Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(135, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 24 | 96 |
Cusp forms | 96 | 24 | 72 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
135.4.e.a | $4$ | $7.965$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(-1\) | \(0\) | \(10\) | \(-9\) | \(q+(-\beta _{1}+\beta _{3})q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{4}+\cdots\) |
135.4.e.b | $6$ | $7.965$ | 6.0.15759792.1 | None | \(-1\) | \(0\) | \(15\) | \(43\) | \(q+(-\beta _{1}-\beta _{4})q^{2}+(-\beta _{2}+3\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\) |
135.4.e.c | $14$ | $7.965$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-2\) | \(0\) | \(-35\) | \(-22\) | \(q+(\beta _{1}-\beta _{2})q^{2}+(-5-\beta _{3}-5\beta _{5}-\beta _{10}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(135, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)