 + 7466.02i 1.33028 + 1.41555i
\(304\) 1759.08 3046.82i 0.331876 0.574826i
\(305\) 0 0
\(306\) −1910.18 + 949.994i −0.356855 + 0.177476i
\(307\) 4546.58 0.845235 0.422618 0.906308i \(-0.361111\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(308\) 36.1902 62.6832i 0.00669522 0.0115965i
\(309\) 9169.43 2154.28i 1.68813 0.396610i
\(310\) 0 0
\(311\) 2101.40 + 3639.73i 0.383149 + 0.663633i 0.991510 0.130027i \(-0.0415063\pi\)
−0.608362 + 0.793660i \(0.708173\pi\)
\(312\) −9830.22 + 2309.52i −1.78374 + 0.419073i
\(313\) −3486.64 + 6039.04i −0.629637 + 1.09056i 0.357987 + 0.933727i \(0.383463\pi\)
−0.987624 + 0.156838i \(0.949870\pi\)
\(314\) 4608.63 0.828281
\(315\) 0 0
\(316\) 478.505 0.0851835
\(317\) −3680.02 + 6373.97i −0.652020 + 1.12933i 0.330612 + 0.943767i \(0.392745\pi\)
−0.982632 + 0.185565i \(0.940589\pi\)
\(318\) 3370.12 + 3586.13i 0.594298 + 0.632391i
\(319\) 104.460 + 180.930i 0.0183343 + 0.0317560i
\(320\) 0 0
\(321\) 388.826 1289.59i 0.0676080 0.224230i
\(322\) −1745.09 + 3022.58i −0.302018 + 0.523111i
\(323\) 2974.55 0.512410
\(324\) −1043.54 + 1379.07i −0.178933 + 0.236466i
\(325\) 0 0
\(326\) 1246.88 2159.66i 0.211835 0.366909i
\(327\) 1163.33 3858.34i 0.196736 0.652498i
\(328\) 656.203 + 1136.58i 0.110466 + 0.191332i
\(329\) 1544.14 + 2674.53i 0.258758 + 0.448182i
\(330\) 0 0
\(331\) 3417.06 5918.52i 0.567428 0.982814i −0.429391 0.903119i \(-0.641272\pi\)
0.996819 0.0796957i \(-0.0253949\pi\)
\(332\) 2627.64 0.434369
\(333\) −6531.24 4332.33i −1.07480 0.712944i
\(334\) −6681.39 −1.09458
\(335\) 0 0
\(336\) −1469.09 + 345.149i −0.238528 + 0.0560399i
\(337\) −3464.24 6000.24i −0.559968 0.969893i −0.997498 0.0706891i \(-0.977480\pi\)
0.437531 0.899204i \(-0.355853\pi\)
\(338\) 4792.68 + 8301.16i 0.771264 + 1.33587i
\(339\) −1088.85 + 255.816i −0.174449 + 0.0409853i
\(340\) 0 0
\(341\) 24.8316 0.00394341
\(342\) −5121.81 + 2547.24i −0.809812 + 0.402746i
\(343\) 4656.70 0.733055
\(344\) −3671.07 + 6358.48i −0.575380 + 0.996588i
\(345\) 0 0
\(346\) 1710.95 + 2963.45i 0.265842 + 0.460451i
\(347\) −3770.30 6530.35i −0.583286 1.01028i −0.995087 0.0990071i \(-0.968433\pi\)
0.411801 0.911274i \(-0.364900\pi\)
\(348\) −179.633 + 595.775i −0.0276705 + 0.0917726i
\(349\) 922.084 1597.10i 0.141427 0.244959i −0.786607 0.617454i \(-0.788164\pi\)
0.928034 + 0.372495i \(0.121498\pi\)
\(350\) 0 0
\(351\) 10389.7 + 3850.69i 1.57995 + 0.585568i
\(352\) 427.906 0.0647939
\(353\) −3548.74 + 6146.61i −0.535073 + 0.926773i 0.464087 + 0.885789i \(0.346382\pi\)
−0.999160 + 0.0409833i \(0.986951\pi\)
\(354\) −349.586 + 1159.44i −0.0524866 + 0.174079i
\(355\) 0 0
\(356\) 441.563 + 764.809i 0.0657382 + 0.113862i
\(357\) −873.766 929.772i −0.129537 0.137840i
\(358\) 1820.60 3153.37i 0.268775 0.465532i
\(359\) 7709.65 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(360\) 0 0
\(361\) 1116.75 0.162815
\(362\) −4329.92 + 7499.65i −0.628662 + 1.08888i
\(363\) 6646.12 1561.45i 0.960966 0.225770i
\(364\) −690.630 1196.21i −0.0994474 0.172248i
\(365\) 0 0
\(366\) −8203.14 + 1927.25i −1.17154 + 0.275244i
\(367\) −2628.19 + 4552.17i −0.373816 + 0.647469i −0.990149 0.140017i \(-0.955284\pi\)
0.616333 + 0.787486i \(0.288618\pi\)
\(368\) −7861.57 −1.11362
\(369\) 89.3535 1437.32i 0.0126058 0.202775i
\(370\) 0 0
\(371\) −1471.61 + 2548.91i −0.205936 + 0.356692i
\(372\) 50.6495 + 53.8960i 0.00705928 + 0.00751176i
\(373\) 498.227 + 862.955i 0.0691615 + 0.119791i 0.898532 0.438907i \(-0.144634\pi\)
−0.829371 + 0.558698i \(0.811301\pi\)
\(374\) −163.503 283.195i −0.0226057 0.0391542i
\(375\) 0 0
\(376\) −5153.78 + 8926.61i −0.706878 + 1.22435i
\(377\) 3986.90 0.544658
\(378\) 2300.72 + 852.705i 0.313059 + 0.116028i
\(379\) −2735.20 −0.370707 −0.185354 0.982672i \(-0.559343\pi\)
−0.185354 + 0.982672i \(0.559343\pi\)
\(380\) 0 0
\(381\) −3637.14 + 12063.0i −0.489072 + 1.62207i
\(382\) 1609.93 + 2788.49i 0.215632 + 0.373485i
\(383\) −4469.73 7741.80i −0.596325 1.03287i −0.993358 0.115062i \(-0.963293\pi\)
0.397033 0.917804i \(-0.370040\pi\)
\(384\) −1787.57 1902.15i −0.237557 0.252783i
\(385\) 0 0
\(386\) −4277.32 −0.564015
\(387\) 7213.62 3587.57i 0.947517 0.471232i
\(388\) −330.295 −0.0432170
\(389\) 5566.93 9642.21i 0.725590 1.25676i −0.233140 0.972443i \(-0.574900\pi\)
0.958731 0.284316i \(-0.0917666\pi\)
\(390\) 0 0
\(391\) −3323.42 5756.33i −0.429853 0.744527i
\(392\) 3551.25 + 6150.95i 0.457564 + 0.792525i
\(393\) −1317.69 + 309.580i −0.169132 + 0.0397360i
\(394\) 312.433 541.150i 0.0399496 0.0691948i
\(395\) 0 0
\(396\) −220.903 146.530i −0.0280323 0.0185945i
\(397\) 9479.40 1.19838 0.599191 0.800606i \(-0.295489\pi\)
0.599191 + 0.800606i \(0.295489\pi\)
\(398\) 584.593 1012.54i 0.0736256 0.127523i
\(399\) −2342.85 2493.02i −0.293958 0.312800i
\(400\) 0 0
\(401\) −4713.80 8164.54i −0.587022 1.01675i −0.994620 0.103591i \(-0.966967\pi\)
0.407598 0.913162i \(-0.366367\pi\)
\(402\) 802.423 2661.34i 0.0995553 0.330188i
\(403\) 236.935 410.383i 0.0292868 0.0507261i
\(404\) −4677.53 −0.576029
\(405\) 0 0
\(406\) 882.869 0.107921
\(407\) 600.670 1040.39i 0.0731550 0.126708i
\(408\) 1229.33 4077.22i 0.149169 0.494736i
\(409\) −204.093 353.500i −0.0246742 0.0427370i 0.853425 0.521216i \(-0.174522\pi\)
−0.878099 + 0.478479i \(0.841188\pi\)
\(410\) 0 0
\(411\) 1439.87 + 1532.17i 0.172807 + 0.183884i
\(412\) −2150.12 + 3724.12i −0.257109 + 0.445326i
\(413\) −724.266 −0.0862925
\(414\) 10651.9 + 7065.68i 1.26452 + 0.838790i
\(415\) 0 0
\(416\) 4082.94 7071.86i 0.481208 0.833477i
\(417\) 8941.68 2100.77i 1.05006 0.246703i
\(418\) −438.404 759.338i −0.0512992 0.0888527i
\(419\) −4406.94 7633.05i −0.513826 0.889973i −0.999871 0.0160393i \(-0.994894\pi\)
0.486045 0.873934i \(-0.338439\pi\)
\(420\) 0 0
\(421\) 1174.68 2034.61i 0.135987 0.235537i −0.789987 0.613124i \(-0.789913\pi\)
0.925974 + 0.377587i \(0.123246\pi\)
\(422\) 2375.94 0.274074
\(423\) 10127.1 5036.56i 1.16406 0.578927i
\(424\) −9823.40 −1.12516
\(425\) 0 0
\(426\) −4330.12 4607.66i −0.492476 0.524042i
\(427\) −2519.83 4364.47i −0.285581 0.494640i
\(428\) 307.468 + 532.551i 0.0347244 + 0.0601444i
\(429\) −490.288 + 1626.10i −0.0551780 + 0.183005i
\(430\) 0 0
\(431\) 4481.16 0.500812 0.250406 0.968141i \(-0.419436\pi\)
0.250406 + 0.968141i \(0.419436\pi\)
\(432\) 927.792 + 5448.40i 0.103330 + 0.606797i
\(433\) −3422.69 −0.379871 −0.189935 0.981797i \(-0.560828\pi\)
−0.189935 + 0.981797i \(0.560828\pi\)
\(434\) 52.4674 90.8762i 0.00580303 0.0100511i
\(435\) 0 0
\(436\) 919.919 + 1593.35i 0.101046 + 0.175017i
\(437\) −8911.17 15434.6i −0.975467 1.68956i
\(438\) −8393.61 8931.62i −0.915667 0.974359i
\(439\) 4064.59 7040.07i 0.441896 0.765386i −0.555934 0.831226i \(-0.687639\pi\)
0.997830 + 0.0658402i \(0.0209728\pi\)
\(440\) 0 0
\(441\) 483.565 7778.52i 0.0522152 0.839922i
\(442\) −6240.36 −0.671547
\(443\) 1175.39 2035.83i 0.126060 0.218342i −0.796087 0.605182i \(-0.793100\pi\)
0.922147 + 0.386840i \(0.126434\pi\)
\(444\) 3483.33 818.376i 0.372323 0.0874739i
\(445\) 0 0
\(446\) −665.601 1152.86i −0.0706662 0.122397i
\(447\) −9715.65 + 2282.60i −1.02804 + 0.241529i
\(448\) 2065.83 3578.12i 0.217860 0.377345i
\(449\) 4760.99 0.500412 0.250206 0.968193i \(-0.419502\pi\)
0.250206 + 0.968193i \(0.419502\pi\)
\(450\) 0 0
\(451\) 220.740 0.0230471
\(452\) 255.323 442.233i 0.0265695 0.0460196i
\(453\) −8983.44 9559.26i −0.931742 0.991464i
\(454\) 4633.61 + 8025.65i 0.479000 + 0.829653i
\(455\) 0 0
\(456\) 3296.23 10932.4i 0.338509 1.12271i
\(457\) 1114.54 1930.44i 0.114083 0.197598i −0.803330 0.595535i \(-0.796940\pi\)
0.917413 + 0.397937i \(0.130274\pi\)
\(458\) −7109.51 −0.725340
\(459\) −3597.16 + 2982.61i −0.365797 + 0.303303i
\(460\) 0 0
\(461\) −2868.31 + 4968.06i −0.289784 + 0.501921i −0.973758 0.227585i \(-0.926917\pi\)
0.683974 + 0.729507i \(0.260250\pi\)
\(462\) −108.571 + 360.088i −0.0109332 + 0.0362615i
\(463\) −1801.99 3121.13i −0.180876 0.313286i 0.761303 0.648396i \(-0.224560\pi\)
−0.942179 + 0.335110i \(0.891227\pi\)
\(464\) 994.326 + 1722.22i 0.0994836 + 0.172311i
\(465\) 0 0
\(466\) −4975.03 + 8617.00i −0.494557 + 0.856598i
\(467\) 3780.37 0.374593 0.187296 0.982303i \(-0.440028\pi\)
0.187296 + 0.982303i \(0.440028\pi\)
\(468\) −4529.44 + 2252.64i −0.447380 + 0.222497i
\(469\) 1662.45 0.163677
\(470\) 0 0
\(471\) 9827.00 2308.76i 0.961368 0.225865i
\(472\) −1208.67 2093.47i −0.117867 0.204152i
\(473\) 617.454 + 1069.46i 0.0600224 + 0.103962i
\(474\) −2420.48 + 568.670i −0.234549 + 0.0551052i
\(475\) 0 0
\(476\) 582.511 0.0560911
\(477\) 8982.63 + 5958.40i 0.862236 + 0.571943i
\(478\) 394.920 0.0377891
\(479\) 7230.58 12523.7i 0.689715 1.19462i −0.282215 0.959351i \(-0.591069\pi\)
0.971930 0.235271i \(-0.0755977\pi\)
\(480\) 0 0
\(481\) −11462.8 19854.1i −1.08661 1.88206i
\(482\) 728.935 + 1262.55i 0.0688840 + 0.119311i
\(483\) −2206.85 + 7319.28i −0.207898 + 0.689521i
\(484\) −1558.44 + 2699.29i −0.146360 + 0.253502i
\(485\) 0 0
\(486\) 3639.71 8216.09i 0.339714 0.766850i
\(487\) −3581.74 −0.333273 −0.166636 0.986018i \(-0.553291\pi\)
−0.166636 + 0.986018i \(0.553291\pi\)
\(488\) 8410.26 14567.0i 0.780153 1.35126i
\(489\) 1576.81 5229.69i 0.145820 0.483629i
\(490\) 0 0
\(491\) 3507.69 + 6075.50i 0.322403 + 0.558419i 0.980983 0.194092i \(-0.0621760\pi\)
−0.658580 + 0.752511i \(0.728843\pi\)
\(492\) 450.247 + 479.107i 0.0412576 + 0.0439021i
\(493\) −840.687 + 1456.11i −0.0768005 + 0.133022i
\(494\) −16732.4 −1.52394
\(495\) 0 0
\(496\) 236.364 0.0213973
\(497\) 1890.81 3274.98i 0.170653 0.295579i
\(498\) −13291.7 + 3122.77i −1.19602 + 0.280993i
\(499\) −1259.90 2182.21i −0.113028 0.195769i 0.803962 0.594681i \(-0.202721\pi\)
−0.916990 + 0.398911i \(0.869388\pi\)
\(500\) 0 0
\(501\) −14246.8 + 3347.15i −1.27046 + 0.298482i
\(502\) −7278.35 + 12606.5i −0.647109 + 1.12083i
\(503\) 4989.32 0.442272 0.221136 0.975243i \(-0.429024\pi\)
0.221136 + 0.975243i \(0.429024\pi\)
\(504\) −4385.44 + 2181.03i −0.387586 + 0.192759i
\(505\) 0 0
\(506\) −979.643 + 1696.79i −0.0860681 + 0.149074i
\(507\) 14378.0 + 15299.6i 1.25947 + 1.34020i
\(508\) −2876.11 4981.57i −0.251194 0.435081i
\(509\) −2359.76 4087.22i −0.205490 0.355919i 0.744799 0.667289i \(-0.232546\pi\)
−0.950289 + 0.311370i \(0.899212\pi\)
\(510\) 0 0
\(511\) 3665.19 6348.30i 0.317297 0.549574i
\(512\) 11827.7 1.02093
\(513\) −9645.16 + 7997.34i −0.830106 + 0.688287i
\(514\) 12929.9 1.10956
\(515\) 0 0
\(516\) −1061.79 + 3521.57i −0.0905868 + 0.300442i
\(517\) 866.839 + 1501.41i 0.0737399 + 0.127721i
\(518\) −2538.35 4396.55i −0.215306 0.372921i
\(519\) 5132.85 + 5461.85i 0.434117 + 0.461943i
\(520\) 0 0
\(521\) −10711.0 −0.900682 −0.450341 0.892857i \(-0.648698\pi\)
−0.450341 + 0.892857i \(0.648698\pi\)
\(522\) 200.622 3227.16i 0.0168218 0.270592i
\(523\) 10566.4 0.883433 0.441717 0.897155i \(-0.354370\pi\)
0.441717 + 0.897155i \(0.354370\pi\)
\(524\) 308.983 535.175i 0.0257595 0.0446168i
\(525\) 0 0
\(526\) 929.032 + 1609.13i 0.0770109 + 0.133387i
\(527\) 99.9211 + 173.068i 0.00825926 + 0.0143055i
\(528\) −824.704 + 193.757i −0.0679747 + 0.0159700i
\(529\) −13829.1 + 23952.7i −1.13661 + 1.96866i
\(530\) 0 0
\(531\) −164.581 + 2647.42i −0.0134505 + 0.216362i
\(532\) 1561.90 0.127288
\(533\) 2106.23 3648.09i 0.171165 0.296466i
\(534\) −3142.53 3343.96i −0.254664 0.270988i
\(535\) 0 0
\(536\) 2774.32 + 4805.26i 0.223568 + 0.387231i
\(537\) 2302.34 7635.99i 0.185015 0.613626i
\(538\) 167.269 289.718i 0.0134042 0.0232168i
\(539\) 1194.60 0.0954642
\(540\) 0 0
\(541\) −6595.81 −0.524170 −0.262085 0.965045i \(-0.584410\pi\)
−0.262085 + 0.965045i \(0.584410\pi\)
\(542\) 7562.63 13098.9i 0.599341 1.03809i
\(543\) −5475.65 + 18160.7i −0.432749 + 1.43526i
\(544\) 1721.87 + 2982.37i 0.135707 + 0.235052i
\(545\) 0 0
\(546\) 4915.11 + 5230.15i 0.385251 + 0.409945i
\(547\) −3194.39 + 5532.85i −0.249693 + 0.432482i −0.963441 0.267922i \(-0.913663\pi\)
0.713747 + 0.700403i \(0.246997\pi\)
\(548\) −959.916 −0.0748277
\(549\) −16526.1 + 8218.97i −1.28473 + 0.638939i
\(550\) 0 0
\(551\) −2254.16 + 3904.31i −0.174284 + 0.301868i
\(552\) −24839.0 + 5835.70i −1.91525 + 0.449971i
\(553\) −743.519 1287.81i −0.0571748 0.0990296i
\(554\) −8093.24 14017.9i −0.620666 1.07502i
\(555\) 0 0
\(556\) −2096.72 + 3631.62i −0.159929 + 0.277006i
\(557\) −15992.4 −1.21655 −0.608276 0.793726i \(-0.708138\pi\)
−0.608276 + 0.793726i \(0.708138\pi\)
\(558\) −320.258 212.435i −0.0242968 0.0161167i
\(559\) 23566.2 1.78308
\(560\) 0 0
\(561\) −490.508 521.948i −0.0369149 0.0392811i
\(562\) 699.459 + 1211.50i 0.0524998 + 0.0909323i
\(563\) −3175.56 5500.23i −0.237716 0.411736i 0.722343 0.691535i \(-0.243065\pi\)
−0.960058 + 0.279800i \(0.909732\pi\)
\(564\) −1490.64 + 4943.89i −0.111290 + 0.369106i
\(565\) 0 0
\(566\) −14176.8 −1.05282
\(567\) 5333.01 + 665.644i 0.395001 + 0.0493023i
\(568\) 12621.7 0.932382
\(569\) −4810.21 + 8331.53i −0.354402 + 0.613842i −0.987015 0.160626i \(-0.948649\pi\)
0.632614 + 0.774468i \(0.281982\pi\)
\(570\) 0 0
\(571\) 2532.30 + 4386.08i 0.185593 + 0.321456i 0.943776 0.330585i \(-0.107246\pi\)
−0.758183 + 0.652042i \(0.773913\pi\)
\(572\) −387.701 671.517i −0.0283402 0.0490866i
\(573\) 4829.80 + 5139.38i 0.352125 + 0.374696i
\(574\) 466.408 807.842i 0.0339155 0.0587433i
\(575\) 0 0
\(576\) −12609.7 8364.34i −0.912161 0.605059i
\(577\) −11355.1 −0.819273 −0.409637 0.912249i \(-0.634345\pi\)
−0.409637 + 0.912249i \(0.634345\pi\)
\(578\) −4511.65 + 7814.41i −0.324671 + 0.562347i
\(579\) −9120.54 + 2142.79i −0.654640 + 0.153802i
\(580\) 0 0
\(581\) −4082.93 7071.84i −0.291546 0.504973i
\(582\) 1670.77 392.533i 0.118996 0.0279571i
\(583\) −826.121 + 1430.88i −0.0586869 + 0.101649i
\(584\) 24466.2 1.73359
\(585\) 0 0
\(586\) 19114.6 1.34747
\(587\) −5016.00 + 8687.96i −0.352696 + 0.610887i −0.986721 0.162426i \(-0.948068\pi\)
0.634025 + 0.773312i \(0.281402\pi\)
\(588\) 2436.66 + 2592.84i 0.170895 + 0.181848i
\(589\) 267.921 + 464.053i 0.0187428 + 0.0324634i
\(590\) 0 0
\(591\) 395.105 1310.41i 0.0274999 0.0912068i
\(592\) 5717.59 9903.16i 0.396945 0.687530i
\(593\) 1325.12 0.0917643 0.0458821 0.998947i \(-0.485390\pi\)
0.0458821 + 0.998947i \(0.485390\pi\)
\(594\) 1291.56 + 478.685i 0.0892145 + 0.0330651i
\(595\) 0 0
\(596\) 2278.21 3945.97i 0.156575 0.271197i
\(597\) 739.279 2451.91i 0.0506812 0.168091i
\(598\) 18694.9 + 32380.5i 1.27841 + 2.21427i
\(599\) −8285.78 14351.4i −0.565188 0.978935i −0.997032 0.0769865i \(-0.975470\pi\)
0.431844 0.901948i \(-0.357863\pi\)
\(600\) 0 0
\(601\) −8604.49 + 14903.4i −0.584001 + 1.01152i 0.410998 + 0.911636i \(0.365180\pi\)
−0.994999 + 0.0998833i \(0.968153\pi\)
\(602\) 5218.55 0.353310
\(603\) 377.772 6076.76i 0.0255126 0.410390i
\(604\) 5988.96 0.403456
\(605\) 0 0
\(606\) 23660.9 5558.92i 1.58607 0.372633i
\(607\) 2088.99 + 3618.24i 0.139686 + 0.241944i 0.927378 0.374126i \(-0.122057\pi\)
−0.787692 + 0.616070i \(0.788724\pi\)
\(608\) 4616.91 + 7996.72i 0.307961 + 0.533404i
\(609\) 1882.54 442.287i 0.125262 0.0294292i
\(610\) 0 0
\(611\) 33084.4 2.19059
\(612\) 132.369 2129.26i 0.00874297 0.140638i
\(613\) −14944.2 −0.984649 −0.492324 0.870412i \(-0.663853\pi\)
−0.492324 + 0.870412i \(0.663853\pi\)
\(614\) 5392.89 9340.75i 0.354461 0.613945i
\(615\) 0 0
\(616\) −375.375 650.168i −0.0245524 0.0425260i
\(617\) 10251.4 + 17756.0i 0.668893 + 1.15856i 0.978214 + 0.207600i \(0.0665651\pi\)
−0.309320 + 0.950958i \(0.600102\pi\)
\(618\) 6450.37 21393.5i 0.419858 1.39251i
\(619\) −1364.26 + 2362.97i −0.0885854 + 0.153434i −0.906913 0.421317i \(-0.861568\pi\)
0.818328 + 0.574751i \(0.194901\pi\)
\(620\) 0 0
\(621\) 26252.8 + 9729.93i 1.69644 + 0.628742i
\(622\) 9970.21 0.642715
\(623\) 1372.23 2376.78i 0.0882463 0.152847i
\(624\) −4666.91 + 15478.4i −0.299400 + 0.992999i
\(625\) 0 0
\(626\) 8271.29 + 14326.3i 0.528095 + 0.914687i
\(627\) −1315.21 1399.51i −0.0837712 0.0891407i
\(628\) −2304.32 + 3991.19i −0.146421 + 0.253608i
\(629\) 9668.27 0.612876
\(630\) 0 0
\(631\) −3393.08 −0.214067 −0.107034 0.994255i \(-0.534135\pi\)
−0.107034 + 0.994255i \(0.534135\pi\)
\(632\) 2481.59 4298.25i 0.156191 0.270530i
\(633\) 5066.23 1190.27i 0.318112 0.0747374i
\(634\) 8730.03 + 15120.9i 0.546867 + 0.947202i
\(635\) 0 0
\(636\) −4790.74 + 1125.54i −0.298687 + 0.0701739i
\(637\) 11398.5 19742.8i 0.708988 1.22800i
\(638\) 495.618 0.0307550
\(639\) −11541.4 7655.70i −0.714508 0.473951i
\(640\) 0 0
\(641\) −6780.88 + 11744.8i −0.417830 + 0.723702i −0.995721 0.0924116i \(-0.970542\pi\)
0.577891 + 0.816114i \(0.303876\pi\)
\(642\) −2188.20 2328.46i −0.134520 0.143142i
\(643\) 6483.44 + 11229.7i 0.397639 + 0.688731i 0.993434 0.114405i \(-0.0364962\pi\)
−0.595795 + 0.803137i \(0.703163\pi\)
\(644\) −1745.09 3022.58i −0.106780 0.184948i
\(645\) 0 0
\(646\) 3528.24 6111.09i 0.214886 0.372194i
\(647\) −25837.9 −1.57000 −0.785001 0.619495i \(-0.787337\pi\)
−0.785001 + 0.619495i \(0.787337\pi\)
\(648\) 6975.79 + 16525.8i 0.422894 + 1.00184i
\(649\) −406.583 −0.0245913
\(650\) 0 0
\(651\) 66.3505 220.060i 0.00399460 0.0132486i
\(652\) 1246.88 + 2159.66i 0.0748950 + 0.129722i
\(653\) −14133.4 24479.8i −0.846989 1.46703i −0.883883 0.467709i \(-0.845080\pi\)
0.0368938 0.999319i \(-0.488254\pi\)
\(654\) −6546.92 6966.56i −0.391445 0.416535i
\(655\) 0 0
\(656\) 2101.15 0.125055
\(657\) −22372.1 14840.0i −1.32849 0.881223i
\(658\) 7326.28 0.434055
\(659\) 7978.92 13819.9i 0.471646 0.816914i −0.527828 0.849351i \(-0.676993\pi\)
0.999474 + 0.0324369i \(0.0103268\pi\)
\(660\) 0 0
\(661\) −12028.9 20834.6i −0.707821 1.22598i −0.965664 0.259795i \(-0.916345\pi\)
0.257843 0.966187i \(-0.416988\pi\)
\(662\) −8106.23 14040.4i −0.475918 0.824314i
\(663\) −13306.3 + 3126.20i −0.779450 + 0.183125i
\(664\) 13627.3 23603.2i 0.796450 1.37949i
\(665\) 0 0
\(666\) −16647.6 + 8279.38i −0.968588 + 0.481711i
\(667\) 10074.1 0.584815
\(668\) 3340.70 5786.26i 0.193496 0.335145i
\(669\) −1996.80 2124.79i −0.115397 0.122794i
\(670\) 0 0
\(671\) −1414.56 2450.09i −0.0813838 0.140961i
\(672\) 1143.37 3792.15i 0.0656349 0.217686i
\(673\) 626.519 1085.16i 0.0358849 0.0621545i −0.847525 0.530755i \(-0.821908\pi\)
0.883410 + 0.468601i \(0.155242\pi\)
\(674\) −16436.3 −0.939321
\(675\) 0 0
\(676\) −9585.35 −0.545366
\(677\) 440.364 762.733i 0.0249994 0.0433002i −0.853255 0.521494i \(-0.825375\pi\)
0.878254 + 0.478194i \(0.158708\pi\)
\(678\) −765.970 + 2540.43i −0.0433877 + 0.143901i
\(679\) 513.226 + 888.933i 0.0290071 + 0.0502417i
\(680\) 0 0
\(681\) 13900.8 + 14791.8i 0.782204 + 0.832341i
\(682\) 29.4537 51.0153i 0.00165373 0.00286434i
\(683\) 26686.4 1.49506 0.747531 0.664227i \(-0.231239\pi\)
0.747531 + 0.664227i \(0.231239\pi\)
\(684\) 354.924 5709.24i 0.0198404 0.319149i
\(685\) 0 0
\(686\) 5523.50 9566.98i 0.307417 0.532462i
\(687\) −15159.6 + 3561.62i −0.841886 + 0.197794i
\(688\) 5877.36 + 10179.9i 0.325687 + 0.564106i
\(689\) 15765.2 + 27306.1i 0.871706 + 1.50984i
\(690\) 0 0
\(691\) 85.7060 148.447i 0.00471839 0.00817249i −0.863657 0.504081i \(-0.831831\pi\)
0.868375 + 0.495908i \(0.165165\pi\)
\(692\) −3421.90 −0.187978
\(693\) −51.1138 + 822.206i −0.00280181 + 0.0450693i
\(694\) −17888.4 −0.978437
\(695\) 0 0
\(696\) 4420.04 + 4703.35i 0.240720 + 0.256150i
\(697\) 888.247 + 1538.49i 0.0482708 + 0.0836075i
\(698\) −2187.44 3788.76i −0.118619 0.205454i
\(699\) −6291.44 + 20866.4i −0.340435 + 1.12910i
\(700\) 0 0
\(701\) −14229.6 −0.766684 −0.383342 0.923607i \(-0.625227\pi\)
−0.383342 + 0.923607i \(0.625227\pi\)
\(702\) 20234.7 16777.8i 1.08791 0.902045i
\(703\) 25923.8 1.39080
\(704\) 1159.70 2008.66i 0.0620850 0.107534i
\(705\) 0 0
\(706\) 8418.62 + 14581.5i 0.448780 + 0.777310i
\(707\) 7268.13 + 12588.8i 0.386628 + 0.669659i
\(708\) −829.316 882.472i −0.0440220 0.0468437i
\(709\) 3887.04 6732.55i 0.205897 0.356624i −0.744521 0.667599i \(-0.767322\pi\)
0.950418 + 0.310975i \(0.100656\pi\)
\(710\) 0 0
\(711\) −4876.31 + 2425.15i −0.257210 + 0.127919i
\(712\) 9160.03 0.482144
\(713\) 598.687 1036.96i 0.0314460 0.0544661i
\(714\) −2946.59 + 692.274i −0.154444 + 0.0362853i
\(715\) 0 0
\(716\) 1820.60 + 3153.37i 0.0950264 + 0.164591i
\(717\) 842.088 197.841i 0.0438610 0.0103047i
\(718\) 9144.72 15839.1i 0.475318 0.823274i
\(719\) −22091.8 −1.14588 −0.572939 0.819598i \(-0.694197\pi\)
−0.572939 + 0.819598i \(0.694197\pi\)
\(720\) 0 0
\(721\) 13363.8 0.690282
\(722\) 1324.62 2294.31i 0.0682786 0.118262i
\(723\) 2186.81 + 2326.97i 0.112487 + 0.119697i
\(724\) −4329.92 7499.65i −0.222266 0.384975i
\(725\) 0 0
\(726\) 4675.31 15506.3i 0.239004 0.792687i
\(727\) 3321.74 5753.42i 0.169459 0.293511i −0.768771 0.639524i \(-0.779131\pi\)
0.938230 + 0.346013i \(0.112465\pi\)
\(728\) −14326.8 −0.729378
\(729\) 3645.00 19342.6i 0.185185 0.982704i
\(730\) 0 0
\(731\) −4969.22 + 8606.94i −0.251427 + 0.435484i
\(732\) 2432.52 8067.75i 0.122826 0.407367i
\(733\) −1561.40 2704.43i −0.0786791 0.136276i 0.824001 0.566588i \(-0.191737\pi\)
−0.902680 + 0.430312i \(0.858404\pi\)
\(734\) 6234.82 + 10799.0i 0.313530 + 0.543050i
\(735\) 0 0
\(736\) 10316.8 17869.2i 0.516687 0.894928i
\(737\) 933.252 0.0466442
\(738\) −2846.93 1888.44i −0.142001 0.0941929i
\(739\) 19549.5 0.973127 0.486563 0.873645i \(-0.338250\pi\)
0.486563 + 0.873645i \(0.338250\pi\)
\(740\) 0 0
\(741\) −35678.6 + 8382.37i −1.76881 + 0.415566i
\(742\) 3491.08 + 6046.72i 0.172724 + 0.299167i
\(743\) 4695.92 + 8133.58i 0.231866 + 0.401604i 0.958357 0.285572i \(-0.0921834\pi\)
−0.726491 + 0.687176i \(0.758850\pi\)
\(744\) 746.804 175.455i 0.0368000 0.00864582i
\(745\) 0 0
\(746\) 2363.87 0.116015
\(747\) −26777.6 + 13317.4i −1.31157 + 0.652286i
\(748\) 327.005 0.0159846
\(749\) 955.512 1655.00i 0.0466137 0.0807373i
\(750\) 0 0
\(751\) 9136.01 + 15824.0i 0.443912 + 0.768878i 0.997976 0.0635962i \(-0.0202570\pi\)
−0.554064 + 0.832474i \(0.686924\pi\)
\(752\) 8251.18 + 14291.5i 0.400119 + 0.693026i
\(753\) −9204.25 + 30527.0i −0.445447 + 1.47738i
\(754\) 4729.03 8190.92i 0.228410 0.395618i
\(755\) 0 0
\(756\) −1888.83 + 1566.13i −0.0908676 + 0.0753434i
\(757\) −2016.30 −0.0968082 −0.0484041 0.998828i \(-0.515414\pi\)
−0.0484041 + 0.998828i \(0.515414\pi\)
\(758\) −3244.34 + 5619.36i −0.155461 + 0.269267i
\(759\) −1238.86 + 4108.84i −0.0592462 + 0.196497i
\(760\) 0 0
\(761\) 8846.39 + 15322.4i 0.421395 + 0.729877i 0.996076 0.0885001i \(-0.0282074\pi\)
−0.574681 + 0.818377i \(0.694874\pi\)
\(762\) 20468.8 + 21780.8i 0.973107 + 1.03548i
\(763\) 2858.81 4951.60i 0.135643 0.234941i
\(764\) −3219.87 −0.152475
\(765\) 0 0
\(766\) −21206.9 −1.00031
\(767\) −3879.48 + 6719.46i −0.182634 + 0.316331i
\(768\) 16651.0 3912.00i 0.782346 0.183805i
\(769\) 4879.86 + 8452.16i 0.228833 + 0.396350i 0.957462 0.288558i \(-0.0931759\pi\)
−0.728630 + 0.684908i \(0.759843\pi\)
\(770\) 0 0
\(771\) 27570.4 6477.43i 1.28784 0.302567i
\(772\) 2138.66 3704.27i 0.0997047 0.172694i
\(773\) 10338.3 0.481038 0.240519 0.970644i \(-0.422682\pi\)
0.240519 + 0.970644i \(0.422682\pi\)
\(774\) 1185.86 19075.4i 0.0550707 0.885856i
\(775\) 0 0
\(776\) −1712.96 + 2966.93i −0.0792418 + 0.137251i
\(777\) −7615.04 8103.14i −0.351593 0.374130i
\(778\) −13206.3 22874.0i −0.608573 1.05408i
\(779\) 2381.68 + 4125.19i 0.109541 + 0.189731i
\(780\) 0 0
\(781\) 1061.45 1838.48i 0.0486320 0.0842331i
\(782\) −15768.2 −0.721059
\(783\) −1188.91 6981.79i −0.0542633 0.318657i
\(784\) 11371.1 0.517997
\(785\) 0 0
\(786\) −926.950 + 3074.35i −0.0420652 + 0.139514i
\(787\) 2363.64 + 4093.95i 0.107058 + 0.185430i 0.914577 0.404411i \(-0.132524\pi\)
−0.807519 + 0.589842i \(0.799190\pi\)
\(788\) 312.433 + 541.150i 0.0141243 + 0.0244640i
\(789\) 2787.10 + 2965.74i 0.125758 + 0.133819i
\(790\) 0 0
\(791\) −1586.92 −0.0713331
\(792\) −2461.87 + 1224.37i −0.110453 + 0.0549319i
\(793\) −53989.1 −2.41767
\(794\) 11243.9 19475.0i 0.502558 0.870456i
\(795\) 0 0
\(796\) 584.593 + 1012.54i 0.0260306 + 0.0450863i
\(797\) 14099.4 + 24420.9i 0.626634 + 1.08536i 0.988222 + 0.153025i \(0.0489014\pi\)
−0.361588 + 0.932338i \(0.617765\pi\)
\(798\) −7900.76 + 1856.21i −0.350481 + 0.0823423i
\(799\) −6976.24 + 12083.2i −0.308888 + 0.535010i
\(800\) 0 0
\(801\) −8376.04 5556.04i −0.369479 0.245085i
\(802\) −22364.9 −0.984704
\(803\) 2057.54 3563.76i 0.0904221 0.156616i
\(804\) 1903.57 + 2025.59i 0.0834998 + 0.0888519i
\(805\) 0 0
\(806\) −562.076 973.544i −0.0245636 0.0425454i
\(807\) 211.529 701.562i 0.00922697 0.0306024i
\(808\) −24258.3 + 42016.7i −1.05619 + 1.82938i
\(809\) −27310.5 −1.18688 −0.593439 0.804879i \(-0.702230\pi\)
−0.593439 + 0.804879i \(0.702230\pi\)
\(810\) 0 0
\(811\) −18045.0 −0.781312 −0.390656 0.920537i \(-0.627752\pi\)
−0.390656 + 0.920537i \(0.627752\pi\)
\(812\) −441.435 + 764.587i −0.0190780 + 0.0330440i
\(813\) 9563.74 31719.3i 0.412565 1.36832i
\(814\) −1424.96 2468.10i −0.0613572 0.106274i
\(815\) 0 0
\(816\) −4669.00 4968.27i −0.200304 0.213142i
\(817\) −13324.1 + 23078.0i −0.570564 + 0.988246i
\(818\) −968.333 −0.0413899
\(819\) 13100.6 + 8689.97i 0.558941 + 0.370760i
\(820\) 0 0
\(821\) 6288.85 10892.6i 0.267335 0.463038i −0.700837 0.713321i \(-0.747190\pi\)
0.968173 + 0.250283i \(0.0805235\pi\)
\(822\) 4855.66 1140.79i 0.206035 0.0484060i
\(823\) −17484.2 30283.6i −0.740537 1.28265i −0.952251 0.305316i \(-0.901238\pi\)
0.211714 0.977332i \(-0.432096\pi\)
\(824\) 22301.7 + 38627.7i 0.942860 + 1.63308i
\(825\) 0 0
\(826\) −859.081 + 1487.97i −0.0361880 + 0.0626794i
\(827\) 6735.01 0.283191 0.141596 0.989925i \(-0.454777\pi\)
0.141596 + 0.989925i \(0.454777\pi\)
\(828\) −11445.0 + 5691.99i −0.480364 + 0.238901i
\(829\) −2867.97 −0.120155 −0.0600777 0.998194i \(-0.519135\pi\)
−0.0600777 + 0.998194i \(0.519135\pi\)
\(830\) 0 0
\(831\) −24279.7 25836.0i −1.01354 1.07851i
\(832\) −22131.0 38332.0i −0.922179 1.59726i
\(833\) 4807.03 + 8326.02i 0.199944 + 0.346314i
\(834\) 6290.16 20862.1i 0.261163 0.866181i
\(835\) 0 0
\(836\) 876.808 0.0362740
\(837\) −789.310 292.538i −0.0325956 0.0120807i
\(838\) −20909.0 −0.861921
\(839\) −13927.9 + 24123.8i −0.573116 + 0.992666i 0.423128 + 0.906070i \(0.360932\pi\)
−0.996244 + 0.0865958i \(0.972401\pi\)
\(840\) 0 0
\(841\) 10920.3 + 18914.6i 0.447756 + 0.775537i
\(842\) −2786.68 4826.67i −0.114056 0.197551i
\(843\) 2098.38 + 2232.88i 0.0857318 + 0.0912270i
\(844\) −1187.97 + 2057.63i −0.0484499 + 0.0839176i
\(845\) 0 0
\(846\) 1664.81 26779.8i 0.0676566 1.08831i
\(847\) 9686.23 0.392943
\(848\) −7863.60 + 13620.2i −0.318440 + 0.551554i
\(849\) −30229.3 + 7102.09i −1.22199 + 0.287094i
\(850\) 0 0
\(851\) −28964.2 50167.5i −1.16672 2.02082i
\(852\) 6155.41 1446.16i 0.247513 0.0581509i
\(853\) 5463.05 9462.29i 0.219287 0.379815i −0.735304 0.677738i \(-0.762960\pi\)
0.954590 + 0.297923i \(0.0962937\pi\)
\(854\) −11955.5 −0.479049
\(855\) 0 0
\(856\) 6378.30 0.254680
\(857\) 22584.6 39117.7i 0.900206 1.55920i 0.0729799 0.997333i \(-0.476749\pi\)
0.827226 0.561869i \(-0.189918\pi\)
\(858\) 2759.20 + 2936.06i 0.109788 + 0.116825i
\(859\) 3525.95 + 6107.12i 0.140051 + 0.242576i 0.927516 0.373784i \(-0.121940\pi\)
−0.787465 + 0.616360i \(0.788607\pi\)
\(860\) 0 0
\(861\) 589.822 1956.22i 0.0233462 0.0774306i
\(862\) 5315.29 9206.35i 0.210022 0.363770i
\(863\) −6882.52 −0.271476 −0.135738 0.990745i \(-0.543341\pi\)
−0.135738 + 0.990745i \(0.543341\pi\)
\(864\) −13601.6 5041.11i −0.535576 0.198498i
\(865\) 0 0
\(866\) −4059.80 + 7031.77i −0.159304 + 0.275923i
\(867\) −5705.46 + 18922.9i −0.223492 + 0.741239i
\(868\) 52.4674 + 90.8762i 0.00205168 + 0.00355362i
\(869\) −417.391 722.942i −0.0162935 0.0282211i
\(870\) 0 0
\(871\) 8904.79 15423.5i 0.346415 0.600008i
\(872\) 19083.3 0.741104
\(873\) 3365.95 1674.00i 0.130493 0.0648984i
\(874\) −42279.6 −1.63630
\(875\) 0 0
\(876\) 11931.8 2803.27i 0.460204 0.108121i
\(877\) 18684.3 + 32362.2i 0.719413 + 1.24606i 0.961233 + 0.275738i \(0.0889224\pi\)
−0.241820 + 0.970321i \(0.577744\pi\)
\(878\) −9642.35 16701.0i −0.370630 0.641951i
\(879\) 40758.2 9575.76i 1.56398 0.367443i
\(880\) 0 0
\(881\) −23880.5 −0.913229 −0.456614 0.889665i \(-0.650938\pi\)
−0.456614 + 0.889665i \(0.650938\pi\)
\(882\) −15407.0 10219.9i −0.588189 0.390160i
\(883\) 33107.0 1.26177 0.630883 0.775878i \(-0.282693\pi\)
0.630883 + 0.775878i \(0.282693\pi\)
\(884\) 3120.18 5404.31i 0.118714 0.205618i
\(885\) 0 0
\(886\) −2788.36 4829.57i −0.105730 0.183129i
\(887\) 5651.07 + 9787.95i 0.213917 + 0.370515i 0.952937 0.303168i \(-0.0980444\pi\)
−0.739020 + 0.673684i \(0.764711\pi\)
\(888\) 10713.8 35533.7i 0.404879 1.34283i
\(889\) −8938.02 + 15481.1i −0.337201 + 0.584049i
\(890\) 0 0
\(891\) 2993.80 + 373.674i 0.112566 + 0.0140500i
\(892\) 1331.20 0.0499686
\(893\) −18705.6 + 32399.0i −0.700961 + 1.21410i
\(894\) −6834.62 + 22667.9i −0.255687 + 0.848016i
\(895\) 0 0
\(896\) −1851.73 3207.30i −0.0690425 0.119585i
\(897\) 56084.6 + 59679.5i 2.08764 + 2.22145i
\(898\) 5647.21 9781.25i 0.209855 0.363479i
\(899\) −302.886 −0.0112367
\(900\) 0 0
\(901\) −13297.1 −0.491666
\(902\) 261.828 453.500i 0.00966511 0.0167405i
\(903\) 11127.5 2614.31i 0.410079 0.0963443i
\(904\) −2648.28 4586.96i −0.0974343 0.168761i
\(905\) 0 0
\(906\) −30294.7 + 7117.47i −1.11090 + 0.260996i
\(907\) 1981.12 3431.40i 0.0725270 0.125620i −0.827481 0.561493i \(-0.810227\pi\)
0.900008 + 0.435873i \(0.143560\pi\)
\(908\) −9267.22 −0.338704
\(909\) 47667.4 23706.6i 1.73931 0.865015i
\(910\) 0 0
\(911\) 17023.1 29484.8i 0.619100 1.07231i −0.370551 0.928812i \(-0.620831\pi\)
0.989650 0.143500i \(-0.0458356\pi\)
\(912\) −12519.1 13321.6i −0.454550 0.483685i
\(913\) −2292.04 3969.93i −0.0830838 0.143905i
\(914\) −2644.01 4579.56i −0.0956849 0.165731i
\(915\) 0 0
\(916\) 3554.76 6157.02i 0.128223 0.222089i
\(917\) −1920.44 −0.0691587
\(918\) 1860.90 + 10928.0i 0.0669050 + 0.392895i
\(919\) −35121.5 −1.26066 −0.630332 0.776326i \(-0.717081\pi\)
−0.630332 + 0.776326i \(0.717081\pi\)
\(920\) 0 0
\(921\) 6819.87 22619.0i 0.243998 0.809251i
\(922\) 6804.44 + 11785.6i 0.243050 + 0.420975i
\(923\) −20256.0 35084.4i −0.722355 1.25116i
\(924\) −257.560 274.069i −0.00917002 0.00975779i
\(925\) 0 0
\(926\) −8549.64 −0.303411
\(927\) 3036.76 48848.8i 0.107595 1.73075i
\(928\) −5219.44 −0.184630
\(929\) −12228.9 + 21181.1i −0.431881 + 0.748039i −0.997035 0.0769459i \(-0.975483\pi\)
0.565155 + 0.824985i \(0.308816\pi\)
\(930\) 0 0
\(931\) 12889.2 + 22324.8i 0.453735 + 0.785891i
\(932\) −4975.03 8617.00i −0.174852 0.302853i
\(933\) 21259.5 4994.73i 0.745986 0.175263i
\(934\) 4484.05 7766.61i 0.157091 0.272089i
\(935\) 0 0
\(936\) −3255.61 + 52369.0i −0.113689 + 1.82878i
\(937\) −41877.5 −1.46006 −0.730032 0.683413i \(-0.760495\pi\)
−0.730032 + 0.683413i \(0.760495\pi\)
\(938\) 1971.90 3415.43i 0.0686404 0.118889i
\(939\) 24813.9 + 26404.4i 0.862375 + 0.917651i
\(940\) 0 0
\(941\) 4599.48 + 7966.54i 0.159340 + 0.275985i 0.934631 0.355619i \(-0.115730\pi\)
−0.775291 + 0.631604i \(0.782397\pi\)
\(942\) 6912.95 22927.7i 0.239104 0.793018i
\(943\) 5322.02 9218.01i 0.183785 0.318324i
\(944\) −3870.14 −0.133435
\(945\) 0 0
\(946\) 2929.55 0.100685
\(947\) 10481.8 18155.0i 0.359675 0.622976i −0.628231 0.778027i \(-0.716221\pi\)
0.987906 + 0.155051i \(0.0495541\pi\)
\(948\) 717.757 2380.53i 0.0245904 0.0815570i
\(949\) −39264.7 68008.5i −1.34308 2.32629i
\(950\) 0 0
\(951\) 26190.1 + 27868.8i 0.893030 + 0.950271i
\(952\) 3020.98 5232.50i 0.102847 0.178137i
\(953\) 27943.7 0.949828 0.474914 0.880032i \(-0.342479\pi\)
0.474914 + 0.880032i \(0.342479\pi\)
\(954\) 22895.9 11386.9i 0.777027 0.386441i
\(955\) 0 0
\(956\) −197.460 + 342.010i −0.00668024 + 0.0115705i
\(957\) 1056.81 248.287i 0.0356967 0.00838662i
\(958\) −17153.0 29709.8i −0.578484 1.00196i
\(959\) 1491.55 + 2583.45i 0.0502240 + 0.0869905i
\(960\) 0 0
\(961\) 14877.5 25768.6i 0.499396 0.864979i
\(962\) −54385.9 −1.82274
\(963\) −5832.39 3868.77i −0.195167 0.129459i
\(964\) −1457.87 −0.0487084
\(965\) 0 0
\(966\) 12419.5 + 13215.6i 0.413655 + 0.440170i
\(967\) 1121.76 + 1942.95i 0.0373045 + 0.0646132i 0.884075 0.467345i \(-0.154790\pi\)
−0.846770 + 0.531959i \(0.821456\pi\)
\(968\) 16164.5 + 27997.8i 0.536723 + 0.929632i
\(969\) 4461.83 14798.2i 0.147920 0.490595i
\(970\) 0 0
\(971\) 57345.0 1.89525 0.947626 0.319381i \(-0.103475\pi\)
0.947626 + 0.319381i \(0.103475\pi\)
\(972\) 5295.48 + 7260.13i 0.174746 + 0.239577i
\(973\) 13031.8 0.429375
\(974\) −4248.44 + 7358.52i −0.139763 + 0.242076i
\(975\) 0 0
\(976\) −13464.8 23321.7i −0.441595 0.764866i
\(977\) 9395.44 + 16273.4i 0.307663 + 0.532888i 0.977851 0.209304i \(-0.0671197\pi\)
−0.670188 + 0.742192i \(0.733786\pi\)
\(978\) −8873.84 9442.63i −0.290137 0.308734i
\(979\) 770.334 1334.26i 0.0251481 0.0435578i
\(980\) 0 0
\(981\) −17450.0 11575.0i −0.567927 0.376720i
\(982\) 16642.5 0.540817
\(983\) −17298.8 + 29962.4i −0.561289 + 0.972181i 0.436096 + 0.899900i \(0.356361\pi\)
−0.997384 + 0.0722803i \(0.976972\pi\)
\(984\) 6638.70 1559.70i 0.215075 0.0505300i
\(985\) 0 0
\(986\) 1994.35 + 3454.31i 0.0644147 + 0.111570i
\(987\) 15621.8 3670.21i 0.503798 0.118363i
\(988\) 8366.22 14490.7i 0.269398 0.466611i
\(989\) 59547.1 1.91455
\(990\) 0 0
\(991\) −45026.3 −1.44330 −0.721649 0.692259i \(-0.756616\pi\)
−0.721649 + 0.692259i \(0.756616\pi\)
\(992\) −310.182 + 537.251i −0.00992771 + 0.0171953i
\(993\) −24318.7 25877.5i −0.777171 0.826985i
\(994\) −4485.53 7769.17i −0.143131 0.247911i
\(995\) 0 0
\(996\) 3941.46 13072.4i 0.125392 0.415877i
\(997\) −5986.04 + 10368.1i −0.190150 + 0.329350i −0.945300 0.326202i \(-0.894231\pi\)
0.755150 + 0.655552i \(0.227564\pi\)
\(998\) −5977.66 −0.189599
\(999\) −31349.9 + 25994.0i −0.992861 + 0.823237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.e.a.151.2 4
5.2 odd 4 225.4.k.a.124.3 8
5.3 odd 4 225.4.k.a.124.2 8
5.4 even 2 45.4.e.a.16.1 4
9.2 odd 6 2025.4.a.j.1.2 2
9.4 even 3 inner 225.4.e.a.76.2 4
9.7 even 3 2025.4.a.l.1.1 2
15.14 odd 2 135.4.e.a.46.2 4
45.4 even 6 45.4.e.a.31.1 yes 4
45.13 odd 12 225.4.k.a.49.3 8
45.14 odd 6 135.4.e.a.91.2 4
45.22 odd 12 225.4.k.a.49.2 8
45.29 odd 6 405.4.a.e.1.1 2
45.34 even 6 405.4.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.1 4 5.4 even 2
45.4.e.a.31.1 yes 4 45.4 even 6
135.4.e.a.46.2 4 15.14 odd 2
135.4.e.a.91.2 4 45.14 odd 6
225.4.e.a.76.2 4 9.4 even 3 inner
225.4.e.a.151.2 4 1.1 even 1 trivial
225.4.k.a.49.2 8 45.22 odd 12
225.4.k.a.49.3 8 45.13 odd 12
225.4.k.a.124.2 8 5.3 odd 4
225.4.k.a.124.3 8 5.2 odd 4
405.4.a.d.1.2 2 45.34 even 6
405.4.a.e.1.1 2 45.29 odd 6
2025.4.a.j.1.2 2 9.2 odd 6
2025.4.a.l.1.1 2 9.7 even 3