Properties

Label 135.4.e.a.46.2
Level $135$
Weight $4$
Character 135.46
Analytic conductor $7.965$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,4,Mod(46,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.46"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 135.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.96525785077\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.2
Root \(1.68614 - 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 135.46
Dual form 135.4.e.a.91.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18614 - 2.05446i) q^{2} +(1.18614 + 2.05446i) q^{4} +(2.50000 + 4.33013i) q^{5} +(-3.68614 + 6.38458i) q^{7} +24.6060 q^{8} +11.8614 q^{10} +(-2.06930 + 3.58413i) q^{11} +(39.4891 + 68.3972i) q^{13} +(8.74456 + 15.1460i) q^{14} +(19.6970 - 34.1162i) q^{16} +33.3070 q^{17} +89.3070 q^{19} +(-5.93070 + 10.2723i) q^{20} +(4.90895 + 8.50256i) q^{22} +(-99.7812 - 172.826i) q^{23} +(-12.5000 + 21.6506i) q^{25} +187.359 q^{26} -17.4891 q^{28} +(25.2405 - 43.7179i) q^{29} +(3.00000 + 5.19615i) q^{31} +(51.6970 + 89.5419i) q^{32} +(39.5068 - 68.4278i) q^{34} -36.8614 q^{35} -290.277 q^{37} +(105.931 - 183.477i) q^{38} +(61.5149 + 106.547i) q^{40} +(-26.6684 - 46.1911i) q^{41} +(149.194 - 258.412i) q^{43} -9.81791 q^{44} -473.418 q^{46} +(-209.452 + 362.782i) q^{47} +(144.325 + 249.978i) q^{49} +(29.6535 + 51.3614i) q^{50} +(-93.6793 + 162.257i) q^{52} -399.228 q^{53} -20.6930 q^{55} +(-90.7011 + 157.099i) q^{56} +(-59.8776 - 103.711i) q^{58} +(49.1209 + 85.0799i) q^{59} +(341.797 - 592.011i) q^{61} +14.2337 q^{62} +560.432 q^{64} +(-197.446 + 341.986i) q^{65} +(-112.750 - 195.289i) q^{67} +(39.5068 + 68.4278i) q^{68} +(-43.7228 + 75.7301i) q^{70} -512.951 q^{71} -994.318 q^{73} +(-344.310 + 596.362i) q^{74} +(105.931 + 183.477i) q^{76} +(-15.2554 - 26.4232i) q^{77} +(100.853 - 174.683i) q^{79} +196.970 q^{80} -126.530 q^{82} +(553.822 - 959.247i) q^{83} +(83.2676 + 144.224i) q^{85} +(-353.931 - 613.026i) q^{86} +(-50.9171 + 88.1909i) q^{88} -372.269 q^{89} -582.250 q^{91} +(236.709 - 409.992i) q^{92} +(496.880 + 860.622i) q^{94} +(223.268 + 386.711i) q^{95} +(69.6156 - 120.578i) q^{97} +684.758 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} + 10 q^{5} - 9 q^{7} + 18 q^{8} - 10 q^{10} - 37 q^{11} + 112 q^{13} + 12 q^{14} + 119 q^{16} - 154 q^{17} + 70 q^{19} + 5 q^{20} - 101 q^{22} - 267 q^{23} - 50 q^{25} + 152 q^{26}+ \cdots - 926 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18614 2.05446i 0.419364 0.726360i −0.576512 0.817089i \(-0.695586\pi\)
0.995876 + 0.0907292i \(0.0289198\pi\)
\(3\) 0 0
\(4\) 1.18614 + 2.05446i 0.148268 + 0.256807i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −3.68614 + 6.38458i −0.199033 + 0.344735i −0.948215 0.317629i \(-0.897113\pi\)
0.749182 + 0.662364i \(0.230447\pi\)
\(8\) 24.6060 1.08744
\(9\) 0 0
\(10\) 11.8614 0.375091
\(11\) −2.06930 + 3.58413i −0.0567197 + 0.0982414i −0.892991 0.450074i \(-0.851397\pi\)
0.836271 + 0.548316i \(0.184731\pi\)
\(12\) 0 0
\(13\) 39.4891 + 68.3972i 0.842486 + 1.45923i 0.887787 + 0.460254i \(0.152242\pi\)
−0.0453014 + 0.998973i \(0.514425\pi\)
\(14\) 8.74456 + 15.1460i 0.166934 + 0.289139i
\(15\) 0 0
\(16\) 19.6970 34.1162i 0.307766 0.533066i
\(17\) 33.3070 0.475185 0.237592 0.971365i \(-0.423642\pi\)
0.237592 + 0.971365i \(0.423642\pi\)
\(18\) 0 0
\(19\) 89.3070 1.07834 0.539169 0.842197i \(-0.318738\pi\)
0.539169 + 0.842197i \(0.318738\pi\)
\(20\) −5.93070 + 10.2723i −0.0663073 + 0.114848i
\(21\) 0 0
\(22\) 4.90895 + 8.50256i 0.0475724 + 0.0823978i
\(23\) −99.7812 172.826i −0.904601 1.56682i −0.821452 0.570278i \(-0.806835\pi\)
−0.0831494 0.996537i \(-0.526498\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 187.359 1.41323
\(27\) 0 0
\(28\) −17.4891 −0.118041
\(29\) 25.2405 43.7179i 0.161622 0.279938i −0.773828 0.633395i \(-0.781661\pi\)
0.935451 + 0.353457i \(0.114994\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.0173812 + 0.0301050i 0.874585 0.484872i \(-0.161134\pi\)
−0.857204 + 0.514977i \(0.827800\pi\)
\(32\) 51.6970 + 89.5419i 0.285588 + 0.494654i
\(33\) 0 0
\(34\) 39.5068 68.4278i 0.199275 0.345155i
\(35\) −36.8614 −0.178020
\(36\) 0 0
\(37\) −290.277 −1.28976 −0.644882 0.764282i \(-0.723094\pi\)
−0.644882 + 0.764282i \(0.723094\pi\)
\(38\) 105.931 183.477i 0.452217 0.783262i
\(39\) 0 0
\(40\) 61.5149 + 106.547i 0.243159 + 0.421164i
\(41\) −26.6684 46.1911i −0.101583 0.175947i 0.810754 0.585387i \(-0.199057\pi\)
−0.912337 + 0.409440i \(0.865724\pi\)
\(42\) 0 0
\(43\) 149.194 258.412i 0.529114 0.916453i −0.470309 0.882502i \(-0.655858\pi\)
0.999424 0.0339510i \(-0.0108090\pi\)
\(44\) −9.81791 −0.0336388
\(45\) 0 0
\(46\) −473.418 −1.51743
\(47\) −209.452 + 362.782i −0.650038 + 1.12590i 0.333075 + 0.942900i \(0.391914\pi\)
−0.983113 + 0.182998i \(0.941420\pi\)
\(48\) 0 0
\(49\) 144.325 + 249.978i 0.420772 + 0.728798i
\(50\) 29.6535 + 51.3614i 0.0838728 + 0.145272i
\(51\) 0 0
\(52\) −93.6793 + 162.257i −0.249827 + 0.432712i
\(53\) −399.228 −1.03468 −0.517342 0.855779i \(-0.673078\pi\)
−0.517342 + 0.855779i \(0.673078\pi\)
\(54\) 0 0
\(55\) −20.6930 −0.0507316
\(56\) −90.7011 + 157.099i −0.216436 + 0.374879i
\(57\) 0 0
\(58\) −59.8776 103.711i −0.135557 0.234792i
\(59\) 49.1209 + 85.0799i 0.108390 + 0.187737i 0.915118 0.403186i \(-0.132097\pi\)
−0.806728 + 0.590923i \(0.798764\pi\)
\(60\) 0 0
\(61\) 341.797 592.011i 0.717421 1.24261i −0.244597 0.969625i \(-0.578656\pi\)
0.962018 0.272985i \(-0.0880109\pi\)
\(62\) 14.2337 0.0291561
\(63\) 0 0
\(64\) 560.432 1.09459
\(65\) −197.446 + 341.986i −0.376771 + 0.652587i
\(66\) 0 0
\(67\) −112.750 195.289i −0.205591 0.356094i 0.744730 0.667366i \(-0.232578\pi\)
−0.950321 + 0.311272i \(0.899245\pi\)
\(68\) 39.5068 + 68.4278i 0.0704545 + 0.122031i
\(69\) 0 0
\(70\) −43.7228 + 75.7301i −0.0746554 + 0.129307i
\(71\) −512.951 −0.857410 −0.428705 0.903445i \(-0.641030\pi\)
−0.428705 + 0.903445i \(0.641030\pi\)
\(72\) 0 0
\(73\) −994.318 −1.59419 −0.797096 0.603852i \(-0.793632\pi\)
−0.797096 + 0.603852i \(0.793632\pi\)
\(74\) −344.310 + 596.362i −0.540881 + 0.936833i
\(75\) 0 0
\(76\) 105.931 + 183.477i 0.159883 + 0.276925i
\(77\) −15.2554 26.4232i −0.0225782 0.0391065i
\(78\) 0 0
\(79\) 100.853 174.683i 0.143631 0.248777i −0.785230 0.619204i \(-0.787455\pi\)
0.928862 + 0.370427i \(0.120789\pi\)
\(80\) 196.970 0.275274
\(81\) 0 0
\(82\) −126.530 −0.170401
\(83\) 553.822 959.247i 0.732408 1.26857i −0.223444 0.974717i \(-0.571730\pi\)
0.955851 0.293850i \(-0.0949367\pi\)
\(84\) 0 0
\(85\) 83.2676 + 144.224i 0.106255 + 0.184038i
\(86\) −353.931 613.026i −0.443783 0.768655i
\(87\) 0 0
\(88\) −50.9171 + 88.1909i −0.0616793 + 0.106832i
\(89\) −372.269 −0.443375 −0.221688 0.975118i \(-0.571157\pi\)
−0.221688 + 0.975118i \(0.571157\pi\)
\(90\) 0 0
\(91\) −582.250 −0.670729
\(92\) 236.709 409.992i 0.268246 0.464616i
\(93\) 0 0
\(94\) 496.880 + 860.622i 0.545205 + 0.944323i
\(95\) 223.268 + 386.711i 0.241124 + 0.417639i
\(96\) 0 0
\(97\) 69.6156 120.578i 0.0728700 0.126215i −0.827288 0.561778i \(-0.810118\pi\)
0.900158 + 0.435563i \(0.143451\pi\)
\(98\) 684.758 0.705826
\(99\) 0 0
\(100\) −59.3070 −0.0593070
\(101\) 985.872 1707.58i 0.971267 1.68228i 0.279525 0.960139i \(-0.409823\pi\)
0.691742 0.722145i \(-0.256844\pi\)
\(102\) 0 0
\(103\) −906.353 1569.85i −0.867045 1.50177i −0.865002 0.501768i \(-0.832683\pi\)
−0.00204255 0.999998i \(-0.500650\pi\)
\(104\) 971.668 + 1682.98i 0.916153 + 1.58682i
\(105\) 0 0
\(106\) −473.541 + 820.197i −0.433909 + 0.751552i
\(107\) 259.217 0.234201 0.117100 0.993120i \(-0.462640\pi\)
0.117100 + 0.993120i \(0.462640\pi\)
\(108\) 0 0
\(109\) 775.556 0.681512 0.340756 0.940152i \(-0.389317\pi\)
0.340756 + 0.940152i \(0.389317\pi\)
\(110\) −24.5448 + 42.5128i −0.0212750 + 0.0368494i
\(111\) 0 0
\(112\) 145.212 + 251.514i 0.122511 + 0.212195i
\(113\) −107.628 186.417i −0.0895997 0.155191i 0.817742 0.575585i \(-0.195225\pi\)
−0.907342 + 0.420393i \(0.861892\pi\)
\(114\) 0 0
\(115\) 498.906 864.131i 0.404550 0.700701i
\(116\) 119.755 0.0958534
\(117\) 0 0
\(118\) 233.057 0.181819
\(119\) −122.774 + 212.652i −0.0945774 + 0.163813i
\(120\) 0 0
\(121\) 656.936 + 1137.85i 0.493566 + 0.854881i
\(122\) −810.840 1404.42i −0.601721 1.04221i
\(123\) 0 0
\(124\) −7.11684 + 12.3267i −0.00515412 + 0.00892721i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 2424.76 1.69420 0.847098 0.531436i \(-0.178348\pi\)
0.847098 + 0.531436i \(0.178348\pi\)
\(128\) 251.175 435.048i 0.173445 0.300415i
\(129\) 0 0
\(130\) 468.397 + 811.287i 0.316008 + 0.547343i
\(131\) 130.247 + 225.595i 0.0868684 + 0.150461i 0.906186 0.422880i \(-0.138981\pi\)
−0.819317 + 0.573340i \(0.805647\pi\)
\(132\) 0 0
\(133\) −329.198 + 570.188i −0.214625 + 0.371741i
\(134\) −534.949 −0.344870
\(135\) 0 0
\(136\) 819.552 0.516735
\(137\) −202.319 + 350.427i −0.126170 + 0.218533i −0.922190 0.386738i \(-0.873602\pi\)
0.796020 + 0.605271i \(0.206935\pi\)
\(138\) 0 0
\(139\) 883.841 + 1530.86i 0.539327 + 0.934141i 0.998940 + 0.0460221i \(0.0146545\pi\)
−0.459614 + 0.888119i \(0.652012\pi\)
\(140\) −43.7228 75.7301i −0.0263947 0.0457169i
\(141\) 0 0
\(142\) −608.432 + 1053.84i −0.359567 + 0.622788i
\(143\) −326.859 −0.191142
\(144\) 0 0
\(145\) 252.405 0.144559
\(146\) −1179.40 + 2042.78i −0.668547 + 1.15796i
\(147\) 0 0
\(148\) −344.310 596.362i −0.191230 0.331220i
\(149\) 960.344 + 1663.36i 0.528016 + 0.914551i 0.999467 + 0.0326584i \(0.0103973\pi\)
−0.471450 + 0.881893i \(0.656269\pi\)
\(150\) 0 0
\(151\) 1262.28 2186.33i 0.680284 1.17829i −0.294611 0.955617i \(-0.595190\pi\)
0.974894 0.222668i \(-0.0714767\pi\)
\(152\) 2197.49 1.17263
\(153\) 0 0
\(154\) −72.3804 −0.0378739
\(155\) −15.0000 + 25.9808i −0.00777309 + 0.0134634i
\(156\) 0 0
\(157\) −971.350 1682.43i −0.493772 0.855238i 0.506202 0.862415i \(-0.331049\pi\)
−0.999974 + 0.00717683i \(0.997716\pi\)
\(158\) −239.252 414.397i −0.120468 0.208656i
\(159\) 0 0
\(160\) −258.485 + 447.709i −0.127719 + 0.221216i
\(161\) 1471.23 0.720181
\(162\) 0 0
\(163\) −1051.21 −0.505134 −0.252567 0.967579i \(-0.581275\pi\)
−0.252567 + 0.967579i \(0.581275\pi\)
\(164\) 63.2650 109.578i 0.0301230 0.0521745i
\(165\) 0 0
\(166\) −1313.82 2275.60i −0.614291 1.06398i
\(167\) −1408.22 2439.11i −0.652524 1.13020i −0.982508 0.186218i \(-0.940377\pi\)
0.329985 0.943986i \(-0.392956\pi\)
\(168\) 0 0
\(169\) −2020.28 + 3499.23i −0.919564 + 1.59273i
\(170\) 395.068 0.178237
\(171\) 0 0
\(172\) 707.861 0.313802
\(173\) −721.225 + 1249.20i −0.316958 + 0.548987i −0.979852 0.199726i \(-0.935995\pi\)
0.662894 + 0.748713i \(0.269328\pi\)
\(174\) 0 0
\(175\) −92.1535 159.615i −0.0398066 0.0689470i
\(176\) 81.5179 + 141.193i 0.0349128 + 0.0604707i
\(177\) 0 0
\(178\) −441.563 + 764.809i −0.185936 + 0.322050i
\(179\) −1534.89 −0.640912 −0.320456 0.947263i \(-0.603836\pi\)
−0.320456 + 0.947263i \(0.603836\pi\)
\(180\) 0 0
\(181\) −3650.43 −1.49908 −0.749542 0.661956i \(-0.769726\pi\)
−0.749542 + 0.661956i \(0.769726\pi\)
\(182\) −690.630 + 1196.21i −0.281280 + 0.487191i
\(183\) 0 0
\(184\) −2455.21 4252.56i −0.983700 1.70382i
\(185\) −725.693 1256.94i −0.288400 0.499524i
\(186\) 0 0
\(187\) −68.9221 + 119.377i −0.0269523 + 0.0466828i
\(188\) −993.760 −0.385518
\(189\) 0 0
\(190\) 1059.31 0.404475
\(191\) 678.644 1175.45i 0.257094 0.445300i −0.708368 0.705843i \(-0.750568\pi\)
0.965462 + 0.260543i \(0.0839017\pi\)
\(192\) 0 0
\(193\) 901.520 + 1561.48i 0.336232 + 0.582371i 0.983721 0.179704i \(-0.0575139\pi\)
−0.647488 + 0.762075i \(0.724181\pi\)
\(194\) −165.148 286.044i −0.0611181 0.105860i
\(195\) 0 0
\(196\) −342.379 + 593.018i −0.124774 + 0.216114i
\(197\) 263.403 0.0952624 0.0476312 0.998865i \(-0.484833\pi\)
0.0476312 + 0.998865i \(0.484833\pi\)
\(198\) 0 0
\(199\) 492.853 0.175565 0.0877824 0.996140i \(-0.472022\pi\)
0.0877824 + 0.996140i \(0.472022\pi\)
\(200\) −307.575 + 532.735i −0.108744 + 0.188350i
\(201\) 0 0
\(202\) −2338.77 4050.86i −0.814629 1.41098i
\(203\) 186.080 + 322.300i 0.0643363 + 0.111434i
\(204\) 0 0
\(205\) 133.342 230.955i 0.0454294 0.0786860i
\(206\) −4300.25 −1.45443
\(207\) 0 0
\(208\) 3111.27 1.03715
\(209\) −184.803 + 320.088i −0.0611630 + 0.105937i
\(210\) 0 0
\(211\) 500.772 + 867.362i 0.163387 + 0.282994i 0.936081 0.351784i \(-0.114425\pi\)
−0.772695 + 0.634778i \(0.781092\pi\)
\(212\) −473.541 820.197i −0.153410 0.265714i
\(213\) 0 0
\(214\) 307.468 532.551i 0.0982155 0.170114i
\(215\) 1491.94 0.473254
\(216\) 0 0
\(217\) −44.2337 −0.0138377
\(218\) 919.919 1593.35i 0.285802 0.495023i
\(219\) 0 0
\(220\) −24.5448 42.5128i −0.00752185 0.0130282i
\(221\) 1315.27 + 2278.11i 0.400336 + 0.693403i
\(222\) 0 0
\(223\) −280.574 + 485.969i −0.0842540 + 0.145932i −0.905073 0.425256i \(-0.860184\pi\)
0.820819 + 0.571188i \(0.193517\pi\)
\(224\) −762.250 −0.227366
\(225\) 0 0
\(226\) −510.646 −0.150300
\(227\) −1953.23 + 3383.09i −0.571103 + 0.989180i 0.425350 + 0.905029i \(0.360151\pi\)
−0.996453 + 0.0841506i \(0.973182\pi\)
\(228\) 0 0
\(229\) −1498.45 2595.40i −0.432405 0.748947i 0.564675 0.825313i \(-0.309001\pi\)
−0.997080 + 0.0763664i \(0.975668\pi\)
\(230\) −1183.55 2049.96i −0.339307 0.587698i
\(231\) 0 0
\(232\) 621.067 1075.72i 0.175755 0.304416i
\(233\) −4194.30 −1.17930 −0.589651 0.807658i \(-0.700735\pi\)
−0.589651 + 0.807658i \(0.700735\pi\)
\(234\) 0 0
\(235\) −2094.52 −0.581412
\(236\) −116.529 + 201.833i −0.0321414 + 0.0556705i
\(237\) 0 0
\(238\) 291.255 + 504.469i 0.0793247 + 0.137394i
\(239\) −83.2362 144.169i −0.0225276 0.0390190i 0.854542 0.519383i \(-0.173838\pi\)
−0.877069 + 0.480364i \(0.840505\pi\)
\(240\) 0 0
\(241\) −307.272 + 532.210i −0.0821291 + 0.142252i −0.904164 0.427185i \(-0.859505\pi\)
0.822035 + 0.569437i \(0.192839\pi\)
\(242\) 3116.87 0.827935
\(243\) 0 0
\(244\) 1621.68 0.425481
\(245\) −721.624 + 1249.89i −0.188175 + 0.325928i
\(246\) 0 0
\(247\) 3526.66 + 6108.35i 0.908485 + 1.57354i
\(248\) 73.8179 + 127.856i 0.0189010 + 0.0327374i
\(249\) 0 0
\(250\) −148.268 + 256.807i −0.0375091 + 0.0649676i
\(251\) 6136.16 1.54307 0.771536 0.636185i \(-0.219489\pi\)
0.771536 + 0.636185i \(0.219489\pi\)
\(252\) 0 0
\(253\) 825.908 0.205235
\(254\) 2876.11 4981.57i 0.710485 1.23060i
\(255\) 0 0
\(256\) 1645.87 + 2850.73i 0.401824 + 0.695979i
\(257\) 2725.20 + 4720.19i 0.661453 + 1.14567i 0.980234 + 0.197842i \(0.0633932\pi\)
−0.318781 + 0.947828i \(0.603273\pi\)
\(258\) 0 0
\(259\) 1070.00 1853.30i 0.256705 0.444627i
\(260\) −936.793 −0.223452
\(261\) 0 0
\(262\) 617.967 0.145718
\(263\) −391.620 + 678.305i −0.0918186 + 0.159035i −0.908276 0.418371i \(-0.862601\pi\)
0.816458 + 0.577405i \(0.195935\pi\)
\(264\) 0 0
\(265\) −998.070 1728.71i −0.231362 0.400731i
\(266\) 780.951 + 1352.65i 0.180012 + 0.311790i
\(267\) 0 0
\(268\) 267.474 463.279i 0.0609649 0.105594i
\(269\) −141.019 −0.0319632 −0.0159816 0.999872i \(-0.505087\pi\)
−0.0159816 + 0.999872i \(0.505087\pi\)
\(270\) 0 0
\(271\) 6375.83 1.42917 0.714583 0.699551i \(-0.246616\pi\)
0.714583 + 0.699551i \(0.246616\pi\)
\(272\) 656.049 1136.31i 0.146246 0.253305i
\(273\) 0 0
\(274\) 479.958 + 831.312i 0.105822 + 0.183290i
\(275\) −51.7324 89.6032i −0.0113439 0.0196483i
\(276\) 0 0
\(277\) −3411.59 + 5909.04i −0.740008 + 1.28173i 0.212482 + 0.977165i \(0.431845\pi\)
−0.952491 + 0.304567i \(0.901488\pi\)
\(278\) 4193.44 0.904697
\(279\) 0 0
\(280\) −907.011 −0.193587
\(281\) 294.846 510.689i 0.0625945 0.108417i −0.833030 0.553228i \(-0.813396\pi\)
0.895624 + 0.444811i \(0.146729\pi\)
\(282\) 0 0
\(283\) 2988.01 + 5175.39i 0.627629 + 1.08709i 0.988026 + 0.154286i \(0.0493078\pi\)
−0.360397 + 0.932799i \(0.617359\pi\)
\(284\) −608.432 1053.84i −0.127126 0.220189i
\(285\) 0 0
\(286\) −387.701 + 671.517i −0.0801581 + 0.138838i
\(287\) 393.214 0.0808736
\(288\) 0 0
\(289\) −3803.64 −0.774199
\(290\) 299.388 518.555i 0.0606230 0.105002i
\(291\) 0 0
\(292\) −1179.40 2042.78i −0.236367 0.409400i
\(293\) 4028.74 + 6977.99i 0.803282 + 1.39133i 0.917445 + 0.397864i \(0.130248\pi\)
−0.114162 + 0.993462i \(0.536418\pi\)
\(294\) 0 0
\(295\) −245.604 + 425.399i −0.0484734 + 0.0839583i
\(296\) −7142.55 −1.40254
\(297\) 0 0
\(298\) 4556.41 0.885724
\(299\) 7880.55 13649.5i 1.52423 2.64004i
\(300\) 0 0
\(301\) 1099.90 + 1905.09i 0.210622 + 0.364808i
\(302\) −2994.48 5186.59i −0.570573 0.988261i
\(303\) 0 0
\(304\) 1759.08 3046.82i 0.331876 0.574826i
\(305\) 3417.97 0.641681
\(306\) 0 0
\(307\) −4546.58 −0.845235 −0.422618 0.906308i \(-0.638889\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(308\) 36.1902 62.6832i 0.00669522 0.0115965i
\(309\) 0 0
\(310\) 35.5842 + 61.6337i 0.00651951 + 0.0112921i
\(311\) −2101.40 3639.73i −0.383149 0.663633i 0.608362 0.793660i \(-0.291827\pi\)
−0.991510 + 0.130027i \(0.958494\pi\)
\(312\) 0 0
\(313\) 3486.64 6039.04i 0.629637 1.09056i −0.357987 0.933727i \(-0.616537\pi\)
0.987624 0.156838i \(-0.0501299\pi\)
\(314\) −4608.63 −0.828281
\(315\) 0 0
\(316\) 478.505 0.0851835
\(317\) −3680.02 + 6373.97i −0.652020 + 1.12933i 0.330612 + 0.943767i \(0.392745\pi\)
−0.982632 + 0.185565i \(0.940589\pi\)
\(318\) 0 0
\(319\) 104.460 + 180.930i 0.0183343 + 0.0317560i
\(320\) 1401.08 + 2426.74i 0.244759 + 0.423934i
\(321\) 0 0
\(322\) 1745.09 3022.58i 0.302018 0.523111i
\(323\) 2974.55 0.512410
\(324\) 0 0
\(325\) −1974.46 −0.336994
\(326\) −1246.88 + 2159.66i −0.211835 + 0.366909i
\(327\) 0 0
\(328\) −656.203 1136.58i −0.110466 0.191332i
\(329\) −1544.14 2674.53i −0.258758 0.448182i
\(330\) 0 0
\(331\) 3417.06 5918.52i 0.567428 0.982814i −0.429391 0.903119i \(-0.641272\pi\)
0.996819 0.0796957i \(-0.0253949\pi\)
\(332\) 2627.64 0.434369
\(333\) 0 0
\(334\) −6681.39 −1.09458
\(335\) 563.749 976.443i 0.0919430 0.159250i
\(336\) 0 0
\(337\) 3464.24 + 6000.24i 0.559968 + 0.969893i 0.997498 + 0.0706891i \(0.0225198\pi\)
−0.437531 + 0.899204i \(0.644147\pi\)
\(338\) 4792.68 + 8301.16i 0.771264 + 1.33587i
\(339\) 0 0
\(340\) −197.534 + 342.139i −0.0315082 + 0.0545738i
\(341\) −24.8316 −0.00394341
\(342\) 0 0
\(343\) −4656.70 −0.733055
\(344\) 3671.07 6358.48i 0.575380 0.996588i
\(345\) 0 0
\(346\) 1710.95 + 2963.45i 0.265842 + 0.460451i
\(347\) −3770.30 6530.35i −0.583286 1.01028i −0.995087 0.0990071i \(-0.968433\pi\)
0.411801 0.911274i \(-0.364900\pi\)
\(348\) 0 0
\(349\) 922.084 1597.10i 0.141427 0.244959i −0.786607 0.617454i \(-0.788164\pi\)
0.928034 + 0.372495i \(0.121498\pi\)
\(350\) −437.228 −0.0667738
\(351\) 0 0
\(352\) −427.906 −0.0647939
\(353\) −3548.74 + 6146.61i −0.535073 + 0.926773i 0.464087 + 0.885789i \(0.346382\pi\)
−0.999160 + 0.0409833i \(0.986951\pi\)
\(354\) 0 0
\(355\) −1282.38 2221.14i −0.191723 0.332073i
\(356\) −441.563 764.809i −0.0657382 0.113862i
\(357\) 0 0
\(358\) −1820.60 + 3153.37i −0.268775 + 0.465532i
\(359\) −7709.65 −1.13342 −0.566712 0.823916i \(-0.691785\pi\)
−0.566712 + 0.823916i \(0.691785\pi\)
\(360\) 0 0
\(361\) 1116.75 0.162815
\(362\) −4329.92 + 7499.65i −0.628662 + 1.08888i
\(363\) 0 0
\(364\) −690.630 1196.21i −0.0994474 0.172248i
\(365\) −2485.79 4305.52i −0.356472 0.617428i
\(366\) 0 0
\(367\) 2628.19 4552.17i 0.373816 0.647469i −0.616333 0.787486i \(-0.711382\pi\)
0.990149 + 0.140017i \(0.0447157\pi\)
\(368\) −7861.57 −1.11362
\(369\) 0 0
\(370\) −3443.10 −0.483778
\(371\) 1471.61 2548.91i 0.205936 0.356692i
\(372\) 0 0
\(373\) −498.227 862.955i −0.0691615 0.119791i 0.829371 0.558698i \(-0.188699\pi\)
−0.898532 + 0.438907i \(0.855366\pi\)
\(374\) 163.503 + 283.195i 0.0226057 + 0.0391542i
\(375\) 0 0
\(376\) −5153.78 + 8926.61i −0.706878 + 1.22435i
\(377\) 3986.90 0.544658
\(378\) 0 0
\(379\) −2735.20 −0.370707 −0.185354 0.982672i \(-0.559343\pi\)
−0.185354 + 0.982672i \(0.559343\pi\)
\(380\) −529.654 + 917.387i −0.0715017 + 0.123845i
\(381\) 0 0
\(382\) −1609.93 2788.49i −0.215632 0.373485i
\(383\) −4469.73 7741.80i −0.596325 1.03287i −0.993358 0.115062i \(-0.963293\pi\)
0.397033 0.917804i \(-0.370040\pi\)
\(384\) 0 0
\(385\) 76.2772 132.116i 0.0100973 0.0174890i
\(386\) 4277.32 0.564015
\(387\) 0 0
\(388\) 330.295 0.0432170
\(389\) −5566.93 + 9642.21i −0.725590 + 1.25676i 0.233140 + 0.972443i \(0.425100\pi\)
−0.958731 + 0.284316i \(0.908233\pi\)
\(390\) 0 0
\(391\) −3323.42 5756.33i −0.429853 0.744527i
\(392\) 3551.25 + 6150.95i 0.457564 + 0.792525i
\(393\) 0 0
\(394\) 312.433 541.150i 0.0399496 0.0691948i
\(395\) 1008.53 0.128468
\(396\) 0 0
\(397\) −9479.40 −1.19838 −0.599191 0.800606i \(-0.704511\pi\)
−0.599191 + 0.800606i \(0.704511\pi\)
\(398\) 584.593 1012.54i 0.0736256 0.127523i
\(399\) 0 0
\(400\) 492.425 + 852.906i 0.0615532 + 0.106613i
\(401\) 4713.80 + 8164.54i 0.587022 + 1.01675i 0.994620 + 0.103591i \(0.0330333\pi\)
−0.407598 + 0.913162i \(0.633633\pi\)
\(402\) 0 0
\(403\) −236.935 + 410.383i −0.0292868 + 0.0507261i
\(404\) 4677.53 0.576029
\(405\) 0 0
\(406\) 882.869 0.107921
\(407\) 600.670 1040.39i 0.0731550 0.126708i
\(408\) 0 0
\(409\) −204.093 353.500i −0.0246742 0.0427370i 0.853425 0.521216i \(-0.174522\pi\)
−0.878099 + 0.478479i \(0.841188\pi\)
\(410\) −316.325 547.891i −0.0381029 0.0659962i
\(411\) 0 0
\(412\) 2150.12 3724.12i 0.257109 0.445326i
\(413\) −724.266 −0.0862925
\(414\) 0 0
\(415\) 5538.22 0.655085
\(416\) −4082.94 + 7071.86i −0.481208 + 0.833477i
\(417\) 0 0
\(418\) 438.404 + 759.338i 0.0512992 + 0.0888527i
\(419\) 4406.94 + 7633.05i 0.513826 + 0.889973i 0.999871 + 0.0160393i \(0.00510569\pi\)
−0.486045 + 0.873934i \(0.661561\pi\)
\(420\) 0 0
\(421\) 1174.68 2034.61i 0.135987 0.235537i −0.789987 0.613124i \(-0.789913\pi\)
0.925974 + 0.377587i \(0.123246\pi\)
\(422\) 2375.94 0.274074
\(423\) 0 0
\(424\) −9823.40 −1.12516
\(425\) −416.338 + 721.118i −0.0475185 + 0.0823044i
\(426\) 0 0
\(427\) 2519.83 + 4364.47i 0.285581 + 0.494640i
\(428\) 307.468 + 532.551i 0.0347244 + 0.0601444i
\(429\) 0 0
\(430\) 1769.65 3065.13i 0.198466 0.343753i
\(431\) −4481.16 −0.500812 −0.250406 0.968141i \(-0.580564\pi\)
−0.250406 + 0.968141i \(0.580564\pi\)
\(432\) 0 0
\(433\) 3422.69 0.379871 0.189935 0.981797i \(-0.439172\pi\)
0.189935 + 0.981797i \(0.439172\pi\)
\(434\) −52.4674 + 90.8762i −0.00580303 + 0.0100511i
\(435\) 0 0
\(436\) 919.919 + 1593.35i 0.101046 + 0.175017i
\(437\) −8911.17 15434.6i −0.975467 1.68956i
\(438\) 0 0
\(439\) 4064.59 7040.07i 0.441896 0.765386i −0.555934 0.831226i \(-0.687639\pi\)
0.997830 + 0.0658402i \(0.0209728\pi\)
\(440\) −509.171 −0.0551676
\(441\) 0 0
\(442\) 6240.36 0.671547
\(443\) 1175.39 2035.83i 0.126060 0.218342i −0.796087 0.605182i \(-0.793100\pi\)
0.922147 + 0.386840i \(0.126434\pi\)
\(444\) 0 0
\(445\) −930.672 1611.97i −0.0991417 0.171718i
\(446\) 665.601 + 1152.86i 0.0706662 + 0.122397i
\(447\) 0 0
\(448\) −2065.83 + 3578.12i −0.217860 + 0.377345i
\(449\) −4760.99 −0.500412 −0.250206 0.968193i \(-0.580498\pi\)
−0.250206 + 0.968193i \(0.580498\pi\)
\(450\) 0 0
\(451\) 220.740 0.0230471
\(452\) 255.323 442.233i 0.0265695 0.0460196i
\(453\) 0 0
\(454\) 4633.61 + 8025.65i 0.479000 + 0.829653i
\(455\) −1455.62 2521.22i −0.149980 0.259772i
\(456\) 0 0
\(457\) −1114.54 + 1930.44i −0.114083 + 0.197598i −0.917413 0.397937i \(-0.869726\pi\)
0.803330 + 0.595535i \(0.203060\pi\)
\(458\) −7109.51 −0.725340
\(459\) 0 0
\(460\) 2367.09 0.239927
\(461\) 2868.31 4968.06i 0.289784 0.501921i −0.683974 0.729507i \(-0.739750\pi\)
0.973758 + 0.227585i \(0.0730831\pi\)
\(462\) 0 0
\(463\) 1801.99 + 3121.13i 0.180876 + 0.313286i 0.942179 0.335110i \(-0.108773\pi\)
−0.761303 + 0.648396i \(0.775440\pi\)
\(464\) −994.326 1722.22i −0.0994836 0.172311i
\(465\) 0 0
\(466\) −4975.03 + 8617.00i −0.494557 + 0.856598i
\(467\) 3780.37 0.374593 0.187296 0.982303i \(-0.440028\pi\)
0.187296 + 0.982303i \(0.440028\pi\)
\(468\) 0 0
\(469\) 1662.45 0.163677
\(470\) −2484.40 + 4303.11i −0.243823 + 0.422314i
\(471\) 0 0
\(472\) 1208.67 + 2093.47i 0.117867 + 0.204152i
\(473\) 617.454 + 1069.46i 0.0600224 + 0.103962i
\(474\) 0 0
\(475\) −1116.34 + 1933.55i −0.107834 + 0.186774i
\(476\) −582.511 −0.0560911
\(477\) 0 0
\(478\) −394.920 −0.0377891
\(479\) −7230.58 + 12523.7i −0.689715 + 1.19462i 0.282215 + 0.959351i \(0.408931\pi\)
−0.971930 + 0.235271i \(0.924402\pi\)
\(480\) 0 0
\(481\) −11462.8 19854.1i −1.08661 1.88206i
\(482\) 728.935 + 1262.55i 0.0688840 + 0.119311i
\(483\) 0 0
\(484\) −1558.44 + 2699.29i −0.146360 + 0.253502i
\(485\) 696.156 0.0651769
\(486\) 0 0
\(487\) 3581.74 0.333273 0.166636 0.986018i \(-0.446709\pi\)
0.166636 + 0.986018i \(0.446709\pi\)
\(488\) 8410.26 14567.0i 0.780153 1.35126i
\(489\) 0 0
\(490\) 1711.89 + 2965.09i 0.157828 + 0.273365i
\(491\) −3507.69 6075.50i −0.322403 0.558419i 0.658580 0.752511i \(-0.271157\pi\)
−0.980983 + 0.194092i \(0.937824\pi\)
\(492\) 0 0
\(493\) 840.687 1456.11i 0.0768005 0.133022i
\(494\) 16732.4 1.52394
\(495\) 0 0
\(496\) 236.364 0.0213973
\(497\) 1890.81 3274.98i 0.170653 0.295579i
\(498\) 0 0
\(499\) −1259.90 2182.21i −0.113028 0.195769i 0.803962 0.594681i \(-0.202721\pi\)
−0.916990 + 0.398911i \(0.869388\pi\)
\(500\) −148.268 256.807i −0.0132615 0.0229695i
\(501\) 0 0
\(502\) 7278.35 12606.5i 0.647109 1.12083i
\(503\) 4989.32 0.442272 0.221136 0.975243i \(-0.429024\pi\)
0.221136 + 0.975243i \(0.429024\pi\)
\(504\) 0 0
\(505\) 9858.72 0.868727
\(506\) 979.643 1696.79i 0.0860681 0.149074i
\(507\) 0 0
\(508\) 2876.11 + 4981.57i 0.251194 + 0.435081i
\(509\) 2359.76 + 4087.22i 0.205490 + 0.355919i 0.950289 0.311370i \(-0.100788\pi\)
−0.744799 + 0.667289i \(0.767454\pi\)
\(510\) 0 0
\(511\) 3665.19 6348.30i 0.317297 0.549574i
\(512\) 11827.7 1.02093
\(513\) 0 0
\(514\) 12929.9 1.10956
\(515\) 4531.77 7849.25i 0.387754 0.671610i
\(516\) 0 0
\(517\) −866.839 1501.41i −0.0737399 0.127721i
\(518\) −2538.35 4396.55i −0.215306 0.372921i
\(519\) 0 0
\(520\) −4858.34 + 8414.89i −0.409716 + 0.709649i
\(521\) 10711.0 0.900682 0.450341 0.892857i \(-0.351302\pi\)
0.450341 + 0.892857i \(0.351302\pi\)
\(522\) 0 0
\(523\) −10566.4 −0.883433 −0.441717 0.897155i \(-0.645630\pi\)
−0.441717 + 0.897155i \(0.645630\pi\)
\(524\) −308.983 + 535.175i −0.0257595 + 0.0446168i
\(525\) 0 0
\(526\) 929.032 + 1609.13i 0.0770109 + 0.133387i
\(527\) 99.9211 + 173.068i 0.00825926 + 0.0143055i
\(528\) 0 0
\(529\) −13829.1 + 23952.7i −1.13661 + 1.96866i
\(530\) −4735.41 −0.388100
\(531\) 0 0
\(532\) −1561.90 −0.127288
\(533\) 2106.23 3648.09i 0.171165 0.296466i
\(534\) 0 0
\(535\) 648.044 + 1122.44i 0.0523689 + 0.0907056i
\(536\) −2774.32 4805.26i −0.223568 0.387231i
\(537\) 0 0
\(538\) −167.269 + 289.718i −0.0134042 + 0.0232168i
\(539\) −1194.60 −0.0954642
\(540\) 0 0
\(541\) −6595.81 −0.524170 −0.262085 0.965045i \(-0.584410\pi\)
−0.262085 + 0.965045i \(0.584410\pi\)
\(542\) 7562.63 13098.9i 0.599341 1.03809i
\(543\) 0 0
\(544\) 1721.87 + 2982.37i 0.135707 + 0.235052i
\(545\) 1938.89 + 3358.26i 0.152391 + 0.263949i
\(546\) 0 0
\(547\) 3194.39 5532.85i 0.249693 0.432482i −0.713747 0.700403i \(-0.753003\pi\)
0.963441 + 0.267922i \(0.0863368\pi\)
\(548\) −959.916 −0.0748277
\(549\) 0 0
\(550\) −245.448 −0.0190290
\(551\) 2254.16 3904.31i 0.174284 0.301868i
\(552\) 0 0
\(553\) 743.519 + 1287.81i 0.0571748 + 0.0990296i
\(554\) 8093.24 + 14017.9i 0.620666 + 1.07502i
\(555\) 0 0
\(556\) −2096.72 + 3631.62i −0.159929 + 0.277006i
\(557\) −15992.4 −1.21655 −0.608276 0.793726i \(-0.708138\pi\)
−0.608276 + 0.793726i \(0.708138\pi\)
\(558\) 0 0
\(559\) 23566.2 1.78308
\(560\) −726.060 + 1257.57i −0.0547886 + 0.0948967i
\(561\) 0 0
\(562\) −699.459 1211.50i −0.0524998 0.0909323i
\(563\) −3175.56 5500.23i −0.237716 0.411736i 0.722343 0.691535i \(-0.243065\pi\)
−0.960058 + 0.279800i \(0.909732\pi\)
\(564\) 0 0
\(565\) 538.139 932.083i 0.0400702 0.0694036i
\(566\) 14176.8 1.05282
\(567\) 0 0
\(568\) −12621.7 −0.932382
\(569\) 4810.21 8331.53i 0.354402 0.613842i −0.632614 0.774468i \(-0.718018\pi\)
0.987015 + 0.160626i \(0.0513512\pi\)
\(570\) 0 0
\(571\) 2532.30 + 4386.08i 0.185593 + 0.321456i 0.943776 0.330585i \(-0.107246\pi\)
−0.758183 + 0.652042i \(0.773913\pi\)
\(572\) −387.701 671.517i −0.0283402 0.0490866i
\(573\) 0 0
\(574\) 466.408 807.842i 0.0339155 0.0587433i
\(575\) 4989.06 0.361840
\(576\) 0 0
\(577\) 11355.1 0.819273 0.409637 0.912249i \(-0.365655\pi\)
0.409637 + 0.912249i \(0.365655\pi\)
\(578\) −4511.65 + 7814.41i −0.324671 + 0.562347i
\(579\) 0 0
\(580\) 299.388 + 518.555i 0.0214335 + 0.0371239i
\(581\) 4082.93 + 7071.84i 0.291546 + 0.504973i
\(582\) 0 0
\(583\) 826.121 1430.88i 0.0586869 0.101649i
\(584\) −24466.2 −1.73359
\(585\) 0 0
\(586\) 19114.6 1.34747
\(587\) −5016.00 + 8687.96i −0.352696 + 0.610887i −0.986721 0.162426i \(-0.948068\pi\)
0.634025 + 0.773312i \(0.281402\pi\)
\(588\) 0 0
\(589\) 267.921 + 464.053i 0.0187428 + 0.0324634i
\(590\) 582.643 + 1009.17i 0.0406560 + 0.0704182i
\(591\) 0 0
\(592\) −5717.59 + 9903.16i −0.396945 + 0.687530i
\(593\) 1325.12 0.0917643 0.0458821 0.998947i \(-0.485390\pi\)
0.0458821 + 0.998947i \(0.485390\pi\)
\(594\) 0 0
\(595\) −1227.74 −0.0845926
\(596\) −2278.21 + 3945.97i −0.156575 + 0.271197i
\(597\) 0 0
\(598\) −18694.9 32380.5i −1.27841 2.21427i
\(599\) 8285.78 + 14351.4i 0.565188 + 0.978935i 0.997032 + 0.0769865i \(0.0245298\pi\)
−0.431844 + 0.901948i \(0.642137\pi\)
\(600\) 0 0
\(601\) −8604.49 + 14903.4i −0.584001 + 1.01152i 0.410998 + 0.911636i \(0.365180\pi\)
−0.994999 + 0.0998833i \(0.968153\pi\)
\(602\) 5218.55 0.353310
\(603\) 0 0
\(604\) 5988.96 0.403456
\(605\) −3284.68 + 5689.23i −0.220729 + 0.382314i
\(606\) 0 0
\(607\) −2088.99 3618.24i −0.139686 0.241944i 0.787692 0.616070i \(-0.211276\pi\)
−0.927378 + 0.374126i \(0.877943\pi\)
\(608\) 4616.91 + 7996.72i 0.307961 + 0.533404i
\(609\) 0 0
\(610\) 4054.20 7022.08i 0.269098 0.466091i
\(611\) −33084.4 −2.19059
\(612\) 0 0
\(613\) 14944.2 0.984649 0.492324 0.870412i \(-0.336147\pi\)
0.492324 + 0.870412i \(0.336147\pi\)
\(614\) −5392.89 + 9340.75i −0.354461 + 0.613945i
\(615\) 0 0
\(616\) −375.375 650.168i −0.0245524 0.0425260i
\(617\) 10251.4 + 17756.0i 0.668893 + 1.15856i 0.978214 + 0.207600i \(0.0665651\pi\)
−0.309320 + 0.950958i \(0.600102\pi\)
\(618\) 0 0
\(619\) −1364.26 + 2362.97i −0.0885854 + 0.153434i −0.906913 0.421317i \(-0.861568\pi\)
0.818328 + 0.574751i \(0.194901\pi\)
\(620\) −71.1684 −0.00460999
\(621\) 0 0
\(622\) −9970.21 −0.642715
\(623\) 1372.23 2376.78i 0.0882463 0.152847i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −8271.29 14326.3i −0.528095 0.914687i
\(627\) 0 0
\(628\) 2304.32 3991.19i 0.146421 0.253608i
\(629\) −9668.27 −0.612876
\(630\) 0 0
\(631\) −3393.08 −0.214067 −0.107034 0.994255i \(-0.534135\pi\)
−0.107034 + 0.994255i \(0.534135\pi\)
\(632\) 2481.59 4298.25i 0.156191 0.270530i
\(633\) 0 0
\(634\) 8730.03 + 15120.9i 0.546867 + 0.947202i
\(635\) 6061.91 + 10499.5i 0.378834 + 0.656159i
\(636\) 0 0
\(637\) −11398.5 + 19742.8i −0.708988 + 1.22800i
\(638\) 495.618 0.0307550
\(639\) 0 0
\(640\) 2511.75 0.155134
\(641\) 6780.88 11744.8i 0.417830 0.723702i −0.577891 0.816114i \(-0.696124\pi\)
0.995721 + 0.0924116i \(0.0294576\pi\)
\(642\) 0 0
\(643\) −6483.44 11229.7i −0.397639 0.688731i 0.595795 0.803137i \(-0.296837\pi\)
−0.993434 + 0.114405i \(0.963504\pi\)
\(644\) 1745.09 + 3022.58i 0.106780 + 0.184948i
\(645\) 0 0
\(646\) 3528.24 6111.09i 0.214886 0.372194i
\(647\) −25837.9 −1.57000 −0.785001 0.619495i \(-0.787337\pi\)
−0.785001 + 0.619495i \(0.787337\pi\)
\(648\) 0 0
\(649\) −406.583 −0.0245913
\(650\) −2341.98 + 4056.43i −0.141323 + 0.244779i
\(651\) 0 0
\(652\) −1246.88 2159.66i −0.0748950 0.129722i
\(653\) −14133.4 24479.8i −0.846989 1.46703i −0.883883 0.467709i \(-0.845080\pi\)
0.0368938 0.999319i \(-0.488254\pi\)
\(654\) 0 0
\(655\) −651.237 + 1127.98i −0.0388487 + 0.0672880i
\(656\) −2101.15 −0.125055
\(657\) 0 0
\(658\) −7326.28 −0.434055
\(659\) −7978.92 + 13819.9i −0.471646 + 0.816914i −0.999474 0.0324369i \(-0.989673\pi\)
0.527828 + 0.849351i \(0.323007\pi\)
\(660\) 0 0
\(661\) −12028.9 20834.6i −0.707821 1.22598i −0.965664 0.259795i \(-0.916345\pi\)
0.257843 0.966187i \(-0.416988\pi\)
\(662\) −8106.23 14040.4i −0.475918 0.824314i
\(663\) 0 0
\(664\) 13627.3 23603.2i 0.796450 1.37949i
\(665\) −3291.98 −0.191966
\(666\) 0 0
\(667\) −10074.1 −0.584815
\(668\) 3340.70 5786.26i 0.193496 0.335145i
\(669\) 0 0
\(670\) −1337.37 2316.40i −0.0771152 0.133567i
\(671\) 1414.56 + 2450.09i 0.0813838 + 0.140961i
\(672\) 0 0
\(673\) −626.519 + 1085.16i −0.0358849 + 0.0621545i −0.883410 0.468601i \(-0.844758\pi\)
0.847525 + 0.530755i \(0.178092\pi\)
\(674\) 16436.3 0.939321
\(675\) 0 0
\(676\) −9585.35 −0.545366
\(677\) 440.364 762.733i 0.0249994 0.0433002i −0.853255 0.521494i \(-0.825375\pi\)
0.878254 + 0.478194i \(0.158708\pi\)
\(678\) 0 0
\(679\) 513.226 + 888.933i 0.0290071 + 0.0502417i
\(680\) 2048.88 + 3548.76i 0.115546 + 0.200131i
\(681\) 0 0
\(682\) −29.4537 + 51.0153i −0.00165373 + 0.00286434i
\(683\) 26686.4 1.49506 0.747531 0.664227i \(-0.231239\pi\)
0.747531 + 0.664227i \(0.231239\pi\)
\(684\) 0 0
\(685\) −2023.19 −0.112850
\(686\) −5523.50 + 9566.98i −0.307417 + 0.532462i
\(687\) 0 0
\(688\) −5877.36 10179.9i −0.325687 0.564106i
\(689\) −15765.2 27306.1i −0.871706 1.50984i
\(690\) 0 0
\(691\) 85.7060 148.447i 0.00471839 0.00817249i −0.863657 0.504081i \(-0.831831\pi\)
0.868375 + 0.495908i \(0.165165\pi\)
\(692\) −3421.90 −0.187978
\(693\) 0 0
\(694\) −17888.4 −0.978437
\(695\) −4419.20 + 7654.28i −0.241194 + 0.417761i
\(696\) 0 0
\(697\) −888.247 1538.49i −0.0482708 0.0836075i
\(698\) −2187.44 3788.76i −0.118619 0.205454i
\(699\) 0 0
\(700\) 218.614 378.651i 0.0118041 0.0204452i
\(701\) 14229.6 0.766684 0.383342 0.923607i \(-0.374773\pi\)
0.383342 + 0.923607i \(0.374773\pi\)
\(702\) 0 0
\(703\) −25923.8 −1.39080
\(704\) −1159.70 + 2008.66i −0.0620850 + 0.107534i
\(705\) 0 0
\(706\) 8418.62 + 14581.5i 0.448780 + 0.777310i
\(707\) 7268.13 + 12588.8i 0.386628 + 0.669659i
\(708\) 0 0
\(709\) 3887.04 6732.55i 0.205897 0.356624i −0.744521 0.667599i \(-0.767322\pi\)
0.950418 + 0.310975i \(0.100656\pi\)
\(710\) −6084.32 −0.321606
\(711\) 0 0
\(712\) −9160.03 −0.482144
\(713\) 598.687 1036.96i 0.0314460 0.0544661i
\(714\) 0 0
\(715\) −817.147 1415.34i −0.0427407 0.0740290i
\(716\) −1820.60 3153.37i −0.0950264 0.164591i
\(717\) 0 0
\(718\) −9144.72 + 15839.1i −0.475318 + 0.823274i
\(719\) 22091.8 1.14588 0.572939 0.819598i \(-0.305803\pi\)
0.572939 + 0.819598i \(0.305803\pi\)
\(720\) 0 0
\(721\) 13363.8 0.690282
\(722\) 1324.62 2294.31i 0.0682786 0.118262i
\(723\) 0 0
\(724\) −4329.92 7499.65i −0.222266 0.384975i
\(725\) 631.013 + 1092.95i 0.0323245 + 0.0559876i
\(726\) 0 0
\(727\) −3321.74 + 5753.42i −0.169459 + 0.293511i −0.938230 0.346013i \(-0.887535\pi\)
0.768771 + 0.639524i \(0.220869\pi\)
\(728\) −14326.8 −0.729378
\(729\) 0 0
\(730\) −11794.0 −0.597967
\(731\) 4969.22 8606.94i 0.251427 0.435484i
\(732\) 0 0
\(733\) 1561.40 + 2704.43i 0.0786791 + 0.136276i 0.902680 0.430312i \(-0.141596\pi\)
−0.824001 + 0.566588i \(0.808263\pi\)
\(734\) −6234.82 10799.0i −0.313530 0.543050i
\(735\) 0 0
\(736\) 10316.8 17869.2i 0.516687 0.894928i
\(737\) 933.252 0.0466442
\(738\) 0 0
\(739\) 19549.5 0.973127 0.486563 0.873645i \(-0.338250\pi\)
0.486563 + 0.873645i \(0.338250\pi\)
\(740\) 1721.55 2981.81i 0.0855208 0.148126i
\(741\) 0 0
\(742\) −3491.08 6046.72i −0.172724 0.299167i
\(743\) 4695.92 + 8133.58i 0.231866 + 0.401604i 0.958357 0.285572i \(-0.0921834\pi\)
−0.726491 + 0.687176i \(0.758850\pi\)
\(744\) 0 0
\(745\) −4801.72 + 8316.82i −0.236136 + 0.409000i
\(746\) −2363.87 −0.116015
\(747\) 0 0
\(748\) −327.005 −0.0159846
\(749\) −955.512 + 1655.00i −0.0466137 + 0.0807373i
\(750\) 0 0
\(751\) 9136.01 + 15824.0i 0.443912 + 0.768878i 0.997976 0.0635962i \(-0.0202570\pi\)
−0.554064 + 0.832474i \(0.686924\pi\)
\(752\) 8251.18 + 14291.5i 0.400119 + 0.693026i
\(753\) 0 0
\(754\) 4729.03 8190.92i 0.228410 0.395618i
\(755\) 12622.8 0.608464
\(756\) 0 0
\(757\) 2016.30 0.0968082 0.0484041 0.998828i \(-0.484586\pi\)
0.0484041 + 0.998828i \(0.484586\pi\)
\(758\) −3244.34 + 5619.36i −0.155461 + 0.269267i
\(759\) 0 0
\(760\) 5493.72 + 9515.39i 0.262208 + 0.454157i
\(761\) −8846.39 15322.4i −0.421395 0.729877i 0.574681 0.818377i \(-0.305126\pi\)
−0.996076 + 0.0885001i \(0.971793\pi\)
\(762\) 0 0
\(763\) −2858.81 + 4951.60i −0.135643 + 0.234941i
\(764\) 3219.87 0.152475
\(765\) 0 0
\(766\) −21206.9 −1.00031
\(767\) −3879.48 + 6719.46i −0.182634 + 0.316331i
\(768\) 0 0
\(769\) 4879.86 + 8452.16i 0.228833 + 0.396350i 0.957462 0.288558i \(-0.0931759\pi\)
−0.728630 + 0.684908i \(0.759843\pi\)
\(770\) −180.951 313.416i −0.00846886 0.0146685i
\(771\) 0 0
\(772\) −2138.66 + 3704.27i −0.0997047 + 0.172694i
\(773\) 10338.3 0.481038 0.240519 0.970644i \(-0.422682\pi\)
0.240519 + 0.970644i \(0.422682\pi\)
\(774\) 0 0
\(775\) −150.000 −0.00695246
\(776\) 1712.96 2966.93i 0.0792418 0.137251i
\(777\) 0 0
\(778\) 13206.3 + 22874.0i 0.608573 + 1.05408i
\(779\) −2381.68 4125.19i −0.109541 0.189731i
\(780\) 0 0
\(781\) 1061.45 1838.48i 0.0486320 0.0842331i
\(782\) −15768.2 −0.721059
\(783\) 0 0
\(784\) 11371.1 0.517997
\(785\) 4856.75 8412.14i 0.220821 0.382474i
\(786\) 0 0
\(787\) −2363.64 4093.95i −0.107058 0.185430i 0.807519 0.589842i \(-0.200810\pi\)
−0.914577 + 0.404411i \(0.867476\pi\)
\(788\) 312.433 + 541.150i 0.0141243 + 0.0244640i
\(789\) 0 0
\(790\) 1196.26 2071.99i 0.0538748 0.0933139i
\(791\) 1586.92 0.0713331
\(792\) 0 0
\(793\) 53989.1 2.41767
\(794\) −11243.9 + 19475.0i −0.502558 + 0.870456i
\(795\) 0 0
\(796\) 584.593 + 1012.54i 0.0260306 + 0.0450863i
\(797\) 14099.4 + 24420.9i 0.626634 + 1.08536i 0.988222 + 0.153025i \(0.0489014\pi\)
−0.361588 + 0.932338i \(0.617765\pi\)
\(798\) 0 0
\(799\) −6976.24 + 12083.2i −0.308888 + 0.535010i
\(800\) −2584.85 −0.114235
\(801\) 0 0
\(802\) 22364.9 0.984704
\(803\) 2057.54 3563.76i 0.0904221 0.156616i
\(804\) 0 0
\(805\) 3678.08 + 6370.62i 0.161037 + 0.278925i
\(806\) 562.076 + 973.544i 0.0245636 + 0.0425454i
\(807\) 0 0
\(808\) 24258.3 42016.7i 1.05619 1.82938i
\(809\) 27310.5 1.18688 0.593439 0.804879i \(-0.297770\pi\)
0.593439 + 0.804879i \(0.297770\pi\)
\(810\) 0 0
\(811\) −18045.0 −0.781312 −0.390656 0.920537i \(-0.627752\pi\)
−0.390656 + 0.920537i \(0.627752\pi\)
\(812\) −441.435 + 764.587i −0.0190780 + 0.0330440i
\(813\) 0 0
\(814\) −1424.96 2468.10i −0.0613572 0.106274i
\(815\) −2628.02 4551.86i −0.112951 0.195638i
\(816\) 0 0
\(817\) 13324.1 23078.0i 0.570564 0.988246i
\(818\) −968.333 −0.0413899
\(819\) 0 0
\(820\) 632.650 0.0269428
\(821\) −6288.85 + 10892.6i −0.267335 + 0.463038i −0.968173 0.250283i \(-0.919476\pi\)
0.700837 + 0.713321i \(0.252810\pi\)
\(822\) 0 0
\(823\) 17484.2 + 30283.6i 0.740537 + 1.28265i 0.952251 + 0.305316i \(0.0987622\pi\)
−0.211714 + 0.977332i \(0.567904\pi\)
\(824\) −22301.7 38627.7i −0.942860 1.63308i
\(825\) 0 0
\(826\) −859.081 + 1487.97i −0.0361880 + 0.0626794i
\(827\) 6735.01 0.283191 0.141596 0.989925i \(-0.454777\pi\)
0.141596 + 0.989925i \(0.454777\pi\)
\(828\) 0 0
\(829\) −2867.97 −0.120155 −0.0600777 0.998194i \(-0.519135\pi\)
−0.0600777 + 0.998194i \(0.519135\pi\)
\(830\) 6569.10 11378.0i 0.274719 0.475828i
\(831\) 0 0
\(832\) 22131.0 + 38332.0i 0.922179 + 1.59726i
\(833\) 4807.03 + 8326.02i 0.199944 + 0.346314i
\(834\) 0 0
\(835\) 7041.11 12195.6i 0.291817 0.505443i
\(836\) −876.808 −0.0362740
\(837\) 0 0
\(838\) 20909.0 0.861921
\(839\) 13927.9 24123.8i 0.573116 0.992666i −0.423128 0.906070i \(-0.639068\pi\)
0.996244 0.0865958i \(-0.0275989\pi\)
\(840\) 0 0
\(841\) 10920.3 + 18914.6i 0.447756 + 0.775537i
\(842\) −2786.68 4826.67i −0.114056 0.197551i
\(843\) 0 0
\(844\) −1187.97 + 2057.63i −0.0484499 + 0.0839176i
\(845\) −20202.8 −0.822483
\(846\) 0 0
\(847\) −9686.23 −0.392943
\(848\) −7863.60 + 13620.2i −0.318440 + 0.551554i
\(849\) 0 0
\(850\) 987.671 + 1710.70i 0.0398551 + 0.0690310i
\(851\) 28964.2 + 50167.5i 1.16672 + 2.02082i
\(852\) 0 0
\(853\) −5463.05 + 9462.29i −0.219287 + 0.379815i −0.954590 0.297923i \(-0.903706\pi\)
0.735304 + 0.677738i \(0.237040\pi\)
\(854\) 11955.5 0.479049
\(855\) 0 0
\(856\) 6378.30 0.254680
\(857\) 22584.6 39117.7i 0.900206 1.55920i 0.0729799 0.997333i \(-0.476749\pi\)
0.827226 0.561869i \(-0.189918\pi\)
\(858\) 0 0
\(859\) 3525.95 + 6107.12i 0.140051 + 0.242576i 0.927516 0.373784i \(-0.121940\pi\)
−0.787465 + 0.616360i \(0.788607\pi\)
\(860\) 1769.65 + 3065.13i 0.0701682 + 0.121535i
\(861\) 0 0
\(862\) −5315.29 + 9206.35i −0.210022 + 0.363770i
\(863\) −6882.52 −0.271476 −0.135738 0.990745i \(-0.543341\pi\)
−0.135738 + 0.990745i \(0.543341\pi\)
\(864\) 0 0
\(865\) −7212.25 −0.283496
\(866\) 4059.80 7031.77i 0.159304 0.275923i
\(867\) 0 0
\(868\) −52.4674 90.8762i −0.00205168 0.00355362i
\(869\) 417.391 + 722.942i 0.0162935 + 0.0282211i
\(870\) 0 0
\(871\) 8904.79 15423.5i 0.346415 0.600008i
\(872\) 19083.3 0.741104
\(873\) 0 0
\(874\) −42279.6 −1.63630
\(875\) 460.768 798.073i 0.0178020 0.0308340i
\(876\) 0 0
\(877\) −18684.3 32362.2i −0.719413 1.24606i −0.961233 0.275738i \(-0.911078\pi\)
0.241820 0.970321i \(-0.422256\pi\)
\(878\) −9642.35 16701.0i −0.370630 0.641951i
\(879\) 0 0
\(880\) −407.590 + 705.966i −0.0156135 + 0.0270433i
\(881\) 23880.5 0.913229 0.456614 0.889665i \(-0.349062\pi\)
0.456614 + 0.889665i \(0.349062\pi\)
\(882\) 0 0
\(883\) −33107.0 −1.26177 −0.630883 0.775878i \(-0.717307\pi\)
−0.630883 + 0.775878i \(0.717307\pi\)
\(884\) −3120.18 + 5404.31i −0.118714 + 0.205618i
\(885\) 0 0
\(886\) −2788.36 4829.57i −0.105730 0.183129i
\(887\) 5651.07 + 9787.95i 0.213917 + 0.370515i 0.952937 0.303168i \(-0.0980444\pi\)
−0.739020 + 0.673684i \(0.764711\pi\)
\(888\) 0 0
\(889\) −8938.02 + 15481.1i −0.337201 + 0.584049i
\(890\) −4415.63 −0.166306
\(891\) 0 0
\(892\) −1331.20 −0.0499686
\(893\) −18705.6 + 32399.0i −0.700961 + 1.21410i
\(894\) 0 0
\(895\) −3837.23 6646.27i −0.143312 0.248224i
\(896\) 1851.73 + 3207.30i 0.0690425 + 0.119585i
\(897\) 0 0
\(898\) −5647.21 + 9781.25i −0.209855 + 0.363479i
\(899\) 302.886 0.0112367
\(900\) 0 0
\(901\) −13297.1 −0.491666
\(902\) 261.828 453.500i 0.00966511 0.0167405i
\(903\) 0 0
\(904\) −2648.28 4586.96i −0.0974343 0.168761i
\(905\) −9126.08 15806.8i −0.335206 0.580593i
\(906\) 0 0
\(907\) −1981.12 + 3431.40i −0.0725270 + 0.125620i −0.900008 0.435873i \(-0.856440\pi\)
0.827481 + 0.561493i \(0.189773\pi\)
\(908\) −9267.22 −0.338704
\(909\) 0 0
\(910\) −6906.30 −0.251584
\(911\) −17023.1 + 29484.8i −0.619100 + 1.07231i 0.370551 + 0.928812i \(0.379169\pi\)
−0.989650 + 0.143500i \(0.954164\pi\)
\(912\) 0 0
\(913\) 2292.04 + 3969.93i 0.0830838 + 0.143905i
\(914\) 2644.01 + 4579.56i 0.0956849 + 0.165731i
\(915\) 0 0
\(916\) 3554.76 6157.02i 0.128223 0.222089i
\(917\) −1920.44 −0.0691587
\(918\) 0 0
\(919\) −35121.5 −1.26066 −0.630332 0.776326i \(-0.717081\pi\)
−0.630332 + 0.776326i \(0.717081\pi\)
\(920\) 12276.1 21262.8i 0.439924 0.761971i
\(921\) 0 0
\(922\) −6804.44 11785.6i −0.243050 0.420975i
\(923\) −20256.0 35084.4i −0.722355 1.25116i
\(924\) 0 0
\(925\) 3628.46 6284.69i 0.128976 0.223394i
\(926\) 8549.64 0.303411
\(927\) 0 0
\(928\) 5219.44 0.184630
\(929\) 12228.9 21181.1i 0.431881 0.748039i −0.565155 0.824985i \(-0.691184\pi\)
0.997035 + 0.0769459i \(0.0245169\pi\)
\(930\) 0 0
\(931\) 12889.2 + 22324.8i 0.453735 + 0.785891i
\(932\) −4975.03 8617.00i −0.174852 0.302853i
\(933\) 0 0
\(934\) 4484.05 7766.61i 0.157091 0.272089i
\(935\) −689.221 −0.0241069
\(936\) 0 0
\(937\) 41877.5 1.46006 0.730032 0.683413i \(-0.239505\pi\)
0.730032 + 0.683413i \(0.239505\pi\)
\(938\) 1971.90 3415.43i 0.0686404 0.118889i
\(939\) 0 0
\(940\) −2484.40 4303.11i −0.0862045 0.149311i
\(941\) −4599.48 7966.54i −0.159340 0.275985i 0.775291 0.631604i \(-0.217603\pi\)
−0.934631 + 0.355619i \(0.884270\pi\)
\(942\) 0 0
\(943\) −5322.02 + 9218.01i −0.183785 + 0.318324i
\(944\) 3870.14 0.133435
\(945\) 0 0
\(946\) 2929.55 0.100685
\(947\) 10481.8 18155.0i 0.359675 0.622976i −0.628231 0.778027i \(-0.716221\pi\)
0.987906 + 0.155051i \(0.0495541\pi\)
\(948\) 0 0
\(949\) −39264.7 68008.5i −1.34308 2.32629i
\(950\) 2648.27 + 4586.93i 0.0904433 + 0.156652i
\(951\) 0 0
\(952\) −3020.98 + 5232.50i −0.102847 + 0.178137i
\(953\) 27943.7 0.949828 0.474914 0.880032i \(-0.342479\pi\)
0.474914 + 0.880032i \(0.342479\pi\)
\(954\) 0 0
\(955\) 6786.44 0.229952
\(956\) 197.460 342.010i 0.00668024 0.0115705i
\(957\) 0 0
\(958\) 17153.0 + 29709.8i 0.578484 + 1.00196i
\(959\) −1491.55 2583.45i −0.0502240 0.0869905i
\(960\) 0 0
\(961\) 14877.5 25768.6i 0.499396 0.864979i
\(962\) −54385.9 −1.82274
\(963\) 0 0
\(964\) −1457.87 −0.0487084
\(965\) −4507.60 + 7807.39i −0.150368 + 0.260444i
\(966\) 0 0
\(967\) −1121.76 1942.95i −0.0373045 0.0646132i 0.846770 0.531959i \(-0.178544\pi\)
−0.884075 + 0.467345i \(0.845210\pi\)
\(968\) 16164.5 + 27997.8i 0.536723 + 0.929632i
\(969\) 0 0
\(970\) 825.739 1430.22i 0.0273329 0.0473419i
\(971\) −57345.0 −1.89525 −0.947626 0.319381i \(-0.896525\pi\)
−0.947626 + 0.319381i \(0.896525\pi\)
\(972\) 0 0
\(973\) −13031.8 −0.429375
\(974\) 4248.44 7358.52i 0.139763 0.242076i
\(975\) 0 0
\(976\) −13464.8 23321.7i −0.441595 0.764866i
\(977\) 9395.44 + 16273.4i 0.307663 + 0.532888i 0.977851 0.209304i \(-0.0671197\pi\)
−0.670188 + 0.742192i \(0.733786\pi\)
\(978\) 0 0
\(979\) 770.334 1334.26i 0.0251481 0.0435578i
\(980\) −3423.79 −0.111601
\(981\) 0 0
\(982\) −16642.5 −0.540817
\(983\) −17298.8 + 29962.4i −0.561289 + 0.972181i 0.436096 + 0.899900i \(0.356361\pi\)
−0.997384 + 0.0722803i \(0.976972\pi\)
\(984\) 0 0
\(985\) 658.508 + 1140.57i 0.0213013 + 0.0368950i
\(986\) −1994.35 3454.31i −0.0644147 0.111570i
\(987\) 0 0
\(988\) −8366.22 + 14490.7i −0.269398 + 0.466611i
\(989\) −59547.1 −1.91455
\(990\) 0 0
\(991\) −45026.3 −1.44330 −0.721649 0.692259i \(-0.756616\pi\)
−0.721649 + 0.692259i \(0.756616\pi\)
\(992\) −310.182 + 537.251i −0.00992771 + 0.0171953i
\(993\) 0 0
\(994\) −4485.53 7769.17i −0.143131 0.247911i
\(995\) 1232.13 + 2134.12i 0.0392575 + 0.0679960i
\(996\) 0 0
\(997\) 5986.04 10368.1i 0.190150 0.329350i −0.755150 0.655552i \(-0.772436\pi\)
0.945300 + 0.326202i \(0.105769\pi\)
\(998\) −5977.66 −0.189599
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.4.e.a.46.2 4
3.2 odd 2 45.4.e.a.16.1 4
9.2 odd 6 405.4.a.d.1.2 2
9.4 even 3 inner 135.4.e.a.91.2 4
9.5 odd 6 45.4.e.a.31.1 yes 4
9.7 even 3 405.4.a.e.1.1 2
15.2 even 4 225.4.k.a.124.2 8
15.8 even 4 225.4.k.a.124.3 8
15.14 odd 2 225.4.e.a.151.2 4
45.14 odd 6 225.4.e.a.76.2 4
45.23 even 12 225.4.k.a.49.2 8
45.29 odd 6 2025.4.a.l.1.1 2
45.32 even 12 225.4.k.a.49.3 8
45.34 even 6 2025.4.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.1 4 3.2 odd 2
45.4.e.a.31.1 yes 4 9.5 odd 6
135.4.e.a.46.2 4 1.1 even 1 trivial
135.4.e.a.91.2 4 9.4 even 3 inner
225.4.e.a.76.2 4 45.14 odd 6
225.4.e.a.151.2 4 15.14 odd 2
225.4.k.a.49.2 8 45.23 even 12
225.4.k.a.49.3 8 45.32 even 12
225.4.k.a.124.2 8 15.2 even 4
225.4.k.a.124.3 8 15.8 even 4
405.4.a.d.1.2 2 9.2 odd 6
405.4.a.e.1.1 2 9.7 even 3
2025.4.a.j.1.2 2 45.34 even 6
2025.4.a.l.1.1 2 45.29 odd 6