Properties

Label 2205.2.d.o.1324.4
Level $2205$
Weight $2$
Character 2205.1324
Analytic conductor $17.607$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2205,2,Mod(1324,2205)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2205, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2205.1324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,-2,0,0,0,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2058981376.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1324.4
Root \(1.52153 + 1.52153i\) of defining polynomial
Character \(\chi\) \(=\) 2205.1324
Dual form 2205.2.d.o.1324.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.287336i q^{2} +1.91744 q^{4} +(-2.19291 - 0.437190i) q^{5} -1.12562i q^{8} +(-0.125620 + 0.630102i) q^{10} +3.33039 q^{11} +4.54754i q^{13} +3.51145 q^{16} -5.54754i q^{17} -1.65723 q^{19} +(-4.20477 - 0.838284i) q^{20} -0.956942i q^{22} +7.63366i q^{23} +(4.61773 + 1.91744i) q^{25} +1.30667 q^{26} -0.118657 q^{29} +6.26020 q^{31} -3.26020i q^{32} -1.59401 q^{34} -7.75572i q^{37} +0.476183i q^{38} +(-0.492110 + 2.46839i) q^{40} +0.0701896 q^{41} +2.92981i q^{43} +6.38582 q^{44} +2.19342 q^{46} +6.38582i q^{47} +(0.550949 - 1.32684i) q^{50} +8.71963i q^{52} -0.739795i q^{53} +(-7.30326 - 1.45601i) q^{55} +0.0340944i q^{58} +1.63010 q^{59} +7.31802 q^{61} -1.79878i q^{62} +6.08612 q^{64} +(1.98814 - 9.97236i) q^{65} -3.03610i q^{67} -10.6371i q^{68} +3.77048 q^{71} -2.35514i q^{73} -2.22850 q^{74} -3.17764 q^{76} +11.9403 q^{79} +(-7.70029 - 1.53517i) q^{80} -0.0201680i q^{82} +1.22411i q^{83} +(-2.42533 + 12.1653i) q^{85} +0.841839 q^{86} -3.74876i q^{88} +13.0001 q^{89} +14.6371i q^{92} +1.83488 q^{94} +(3.63417 + 0.724526i) q^{95} -3.04306i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 2 q^{5} - 4 q^{10} - 24 q^{19} - 4 q^{20} + 4 q^{25} + 12 q^{26} - 12 q^{29} + 16 q^{31} - 8 q^{34} + 32 q^{40} + 8 q^{41} + 20 q^{44} + 32 q^{46} + 20 q^{50} - 4 q^{55} - 4 q^{59} + 16 q^{61}+ \cdots - 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.287336i 0.203177i −0.994827 0.101589i \(-0.967607\pi\)
0.994827 0.101589i \(-0.0323925\pi\)
\(3\) 0 0
\(4\) 1.91744 0.958719
\(5\) −2.19291 0.437190i −0.980700 0.195517i
\(6\) 0 0
\(7\) 0 0
\(8\) 1.12562i 0.397967i
\(9\) 0 0
\(10\) −0.125620 + 0.630102i −0.0397246 + 0.199256i
\(11\) 3.33039 1.00415 0.502076 0.864824i \(-0.332570\pi\)
0.502076 + 0.864824i \(0.332570\pi\)
\(12\) 0 0
\(13\) 4.54754i 1.26126i 0.776083 + 0.630630i \(0.217204\pi\)
−0.776083 + 0.630630i \(0.782796\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.51145 0.877861
\(17\) 5.54754i 1.34548i −0.739881 0.672738i \(-0.765118\pi\)
0.739881 0.672738i \(-0.234882\pi\)
\(18\) 0 0
\(19\) −1.65723 −0.380195 −0.190098 0.981765i \(-0.560880\pi\)
−0.190098 + 0.981765i \(0.560880\pi\)
\(20\) −4.20477 0.838284i −0.940216 0.187446i
\(21\) 0 0
\(22\) 0.956942i 0.204021i
\(23\) 7.63366i 1.59173i 0.605476 + 0.795864i \(0.292983\pi\)
−0.605476 + 0.795864i \(0.707017\pi\)
\(24\) 0 0
\(25\) 4.61773 + 1.91744i 0.923546 + 0.383488i
\(26\) 1.30667 0.256259
\(27\) 0 0
\(28\) 0 0
\(29\) −0.118657 −0.0220341 −0.0110170 0.999939i \(-0.503507\pi\)
−0.0110170 + 0.999939i \(0.503507\pi\)
\(30\) 0 0
\(31\) 6.26020 1.12437 0.562183 0.827013i \(-0.309962\pi\)
0.562183 + 0.827013i \(0.309962\pi\)
\(32\) 3.26020i 0.576328i
\(33\) 0 0
\(34\) −1.59401 −0.273370
\(35\) 0 0
\(36\) 0 0
\(37\) 7.75572i 1.27503i −0.770437 0.637516i \(-0.779962\pi\)
0.770437 0.637516i \(-0.220038\pi\)
\(38\) 0.476183i 0.0772470i
\(39\) 0 0
\(40\) −0.492110 + 2.46839i −0.0778094 + 0.390286i
\(41\) 0.0701896 0.0109618 0.00548089 0.999985i \(-0.498255\pi\)
0.00548089 + 0.999985i \(0.498255\pi\)
\(42\) 0 0
\(43\) 2.92981i 0.446792i 0.974728 + 0.223396i \(0.0717143\pi\)
−0.974728 + 0.223396i \(0.928286\pi\)
\(44\) 6.38582 0.962699
\(45\) 0 0
\(46\) 2.19342 0.323403
\(47\) 6.38582i 0.931468i 0.884925 + 0.465734i \(0.154210\pi\)
−0.884925 + 0.465734i \(0.845790\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.550949 1.32684i 0.0779159 0.187643i
\(51\) 0 0
\(52\) 8.71963i 1.20919i
\(53\) 0.739795i 0.101619i −0.998708 0.0508094i \(-0.983820\pi\)
0.998708 0.0508094i \(-0.0161801\pi\)
\(54\) 0 0
\(55\) −7.30326 1.45601i −0.984772 0.196329i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.0340944i 0.00447682i
\(59\) 1.63010 0.212221 0.106111 0.994354i \(-0.466160\pi\)
0.106111 + 0.994354i \(0.466160\pi\)
\(60\) 0 0
\(61\) 7.31802 0.936977 0.468488 0.883470i \(-0.344799\pi\)
0.468488 + 0.883470i \(0.344799\pi\)
\(62\) 1.79878i 0.228445i
\(63\) 0 0
\(64\) 6.08612 0.760765
\(65\) 1.98814 9.97236i 0.246598 1.23692i
\(66\) 0 0
\(67\) 3.03610i 0.370918i −0.982652 0.185459i \(-0.940623\pi\)
0.982652 0.185459i \(-0.0593772\pi\)
\(68\) 10.6371i 1.28993i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.77048 0.447474 0.223737 0.974650i \(-0.428174\pi\)
0.223737 + 0.974650i \(0.428174\pi\)
\(72\) 0 0
\(73\) 2.35514i 0.275648i −0.990457 0.137824i \(-0.955989\pi\)
0.990457 0.137824i \(-0.0440109\pi\)
\(74\) −2.22850 −0.259058
\(75\) 0 0
\(76\) −3.17764 −0.364501
\(77\) 0 0
\(78\) 0 0
\(79\) 11.9403 1.34339 0.671696 0.740827i \(-0.265566\pi\)
0.671696 + 0.740827i \(0.265566\pi\)
\(80\) −7.70029 1.53517i −0.860919 0.171637i
\(81\) 0 0
\(82\) 0.0201680i 0.00222718i
\(83\) 1.22411i 0.134363i 0.997741 + 0.0671817i \(0.0214007\pi\)
−0.997741 + 0.0671817i \(0.978599\pi\)
\(84\) 0 0
\(85\) −2.42533 + 12.1653i −0.263064 + 1.31951i
\(86\) 0.841839 0.0907779
\(87\) 0 0
\(88\) 3.74876i 0.399619i
\(89\) 13.0001 1.37801 0.689006 0.724755i \(-0.258047\pi\)
0.689006 + 0.724755i \(0.258047\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 14.6371i 1.52602i
\(93\) 0 0
\(94\) 1.83488 0.189253
\(95\) 3.63417 + 0.724526i 0.372858 + 0.0743348i
\(96\) 0 0
\(97\) 3.04306i 0.308976i −0.987995 0.154488i \(-0.950627\pi\)
0.987995 0.154488i \(-0.0493728\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 8.85421 + 3.67657i 0.885421 + 0.367657i
\(101\) 16.0397 1.59600 0.798002 0.602654i \(-0.205890\pi\)
0.798002 + 0.602654i \(0.205890\pi\)
\(102\) 0 0
\(103\) 5.29191i 0.521428i −0.965416 0.260714i \(-0.916042\pi\)
0.965416 0.260714i \(-0.0839579\pi\)
\(104\) 5.11880 0.501940
\(105\) 0 0
\(106\) −0.212570 −0.0206466
\(107\) 5.16172i 0.499002i 0.968375 + 0.249501i \(0.0802666\pi\)
−0.968375 + 0.249501i \(0.919733\pi\)
\(108\) 0 0
\(109\) −3.24087 −0.310419 −0.155209 0.987882i \(-0.549605\pi\)
−0.155209 + 0.987882i \(0.549605\pi\)
\(110\) −0.418365 + 2.09849i −0.0398896 + 0.200083i
\(111\) 0 0
\(112\) 0 0
\(113\) 12.6608i 1.19103i −0.803345 0.595513i \(-0.796949\pi\)
0.803345 0.595513i \(-0.203051\pi\)
\(114\) 0 0
\(115\) 3.33736 16.7399i 0.311210 1.56101i
\(116\) −0.227518 −0.0211245
\(117\) 0 0
\(118\) 0.468387i 0.0431185i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.0915259 0.00832053
\(122\) 2.10273i 0.190372i
\(123\) 0 0
\(124\) 12.0036 1.07795
\(125\) −9.28799 6.22360i −0.830743 0.556656i
\(126\) 0 0
\(127\) 16.5475i 1.46836i −0.678957 0.734178i \(-0.737568\pi\)
0.678957 0.734178i \(-0.262432\pi\)
\(128\) 8.26917i 0.730898i
\(129\) 0 0
\(130\) −2.86542 0.571263i −0.251314 0.0501031i
\(131\) −5.29785 −0.462876 −0.231438 0.972850i \(-0.574343\pi\)
−0.231438 + 0.972850i \(0.574343\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.872379 −0.0753621
\(135\) 0 0
\(136\) −6.24442 −0.535455
\(137\) 14.8701i 1.27044i 0.772331 + 0.635221i \(0.219091\pi\)
−0.772331 + 0.635221i \(0.780909\pi\)
\(138\) 0 0
\(139\) −9.51685 −0.807209 −0.403605 0.914934i \(-0.632243\pi\)
−0.403605 + 0.914934i \(0.632243\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.08339i 0.0909164i
\(143\) 15.1451i 1.26650i
\(144\) 0 0
\(145\) 0.260205 + 0.0518757i 0.0216088 + 0.00430804i
\(146\) −0.676716 −0.0560054
\(147\) 0 0
\(148\) 14.8711i 1.22240i
\(149\) 11.3700 0.931470 0.465735 0.884924i \(-0.345790\pi\)
0.465735 + 0.884924i \(0.345790\pi\)
\(150\) 0 0
\(151\) 8.94033 0.727554 0.363777 0.931486i \(-0.381487\pi\)
0.363777 + 0.931486i \(0.381487\pi\)
\(152\) 1.86542i 0.151305i
\(153\) 0 0
\(154\) 0 0
\(155\) −13.7281 2.73690i −1.10267 0.219833i
\(156\) 0 0
\(157\) 3.34632i 0.267066i −0.991044 0.133533i \(-0.957368\pi\)
0.991044 0.133533i \(-0.0426321\pi\)
\(158\) 3.43088i 0.272946i
\(159\) 0 0
\(160\) −1.42533 + 7.14934i −0.112682 + 0.565205i
\(161\) 0 0
\(162\) 0 0
\(163\) 15.7559i 1.23409i 0.786926 + 0.617047i \(0.211671\pi\)
−0.786926 + 0.617047i \(0.788329\pi\)
\(164\) 0.134584 0.0105093
\(165\) 0 0
\(166\) 0.351730 0.0272996
\(167\) 22.5942i 1.74839i 0.485577 + 0.874194i \(0.338610\pi\)
−0.485577 + 0.874194i \(0.661390\pi\)
\(168\) 0 0
\(169\) −7.68012 −0.590779
\(170\) 3.49552 + 0.696884i 0.268094 + 0.0534485i
\(171\) 0 0
\(172\) 5.61773i 0.428348i
\(173\) 8.52620i 0.648235i 0.946017 + 0.324118i \(0.105067\pi\)
−0.946017 + 0.324118i \(0.894933\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 11.6945 0.881506
\(177\) 0 0
\(178\) 3.73541i 0.279981i
\(179\) −11.7806 −0.880524 −0.440262 0.897869i \(-0.645115\pi\)
−0.440262 + 0.897869i \(0.645115\pi\)
\(180\) 0 0
\(181\) −9.08967 −0.675630 −0.337815 0.941213i \(-0.609688\pi\)
−0.337815 + 0.941213i \(0.609688\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.59260 0.633455
\(185\) −3.39072 + 17.0076i −0.249291 + 1.25043i
\(186\) 0 0
\(187\) 18.4755i 1.35106i
\(188\) 12.2444i 0.893016i
\(189\) 0 0
\(190\) 0.208182 1.04423i 0.0151031 0.0757562i
\(191\) −20.4957 −1.48301 −0.741507 0.670945i \(-0.765889\pi\)
−0.741507 + 0.670945i \(0.765889\pi\)
\(192\) 0 0
\(193\) 8.54296i 0.614936i 0.951558 + 0.307468i \(0.0994817\pi\)
−0.951558 + 0.307468i \(0.900518\pi\)
\(194\) −0.874380 −0.0627768
\(195\) 0 0
\(196\) 0 0
\(197\) 13.8086i 0.983820i 0.870646 + 0.491910i \(0.163701\pi\)
−0.870646 + 0.491910i \(0.836299\pi\)
\(198\) 0 0
\(199\) 3.79099 0.268736 0.134368 0.990932i \(-0.457100\pi\)
0.134368 + 0.990932i \(0.457100\pi\)
\(200\) 2.15831 5.19781i 0.152615 0.367541i
\(201\) 0 0
\(202\) 4.60877i 0.324272i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.153920 0.0306862i −0.0107502 0.00214322i
\(206\) −1.52056 −0.105942
\(207\) 0 0
\(208\) 15.9684i 1.10721i
\(209\) −5.51924 −0.381774
\(210\) 0 0
\(211\) −0.114416 −0.00787674 −0.00393837 0.999992i \(-0.501254\pi\)
−0.00393837 + 0.999992i \(0.501254\pi\)
\(212\) 1.41851i 0.0974238i
\(213\) 0 0
\(214\) 1.48315 0.101386
\(215\) 1.28088 6.42482i 0.0873555 0.438169i
\(216\) 0 0
\(217\) 0 0
\(218\) 0.931218i 0.0630700i
\(219\) 0 0
\(220\) −14.0036 2.79182i −0.944119 0.188224i
\(221\) 25.2277 1.69700
\(222\) 0 0
\(223\) 7.86673i 0.526795i −0.964687 0.263398i \(-0.915157\pi\)
0.964687 0.263398i \(-0.0848431\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.63790 −0.241989
\(227\) 8.97866i 0.595935i −0.954576 0.297967i \(-0.903691\pi\)
0.954576 0.297967i \(-0.0963087\pi\)
\(228\) 0 0
\(229\) −5.08612 −0.336100 −0.168050 0.985778i \(-0.553747\pi\)
−0.168050 + 0.985778i \(0.553747\pi\)
\(230\) −4.80999 0.958942i −0.317161 0.0632308i
\(231\) 0 0
\(232\) 0.133563i 0.00876883i
\(233\) 21.8183i 1.42936i −0.699451 0.714681i \(-0.746572\pi\)
0.699451 0.714681i \(-0.253428\pi\)
\(234\) 0 0
\(235\) 2.79182 14.0036i 0.182118 0.913491i
\(236\) 3.12562 0.203461
\(237\) 0 0
\(238\) 0 0
\(239\) 7.44905 0.481839 0.240920 0.970545i \(-0.422551\pi\)
0.240920 + 0.970545i \(0.422551\pi\)
\(240\) 0 0
\(241\) 24.1758 1.55730 0.778650 0.627459i \(-0.215905\pi\)
0.778650 + 0.627459i \(0.215905\pi\)
\(242\) 0.0262987i 0.00169054i
\(243\) 0 0
\(244\) 14.0319 0.898297
\(245\) 0 0
\(246\) 0 0
\(247\) 7.53634i 0.479526i
\(248\) 7.04661i 0.447460i
\(249\) 0 0
\(250\) −1.78826 + 2.66877i −0.113100 + 0.168788i
\(251\) 6.00200 0.378843 0.189421 0.981896i \(-0.439339\pi\)
0.189421 + 0.981896i \(0.439339\pi\)
\(252\) 0 0
\(253\) 25.4231i 1.59834i
\(254\) −4.75470 −0.298336
\(255\) 0 0
\(256\) 9.79621 0.612263
\(257\) 7.33395i 0.457479i −0.973488 0.228740i \(-0.926540\pi\)
0.973488 0.228740i \(-0.0734604\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.81213 19.1214i 0.236418 1.18586i
\(261\) 0 0
\(262\) 1.52226i 0.0940457i
\(263\) 9.48772i 0.585038i −0.956260 0.292519i \(-0.905507\pi\)
0.956260 0.292519i \(-0.0944935\pi\)
\(264\) 0 0
\(265\) −0.323431 + 1.62231i −0.0198682 + 0.0996575i
\(266\) 0 0
\(267\) 0 0
\(268\) 5.82152i 0.355606i
\(269\) −16.0485 −0.978492 −0.489246 0.872146i \(-0.662728\pi\)
−0.489246 + 0.872146i \(0.662728\pi\)
\(270\) 0 0
\(271\) −24.1690 −1.46816 −0.734080 0.679063i \(-0.762386\pi\)
−0.734080 + 0.679063i \(0.762386\pi\)
\(272\) 19.4799i 1.18114i
\(273\) 0 0
\(274\) 4.27272 0.258125
\(275\) 15.3789 + 6.38582i 0.927380 + 0.385080i
\(276\) 0 0
\(277\) 23.2177i 1.39502i −0.716577 0.697508i \(-0.754292\pi\)
0.716577 0.697508i \(-0.245708\pi\)
\(278\) 2.73453i 0.164006i
\(279\) 0 0
\(280\) 0 0
\(281\) −12.4472 −0.742538 −0.371269 0.928525i \(-0.621077\pi\)
−0.371269 + 0.928525i \(0.621077\pi\)
\(282\) 0 0
\(283\) 8.66775i 0.515244i 0.966246 + 0.257622i \(0.0829390\pi\)
−0.966246 + 0.257622i \(0.917061\pi\)
\(284\) 7.22967 0.429002
\(285\) 0 0
\(286\) 4.35173 0.257323
\(287\) 0 0
\(288\) 0 0
\(289\) −13.7752 −0.810306
\(290\) 0.0149057 0.0747661i 0.000875295 0.00439042i
\(291\) 0 0
\(292\) 4.51583i 0.264269i
\(293\) 27.0063i 1.57772i −0.614571 0.788862i \(-0.710671\pi\)
0.614571 0.788862i \(-0.289329\pi\)
\(294\) 0 0
\(295\) −3.57467 0.712664i −0.208125 0.0414929i
\(296\) −8.73000 −0.507421
\(297\) 0 0
\(298\) 3.26702i 0.189253i
\(299\) −34.7144 −2.00758
\(300\) 0 0
\(301\) 0 0
\(302\) 2.56888i 0.147822i
\(303\) 0 0
\(304\) −5.81928 −0.333759
\(305\) −16.0478 3.19936i −0.918893 0.183195i
\(306\) 0 0
\(307\) 2.24681i 0.128232i 0.997942 + 0.0641161i \(0.0204228\pi\)
−0.997942 + 0.0641161i \(0.979577\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.786409 + 3.94457i −0.0446650 + 0.224036i
\(311\) 28.5987 1.62169 0.810843 0.585264i \(-0.199009\pi\)
0.810843 + 0.585264i \(0.199009\pi\)
\(312\) 0 0
\(313\) 13.3285i 0.753374i 0.926341 + 0.376687i \(0.122937\pi\)
−0.926341 + 0.376687i \(0.877063\pi\)
\(314\) −0.961518 −0.0542616
\(315\) 0 0
\(316\) 22.8948 1.28794
\(317\) 29.1925i 1.63962i 0.572638 + 0.819808i \(0.305920\pi\)
−0.572638 + 0.819808i \(0.694080\pi\)
\(318\) 0 0
\(319\) −0.395175 −0.0221255
\(320\) −13.3463 2.66079i −0.746082 0.148743i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.19357i 0.511544i
\(324\) 0 0
\(325\) −8.71963 + 20.9993i −0.483678 + 1.16483i
\(326\) 4.52723 0.250740
\(327\) 0 0
\(328\) 0.0790069i 0.00436243i
\(329\) 0 0
\(330\) 0 0
\(331\) −24.8915 −1.36816 −0.684080 0.729407i \(-0.739796\pi\)
−0.684080 + 0.729407i \(0.739796\pi\)
\(332\) 2.34715i 0.128817i
\(333\) 0 0
\(334\) 6.49211 0.355232
\(335\) −1.32735 + 6.65789i −0.0725209 + 0.363759i
\(336\) 0 0
\(337\) 4.72659i 0.257474i −0.991679 0.128737i \(-0.958908\pi\)
0.991679 0.128737i \(-0.0410923\pi\)
\(338\) 2.20677i 0.120033i
\(339\) 0 0
\(340\) −4.65042 + 23.3262i −0.252204 + 1.26504i
\(341\) 20.8489 1.12903
\(342\) 0 0
\(343\) 0 0
\(344\) 3.29785 0.177808
\(345\) 0 0
\(346\) 2.44988 0.131707
\(347\) 14.1583i 0.760058i −0.924975 0.380029i \(-0.875914\pi\)
0.924975 0.380029i \(-0.124086\pi\)
\(348\) 0 0
\(349\) 5.04930 0.270283 0.135141 0.990826i \(-0.456851\pi\)
0.135141 + 0.990826i \(0.456851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.8578i 0.578721i
\(353\) 16.0985i 0.856836i −0.903581 0.428418i \(-0.859071\pi\)
0.903581 0.428418i \(-0.140929\pi\)
\(354\) 0 0
\(355\) −8.26834 1.64842i −0.438838 0.0874889i
\(356\) 24.9270 1.32113
\(357\) 0 0
\(358\) 3.38499i 0.178902i
\(359\) 0.306482 0.0161755 0.00808776 0.999967i \(-0.497426\pi\)
0.00808776 + 0.999967i \(0.497426\pi\)
\(360\) 0 0
\(361\) −16.2536 −0.855451
\(362\) 2.61179i 0.137273i
\(363\) 0 0
\(364\) 0 0
\(365\) −1.02964 + 5.16461i −0.0538940 + 0.270328i
\(366\) 0 0
\(367\) 23.6497i 1.23451i 0.786765 + 0.617253i \(0.211754\pi\)
−0.786765 + 0.617253i \(0.788246\pi\)
\(368\) 26.8052i 1.39732i
\(369\) 0 0
\(370\) 4.88690 + 0.974276i 0.254058 + 0.0506502i
\(371\) 0 0
\(372\) 0 0
\(373\) 18.8377i 0.975381i −0.873016 0.487691i \(-0.837839\pi\)
0.873016 0.487691i \(-0.162161\pi\)
\(374\) −5.30867 −0.274505
\(375\) 0 0
\(376\) 7.18801 0.370694
\(377\) 0.539598i 0.0277907i
\(378\) 0 0
\(379\) −14.2534 −0.732147 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(380\) 6.96829 + 1.38923i 0.357466 + 0.0712662i
\(381\) 0 0
\(382\) 5.88914i 0.301315i
\(383\) 25.0564i 1.28032i 0.768240 + 0.640161i \(0.221133\pi\)
−0.768240 + 0.640161i \(0.778867\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.45470 0.124941
\(387\) 0 0
\(388\) 5.83488i 0.296221i
\(389\) −13.4718 −0.683047 −0.341524 0.939873i \(-0.610943\pi\)
−0.341524 + 0.939873i \(0.610943\pi\)
\(390\) 0 0
\(391\) 42.3480 2.14163
\(392\) 0 0
\(393\) 0 0
\(394\) 3.96770 0.199890
\(395\) −26.1841 5.22019i −1.31746 0.262656i
\(396\) 0 0
\(397\) 18.4484i 0.925897i 0.886385 + 0.462948i \(0.153209\pi\)
−0.886385 + 0.462948i \(0.846791\pi\)
\(398\) 1.08929i 0.0546010i
\(399\) 0 0
\(400\) 16.2149 + 6.73298i 0.810745 + 0.336649i
\(401\) −25.4185 −1.26934 −0.634670 0.772783i \(-0.718864\pi\)
−0.634670 + 0.772783i \(0.718864\pi\)
\(402\) 0 0
\(403\) 28.4685i 1.41812i
\(404\) 30.7550 1.53012
\(405\) 0 0
\(406\) 0 0
\(407\) 25.8296i 1.28033i
\(408\) 0 0
\(409\) −18.7311 −0.926195 −0.463097 0.886307i \(-0.653262\pi\)
−0.463097 + 0.886307i \(0.653262\pi\)
\(410\) −0.00881724 + 0.0442267i −0.000435453 + 0.00218420i
\(411\) 0 0
\(412\) 10.1469i 0.499903i
\(413\) 0 0
\(414\) 0 0
\(415\) 0.535168 2.68436i 0.0262704 0.131770i
\(416\) 14.8259 0.726900
\(417\) 0 0
\(418\) 1.58588i 0.0775677i
\(419\) −2.04745 −0.100024 −0.0500121 0.998749i \(-0.515926\pi\)
−0.0500121 + 0.998749i \(0.515926\pi\)
\(420\) 0 0
\(421\) −16.0512 −0.782287 −0.391144 0.920330i \(-0.627920\pi\)
−0.391144 + 0.920330i \(0.627920\pi\)
\(422\) 0.0328759i 0.00160037i
\(423\) 0 0
\(424\) −0.832729 −0.0404409
\(425\) 10.6371 25.6170i 0.515973 1.24261i
\(426\) 0 0
\(427\) 0 0
\(428\) 9.89727i 0.478403i
\(429\) 0 0
\(430\) −1.84608 0.368044i −0.0890259 0.0177486i
\(431\) −36.6126 −1.76357 −0.881784 0.471654i \(-0.843657\pi\)
−0.881784 + 0.471654i \(0.843657\pi\)
\(432\) 0 0
\(433\) 18.0047i 0.865252i 0.901574 + 0.432626i \(0.142413\pi\)
−0.901574 + 0.432626i \(0.857587\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.21417 −0.297605
\(437\) 12.6508i 0.605168i
\(438\) 0 0
\(439\) −19.3746 −0.924700 −0.462350 0.886697i \(-0.652994\pi\)
−0.462350 + 0.886697i \(0.652994\pi\)
\(440\) −1.63892 + 8.22070i −0.0781324 + 0.391907i
\(441\) 0 0
\(442\) 7.24881i 0.344791i
\(443\) 16.4424i 0.781203i 0.920560 + 0.390602i \(0.127733\pi\)
−0.920560 + 0.390602i \(0.872267\pi\)
\(444\) 0 0
\(445\) −28.5082 5.68353i −1.35142 0.269425i
\(446\) −2.26039 −0.107033
\(447\) 0 0
\(448\) 0 0
\(449\) −32.7245 −1.54436 −0.772182 0.635401i \(-0.780835\pi\)
−0.772182 + 0.635401i \(0.780835\pi\)
\(450\) 0 0
\(451\) 0.233759 0.0110073
\(452\) 24.2763i 1.14186i
\(453\) 0 0
\(454\) −2.57989 −0.121080
\(455\) 0 0
\(456\) 0 0
\(457\) 37.4303i 1.75092i 0.483293 + 0.875459i \(0.339441\pi\)
−0.483293 + 0.875459i \(0.660559\pi\)
\(458\) 1.46142i 0.0682878i
\(459\) 0 0
\(460\) 6.39918 32.0978i 0.298363 1.49657i
\(461\) 28.3604 1.32088 0.660438 0.750881i \(-0.270371\pi\)
0.660438 + 0.750881i \(0.270371\pi\)
\(462\) 0 0
\(463\) 7.20833i 0.334999i −0.985872 0.167500i \(-0.946431\pi\)
0.985872 0.167500i \(-0.0535693\pi\)
\(464\) −0.416658 −0.0193429
\(465\) 0 0
\(466\) −6.26917 −0.290414
\(467\) 12.0790i 0.558950i −0.960153 0.279475i \(-0.909840\pi\)
0.960153 0.279475i \(-0.0901604\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.02372 0.802189i −0.185601 0.0370022i
\(471\) 0 0
\(472\) 1.83488i 0.0844570i
\(473\) 9.75742i 0.448647i
\(474\) 0 0
\(475\) −7.65266 3.17764i −0.351128 0.145800i
\(476\) 0 0
\(477\) 0 0
\(478\) 2.14038i 0.0978987i
\(479\) −20.1417 −0.920298 −0.460149 0.887842i \(-0.652204\pi\)
−0.460149 + 0.887842i \(0.652204\pi\)
\(480\) 0 0
\(481\) 35.2695 1.60815
\(482\) 6.94657i 0.316408i
\(483\) 0 0
\(484\) 0.175495 0.00797705
\(485\) −1.33039 + 6.67316i −0.0604101 + 0.303013i
\(486\) 0 0
\(487\) 39.9396i 1.80984i 0.425584 + 0.904919i \(0.360069\pi\)
−0.425584 + 0.904919i \(0.639931\pi\)
\(488\) 8.23731i 0.372886i
\(489\) 0 0
\(490\) 0 0
\(491\) 31.5989 1.42604 0.713019 0.701145i \(-0.247327\pi\)
0.713019 + 0.701145i \(0.247327\pi\)
\(492\) 0 0
\(493\) 0.658255i 0.0296463i
\(494\) −2.16546 −0.0974286
\(495\) 0 0
\(496\) 21.9824 0.987037
\(497\) 0 0
\(498\) 0 0
\(499\) −39.7859 −1.78106 −0.890530 0.454924i \(-0.849666\pi\)
−0.890530 + 0.454924i \(0.849666\pi\)
\(500\) −17.8092 11.9334i −0.796450 0.533676i
\(501\) 0 0
\(502\) 1.72459i 0.0769722i
\(503\) 12.8734i 0.573995i −0.957931 0.286997i \(-0.907343\pi\)
0.957931 0.286997i \(-0.0926571\pi\)
\(504\) 0 0
\(505\) −35.1735 7.01237i −1.56520 0.312046i
\(506\) 7.30496 0.324745
\(507\) 0 0
\(508\) 31.7289i 1.40774i
\(509\) −33.3961 −1.48026 −0.740128 0.672466i \(-0.765235\pi\)
−0.740128 + 0.672466i \(0.765235\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 19.3531i 0.855296i
\(513\) 0 0
\(514\) −2.10731 −0.0929493
\(515\) −2.31357 + 11.6047i −0.101948 + 0.511364i
\(516\) 0 0
\(517\) 21.2673i 0.935335i
\(518\) 0 0
\(519\) 0 0
\(520\) −11.2251 2.23789i −0.492253 0.0981379i
\(521\) 13.5518 0.593714 0.296857 0.954922i \(-0.404061\pi\)
0.296857 + 0.954922i \(0.404061\pi\)
\(522\) 0 0
\(523\) 20.2133i 0.883866i −0.897048 0.441933i \(-0.854293\pi\)
0.897048 0.441933i \(-0.145707\pi\)
\(524\) −10.1583 −0.443768
\(525\) 0 0
\(526\) −2.72616 −0.118866
\(527\) 34.7287i 1.51281i
\(528\) 0 0
\(529\) −35.2727 −1.53360
\(530\) 0.466147 + 0.0929333i 0.0202481 + 0.00403677i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.319190i 0.0138257i
\(534\) 0 0
\(535\) 2.25665 11.3192i 0.0975635 0.489371i
\(536\) −3.41749 −0.147613
\(537\) 0 0
\(538\) 4.61130i 0.198807i
\(539\) 0 0
\(540\) 0 0
\(541\) −32.9708 −1.41752 −0.708762 0.705447i \(-0.750746\pi\)
−0.708762 + 0.705447i \(0.750746\pi\)
\(542\) 6.94461i 0.298297i
\(543\) 0 0
\(544\) −18.0861 −0.775436
\(545\) 7.10694 + 1.41688i 0.304428 + 0.0606923i
\(546\) 0 0
\(547\) 24.6221i 1.05277i 0.850248 + 0.526383i \(0.176452\pi\)
−0.850248 + 0.526383i \(0.823548\pi\)
\(548\) 28.5126i 1.21800i
\(549\) 0 0
\(550\) 1.83488 4.41890i 0.0782394 0.188422i
\(551\) 0.196643 0.00837725
\(552\) 0 0
\(553\) 0 0
\(554\) −6.67127 −0.283435
\(555\) 0 0
\(556\) −18.2480 −0.773887
\(557\) 23.9942i 1.01667i 0.861160 + 0.508334i \(0.169738\pi\)
−0.861160 + 0.508334i \(0.830262\pi\)
\(558\) 0 0
\(559\) −13.3234 −0.563521
\(560\) 0 0
\(561\) 0 0
\(562\) 3.57653i 0.150867i
\(563\) 0.226496i 0.00954567i 0.999989 + 0.00477284i \(0.00151925\pi\)
−0.999989 + 0.00477284i \(0.998481\pi\)
\(564\) 0 0
\(565\) −5.53517 + 27.7640i −0.232866 + 1.16804i
\(566\) 2.49056 0.104686
\(567\) 0 0
\(568\) 4.24413i 0.178080i
\(569\) −12.8055 −0.536835 −0.268417 0.963303i \(-0.586501\pi\)
−0.268417 + 0.963303i \(0.586501\pi\)
\(570\) 0 0
\(571\) −1.56030 −0.0652965 −0.0326482 0.999467i \(-0.510394\pi\)
−0.0326482 + 0.999467i \(0.510394\pi\)
\(572\) 29.0398i 1.21421i
\(573\) 0 0
\(574\) 0 0
\(575\) −14.6371 + 35.2502i −0.610408 + 1.47003i
\(576\) 0 0
\(577\) 43.6497i 1.81716i −0.417709 0.908581i \(-0.637167\pi\)
0.417709 0.908581i \(-0.362833\pi\)
\(578\) 3.95811i 0.164636i
\(579\) 0 0
\(580\) 0.498926 + 0.0994684i 0.0207168 + 0.00413020i
\(581\) 0 0
\(582\) 0 0
\(583\) 2.46381i 0.102041i
\(584\) −2.65099 −0.109699
\(585\) 0 0
\(586\) −7.75987 −0.320557
\(587\) 13.6961i 0.565297i 0.959224 + 0.282648i \(0.0912129\pi\)
−0.959224 + 0.282648i \(0.908787\pi\)
\(588\) 0 0
\(589\) −10.3746 −0.427479
\(590\) −0.204774 + 1.02713i −0.00843041 + 0.0422863i
\(591\) 0 0
\(592\) 27.2338i 1.11930i
\(593\) 9.15490i 0.375947i −0.982174 0.187973i \(-0.939808\pi\)
0.982174 0.187973i \(-0.0601919\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 21.8014 0.893018
\(597\) 0 0
\(598\) 9.97468i 0.407895i
\(599\) 40.2736 1.64553 0.822767 0.568379i \(-0.192429\pi\)
0.822767 + 0.568379i \(0.192429\pi\)
\(600\) 0 0
\(601\) 8.82450 0.359959 0.179980 0.983670i \(-0.442397\pi\)
0.179980 + 0.983670i \(0.442397\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 17.1425 0.697520
\(605\) −0.200708 0.0400142i −0.00815995 0.00162681i
\(606\) 0 0
\(607\) 28.1064i 1.14080i 0.821365 + 0.570402i \(0.193213\pi\)
−0.821365 + 0.570402i \(0.806787\pi\)
\(608\) 5.40292i 0.219117i
\(609\) 0 0
\(610\) −0.919292 + 4.61110i −0.0372211 + 0.186698i
\(611\) −29.0398 −1.17482
\(612\) 0 0
\(613\) 2.11339i 0.0853592i −0.999089 0.0426796i \(-0.986411\pi\)
0.999089 0.0426796i \(-0.0135895\pi\)
\(614\) 0.645589 0.0260539
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0390i 0.726221i 0.931746 + 0.363111i \(0.118285\pi\)
−0.931746 + 0.363111i \(0.881715\pi\)
\(618\) 0 0
\(619\) −14.6379 −0.588347 −0.294173 0.955752i \(-0.595044\pi\)
−0.294173 + 0.955752i \(0.595044\pi\)
\(620\) −26.3227 5.24783i −1.05715 0.210758i
\(621\) 0 0
\(622\) 8.21744i 0.329489i
\(623\) 0 0
\(624\) 0 0
\(625\) 17.6469 + 17.7084i 0.705874 + 0.708337i
\(626\) 3.82977 0.153068
\(627\) 0 0
\(628\) 6.41636i 0.256041i
\(629\) −43.0252 −1.71553
\(630\) 0 0
\(631\) 12.1251 0.482692 0.241346 0.970439i \(-0.422411\pi\)
0.241346 + 0.970439i \(0.422411\pi\)
\(632\) 13.4403i 0.534625i
\(633\) 0 0
\(634\) 8.38806 0.333133
\(635\) −7.23442 + 36.2873i −0.287089 + 1.44002i
\(636\) 0 0
\(637\) 0 0
\(638\) 0.113548i 0.00449540i
\(639\) 0 0
\(640\) −3.61520 + 18.1336i −0.142903 + 0.716792i
\(641\) 13.0405 0.515068 0.257534 0.966269i \(-0.417090\pi\)
0.257534 + 0.966269i \(0.417090\pi\)
\(642\) 0 0
\(643\) 27.0185i 1.06550i −0.846271 0.532752i \(-0.821158\pi\)
0.846271 0.532752i \(-0.178842\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.64164 0.103934
\(647\) 34.9790i 1.37516i 0.726106 + 0.687582i \(0.241328\pi\)
−0.726106 + 0.687582i \(0.758672\pi\)
\(648\) 0 0
\(649\) 5.42888 0.213102
\(650\) 6.03386 + 2.50546i 0.236667 + 0.0982723i
\(651\) 0 0
\(652\) 30.2109i 1.18315i
\(653\) 32.3510i 1.26599i −0.774154 0.632997i \(-0.781824\pi\)
0.774154 0.632997i \(-0.218176\pi\)
\(654\) 0 0
\(655\) 11.6177 + 2.31617i 0.453942 + 0.0905002i
\(656\) 0.246467 0.00962292
\(657\) 0 0
\(658\) 0 0
\(659\) 8.54282 0.332781 0.166390 0.986060i \(-0.446789\pi\)
0.166390 + 0.986060i \(0.446789\pi\)
\(660\) 0 0
\(661\) 30.3431 1.18021 0.590104 0.807327i \(-0.299087\pi\)
0.590104 + 0.807327i \(0.299087\pi\)
\(662\) 7.15221i 0.277979i
\(663\) 0 0
\(664\) 1.37788 0.0534722
\(665\) 0 0
\(666\) 0 0
\(667\) 0.905788i 0.0350722i
\(668\) 43.3229i 1.67621i
\(669\) 0 0
\(670\) 1.91305 + 0.381395i 0.0739076 + 0.0147346i
\(671\) 24.3719 0.940867
\(672\) 0 0
\(673\) 40.5075i 1.56145i −0.624875 0.780725i \(-0.714850\pi\)
0.624875 0.780725i \(-0.285150\pi\)
\(674\) −1.35812 −0.0523128
\(675\) 0 0
\(676\) −14.7262 −0.566391
\(677\) 23.4211i 0.900146i −0.892992 0.450073i \(-0.851398\pi\)
0.892992 0.450073i \(-0.148602\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 13.6935 + 2.73000i 0.525121 + 0.104691i
\(681\) 0 0
\(682\) 5.99065i 0.229394i
\(683\) 51.0247i 1.95241i −0.216856 0.976204i \(-0.569580\pi\)
0.216856 0.976204i \(-0.430420\pi\)
\(684\) 0 0
\(685\) 6.50107 32.6089i 0.248393 1.24592i
\(686\) 0 0
\(687\) 0 0
\(688\) 10.2879i 0.392221i
\(689\) 3.36425 0.128168
\(690\) 0 0
\(691\) −24.6115 −0.936265 −0.468133 0.883658i \(-0.655073\pi\)
−0.468133 + 0.883658i \(0.655073\pi\)
\(692\) 16.3485i 0.621476i
\(693\) 0 0
\(694\) −4.06819 −0.154426
\(695\) 20.8696 + 4.16067i 0.791630 + 0.157823i
\(696\) 0 0
\(697\) 0.389380i 0.0147488i
\(698\) 1.45084i 0.0549153i
\(699\) 0 0
\(700\) 0 0
\(701\) −25.7244 −0.971595 −0.485798 0.874071i \(-0.661471\pi\)
−0.485798 + 0.874071i \(0.661471\pi\)
\(702\) 0 0
\(703\) 12.8530i 0.484762i
\(704\) 20.2692 0.763923
\(705\) 0 0
\(706\) −4.62567 −0.174089
\(707\) 0 0
\(708\) 0 0
\(709\) −11.7096 −0.439765 −0.219882 0.975526i \(-0.570567\pi\)
−0.219882 + 0.975526i \(0.570567\pi\)
\(710\) −0.473649 + 2.37579i −0.0177757 + 0.0891618i
\(711\) 0 0
\(712\) 14.6332i 0.548403i
\(713\) 47.7883i 1.78968i
\(714\) 0 0
\(715\) 6.62129 33.2119i 0.247622 1.24205i
\(716\) −22.5886 −0.844176
\(717\) 0 0
\(718\) 0.0880634i 0.00328650i
\(719\) 12.3207 0.459486 0.229743 0.973251i \(-0.426211\pi\)
0.229743 + 0.973251i \(0.426211\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.67023i 0.173808i
\(723\) 0 0
\(724\) −17.4289 −0.647739
\(725\) −0.547926 0.227518i −0.0203495 0.00844979i
\(726\) 0 0
\(727\) 17.6540i 0.654751i −0.944894 0.327376i \(-0.893836\pi\)
0.944894 0.327376i \(-0.106164\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.48398 + 0.295853i 0.0549245 + 0.0109500i
\(731\) 16.2532 0.601148
\(732\) 0 0
\(733\) 10.0359i 0.370685i −0.982674 0.185342i \(-0.940661\pi\)
0.982674 0.185342i \(-0.0593394\pi\)
\(734\) 6.79541 0.250823
\(735\) 0 0
\(736\) 24.8873 0.917357
\(737\) 10.1114i 0.372458i
\(738\) 0 0
\(739\) 31.0720 1.14300 0.571502 0.820601i \(-0.306361\pi\)
0.571502 + 0.820601i \(0.306361\pi\)
\(740\) −6.50150 + 32.6111i −0.239000 + 1.19881i
\(741\) 0 0
\(742\) 0 0
\(743\) 4.04189i 0.148283i 0.997248 + 0.0741413i \(0.0236216\pi\)
−0.997248 + 0.0741413i \(0.976378\pi\)
\(744\) 0 0
\(745\) −24.9335 4.97087i −0.913493 0.182119i
\(746\) −5.41276 −0.198175
\(747\) 0 0
\(748\) 35.4256i 1.29529i
\(749\) 0 0
\(750\) 0 0
\(751\) 14.6945 0.536210 0.268105 0.963390i \(-0.413603\pi\)
0.268105 + 0.963390i \(0.413603\pi\)
\(752\) 22.4235i 0.817700i
\(753\) 0 0
\(754\) −0.155046 −0.00564644
\(755\) −19.6054 3.90862i −0.713512 0.142249i
\(756\) 0 0
\(757\) 29.6087i 1.07615i 0.842898 + 0.538073i \(0.180847\pi\)
−0.842898 + 0.538073i \(0.819153\pi\)
\(758\) 4.09551i 0.148756i
\(759\) 0 0
\(760\) 0.815541 4.09069i 0.0295828 0.148385i
\(761\) −14.2522 −0.516643 −0.258321 0.966059i \(-0.583169\pi\)
−0.258321 + 0.966059i \(0.583169\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −39.2992 −1.42179
\(765\) 0 0
\(766\) 7.19960 0.260132
\(767\) 7.41296i 0.267666i
\(768\) 0 0
\(769\) −20.6367 −0.744178 −0.372089 0.928197i \(-0.621358\pi\)
−0.372089 + 0.928197i \(0.621358\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16.3806i 0.589551i
\(773\) 42.5599i 1.53077i −0.643571 0.765387i \(-0.722548\pi\)
0.643571 0.765387i \(-0.277452\pi\)
\(774\) 0 0
\(775\) 28.9079 + 12.0036i 1.03840 + 0.431180i
\(776\) −3.42533 −0.122962
\(777\) 0 0
\(778\) 3.87093i 0.138780i
\(779\) −0.116321 −0.00416762
\(780\) 0 0
\(781\) 12.5572 0.449332
\(782\) 12.1681i 0.435131i
\(783\) 0 0
\(784\) 0 0
\(785\) −1.46298 + 7.33819i −0.0522159 + 0.261911i
\(786\) 0 0
\(787\) 25.1991i 0.898252i −0.893468 0.449126i \(-0.851735\pi\)
0.893468 0.449126i \(-0.148265\pi\)
\(788\) 26.4771i 0.943207i
\(789\) 0 0
\(790\) −1.49995 + 7.52363i −0.0533657 + 0.267679i
\(791\) 0 0
\(792\) 0 0
\(793\) 33.2790i 1.18177i
\(794\) 5.30088 0.188121
\(795\) 0 0
\(796\) 7.26898 0.257642
\(797\) 51.7211i 1.83205i −0.401116 0.916027i \(-0.631377\pi\)
0.401116 0.916027i \(-0.368623\pi\)
\(798\) 0 0
\(799\) 35.4256 1.25327
\(800\) 6.25124 15.0547i 0.221015 0.532266i
\(801\) 0 0
\(802\) 7.30365i 0.257901i
\(803\) 7.84354i 0.276793i
\(804\) 0 0
\(805\) 0 0
\(806\) 8.18003 0.288129
\(807\) 0 0
\(808\) 18.0546i 0.635157i
\(809\) −51.7779 −1.82041 −0.910207 0.414153i \(-0.864078\pi\)
−0.910207 + 0.414153i \(0.864078\pi\)
\(810\) 0 0
\(811\) −12.0263 −0.422299 −0.211149 0.977454i \(-0.567721\pi\)
−0.211149 + 0.977454i \(0.567721\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −7.42177 −0.260133
\(815\) 6.88831 34.5512i 0.241287 1.21028i
\(816\) 0 0
\(817\) 4.85538i 0.169868i
\(818\) 5.38212i 0.188182i
\(819\) 0 0
\(820\) −0.295132 0.0588389i −0.0103064 0.00205474i
\(821\) −8.07934 −0.281971 −0.140985 0.990012i \(-0.545027\pi\)
−0.140985 + 0.990012i \(0.545027\pi\)
\(822\) 0 0
\(823\) 5.11525i 0.178306i −0.996018 0.0891532i \(-0.971584\pi\)
0.996018 0.0891532i \(-0.0284161\pi\)
\(824\) −5.95668 −0.207511
\(825\) 0 0
\(826\) 0 0
\(827\) 0.705254i 0.0245241i 0.999925 + 0.0122620i \(0.00390323\pi\)
−0.999925 + 0.0122620i \(0.996097\pi\)
\(828\) 0 0
\(829\) 24.9581 0.866830 0.433415 0.901195i \(-0.357309\pi\)
0.433415 + 0.901195i \(0.357309\pi\)
\(830\) −0.771314 0.153773i −0.0267727 0.00533754i
\(831\) 0 0
\(832\) 27.6769i 0.959523i
\(833\) 0 0
\(834\) 0 0
\(835\) 9.87793 49.5470i 0.341840 1.71464i
\(836\) −10.5828 −0.366014
\(837\) 0 0
\(838\) 0.588305i 0.0203226i
\(839\) 11.6389 0.401819 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(840\) 0 0
\(841\) −28.9859 −0.999514
\(842\) 4.61208i 0.158943i
\(843\) 0 0
\(844\) −0.219386 −0.00755158
\(845\) 16.8418 + 3.35767i 0.579377 + 0.115507i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.59775i 0.0892071i
\(849\) 0 0
\(850\) −7.36069 3.05641i −0.252470 0.104834i
\(851\) 59.2045 2.02951
\(852\) 0 0
\(853\) 32.5996i 1.11619i 0.829778 + 0.558094i \(0.188467\pi\)
−0.829778 + 0.558094i \(0.811533\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 5.81013 0.198586
\(857\) 31.6913i 1.08255i 0.840845 + 0.541277i \(0.182059\pi\)
−0.840845 + 0.541277i \(0.817941\pi\)
\(858\) 0 0
\(859\) −43.6912 −1.49073 −0.745363 0.666659i \(-0.767724\pi\)
−0.745363 + 0.666659i \(0.767724\pi\)
\(860\) 2.45601 12.3192i 0.0837494 0.420081i
\(861\) 0 0
\(862\) 10.5201i 0.358317i
\(863\) 38.7985i 1.32072i 0.750951 + 0.660358i \(0.229595\pi\)
−0.750951 + 0.660358i \(0.770405\pi\)
\(864\) 0 0
\(865\) 3.72757 18.6972i 0.126741 0.635725i
\(866\) 5.17340 0.175799
\(867\) 0 0
\(868\) 0 0
\(869\) 39.7660 1.34897
\(870\) 0 0
\(871\) 13.8068 0.467824
\(872\) 3.64799i 0.123536i
\(873\) 0 0
\(874\) −3.63501 −0.122956
\(875\) 0 0
\(876\) 0 0
\(877\) 4.30073i 0.145225i −0.997360 0.0726127i \(-0.976866\pi\)
0.997360 0.0726127i \(-0.0231337\pi\)
\(878\) 5.56702i 0.187878i
\(879\) 0 0
\(880\) −25.6450 5.11272i −0.864493 0.172350i
\(881\) −1.29308 −0.0435650 −0.0217825 0.999763i \(-0.506934\pi\)
−0.0217825 + 0.999763i \(0.506934\pi\)
\(882\) 0 0
\(883\) 1.49533i 0.0503218i 0.999683 + 0.0251609i \(0.00800981\pi\)
−0.999683 + 0.0251609i \(0.991990\pi\)
\(884\) 48.3725 1.62694
\(885\) 0 0
\(886\) 4.72450 0.158723
\(887\) 10.0917i 0.338845i −0.985543 0.169423i \(-0.945810\pi\)
0.985543 0.169423i \(-0.0541903\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −1.63308 + 8.19142i −0.0547410 + 0.274577i
\(891\) 0 0
\(892\) 15.0840i 0.505049i
\(893\) 10.5828i 0.354140i
\(894\) 0 0
\(895\) 25.8339 + 5.15036i 0.863531 + 0.172158i
\(896\) 0 0
\(897\) 0 0
\(898\) 9.40292i 0.313780i
\(899\) −0.742818 −0.0247744
\(900\) 0 0
\(901\) −4.10404 −0.136726
\(902\) 0.0671674i 0.00223643i
\(903\) 0 0
\(904\) −14.2512 −0.473989
\(905\) 19.9329 + 3.97391i 0.662591 + 0.132097i
\(906\) 0 0
\(907\) 4.26698i 0.141683i −0.997488 0.0708414i \(-0.977432\pi\)
0.997488 0.0708414i \(-0.0225684\pi\)
\(908\) 17.2160i 0.571334i
\(909\) 0 0
\(910\) 0 0
\(911\) 28.5451 0.945742 0.472871 0.881132i \(-0.343218\pi\)
0.472871 + 0.881132i \(0.343218\pi\)
\(912\) 0 0
\(913\) 4.07677i 0.134921i
\(914\) 10.7551 0.355746
\(915\) 0 0
\(916\) −9.75231 −0.322226
\(917\) 0 0
\(918\) 0 0
\(919\) 46.5643 1.53602 0.768008 0.640440i \(-0.221248\pi\)
0.768008 + 0.640440i \(0.221248\pi\)
\(920\) −18.8428 3.75660i −0.621229 0.123851i
\(921\) 0 0
\(922\) 8.14896i 0.268372i
\(923\) 17.1464i 0.564381i
\(924\) 0 0
\(925\) 14.8711 35.8138i 0.488959 1.17755i
\(926\) −2.07121 −0.0680642
\(927\) 0 0
\(928\) 0.386846i 0.0126989i
\(929\) −7.39547 −0.242638 −0.121319 0.992614i \(-0.538712\pi\)
−0.121319 + 0.992614i \(0.538712\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 41.8352i 1.37036i
\(933\) 0 0
\(934\) −3.47073 −0.113566
\(935\) −8.07730 + 40.5151i −0.264156 + 1.32499i
\(936\) 0 0
\(937\) 44.1988i 1.44391i 0.691939 + 0.721956i \(0.256757\pi\)
−0.691939 + 0.721956i \(0.743243\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5.35314 26.8510i 0.174600 0.875781i
\(941\) 36.0359 1.17474 0.587369 0.809319i \(-0.300164\pi\)
0.587369 + 0.809319i \(0.300164\pi\)
\(942\) 0 0
\(943\) 0.535804i 0.0174482i
\(944\) 5.72401 0.186301
\(945\) 0 0
\(946\) 2.80366 0.0911548
\(947\) 34.2341i 1.11246i −0.831029 0.556229i \(-0.812248\pi\)
0.831029 0.556229i \(-0.187752\pi\)
\(948\) 0 0
\(949\) 10.7101 0.347664
\(950\) −0.913051 + 2.19888i −0.0296233 + 0.0713412i
\(951\) 0 0
\(952\) 0 0
\(953\) 30.9689i 1.00318i −0.865105 0.501591i \(-0.832748\pi\)
0.865105 0.501591i \(-0.167252\pi\)
\(954\) 0 0
\(955\) 44.9452 + 8.96050i 1.45439 + 0.289955i
\(956\) 14.2831 0.461948
\(957\) 0 0
\(958\) 5.78743i 0.186983i
\(959\) 0 0
\(960\) 0 0
\(961\) 8.19016 0.264199
\(962\) 10.1342i 0.326739i
\(963\) 0 0
\(964\) 46.3556 1.49301
\(965\) 3.73490 18.7340i 0.120231 0.603068i
\(966\) 0 0
\(967\) 21.0270i 0.676184i −0.941113 0.338092i \(-0.890218\pi\)
0.941113 0.338092i \(-0.109782\pi\)
\(968\) 0.103023i 0.00331130i
\(969\) 0 0
\(970\) 1.91744 + 0.382270i 0.0615652 + 0.0122739i
\(971\) 44.6937 1.43429 0.717144 0.696925i \(-0.245449\pi\)
0.717144 + 0.696925i \(0.245449\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 11.4761 0.367718
\(975\) 0 0
\(976\) 25.6968 0.822536
\(977\) 14.4372i 0.461886i −0.972967 0.230943i \(-0.925819\pi\)
0.972967 0.230943i \(-0.0741810\pi\)
\(978\) 0 0
\(979\) 43.2956 1.38373
\(980\) 0 0
\(981\) 0 0
\(982\) 9.07949i 0.289738i
\(983\) 16.7880i 0.535455i −0.963495 0.267727i \(-0.913727\pi\)
0.963495 0.267727i \(-0.0862727\pi\)
\(984\) 0 0
\(985\) 6.03697 30.2810i 0.192354 0.964833i
\(986\) 0.189140 0.00602345
\(987\) 0 0
\(988\) 14.4505i 0.459730i
\(989\) −22.3652 −0.711171
\(990\) 0 0
\(991\) 40.1078 1.27407 0.637033 0.770837i \(-0.280162\pi\)
0.637033 + 0.770837i \(0.280162\pi\)
\(992\) 20.4095i 0.648004i
\(993\) 0 0
\(994\) 0 0
\(995\) −8.31330 1.65738i −0.263549 0.0525425i
\(996\) 0 0
\(997\) 51.3204i 1.62533i 0.582730 + 0.812666i \(0.301985\pi\)
−0.582730 + 0.812666i \(0.698015\pi\)
\(998\) 11.4319i 0.361871i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.2.d.o.1324.4 8
3.2 odd 2 735.2.d.e.589.5 8
5.4 even 2 inner 2205.2.d.o.1324.5 8
7.3 odd 6 315.2.bf.b.289.5 16
7.5 odd 6 315.2.bf.b.109.4 16
7.6 odd 2 2205.2.d.s.1324.4 8
15.2 even 4 3675.2.a.cb.1.2 4
15.8 even 4 3675.2.a.bn.1.3 4
15.14 odd 2 735.2.d.e.589.4 8
21.2 odd 6 735.2.q.g.214.5 16
21.5 even 6 105.2.q.a.4.5 yes 16
21.11 odd 6 735.2.q.g.79.4 16
21.17 even 6 105.2.q.a.79.4 yes 16
21.20 even 2 735.2.d.d.589.5 8
35.19 odd 6 315.2.bf.b.109.5 16
35.24 odd 6 315.2.bf.b.289.4 16
35.34 odd 2 2205.2.d.s.1324.5 8
84.47 odd 6 1680.2.di.d.529.3 16
84.59 odd 6 1680.2.di.d.289.7 16
105.17 odd 12 525.2.i.h.226.3 8
105.38 odd 12 525.2.i.k.226.2 8
105.44 odd 6 735.2.q.g.214.4 16
105.47 odd 12 525.2.i.h.151.3 8
105.59 even 6 105.2.q.a.79.5 yes 16
105.62 odd 4 3675.2.a.bz.1.2 4
105.68 odd 12 525.2.i.k.151.2 8
105.74 odd 6 735.2.q.g.79.5 16
105.83 odd 4 3675.2.a.bp.1.3 4
105.89 even 6 105.2.q.a.4.4 16
105.104 even 2 735.2.d.d.589.4 8
420.59 odd 6 1680.2.di.d.289.3 16
420.299 odd 6 1680.2.di.d.529.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.4 16 105.89 even 6
105.2.q.a.4.5 yes 16 21.5 even 6
105.2.q.a.79.4 yes 16 21.17 even 6
105.2.q.a.79.5 yes 16 105.59 even 6
315.2.bf.b.109.4 16 7.5 odd 6
315.2.bf.b.109.5 16 35.19 odd 6
315.2.bf.b.289.4 16 35.24 odd 6
315.2.bf.b.289.5 16 7.3 odd 6
525.2.i.h.151.3 8 105.47 odd 12
525.2.i.h.226.3 8 105.17 odd 12
525.2.i.k.151.2 8 105.68 odd 12
525.2.i.k.226.2 8 105.38 odd 12
735.2.d.d.589.4 8 105.104 even 2
735.2.d.d.589.5 8 21.20 even 2
735.2.d.e.589.4 8 15.14 odd 2
735.2.d.e.589.5 8 3.2 odd 2
735.2.q.g.79.4 16 21.11 odd 6
735.2.q.g.79.5 16 105.74 odd 6
735.2.q.g.214.4 16 105.44 odd 6
735.2.q.g.214.5 16 21.2 odd 6
1680.2.di.d.289.3 16 420.59 odd 6
1680.2.di.d.289.7 16 84.59 odd 6
1680.2.di.d.529.3 16 84.47 odd 6
1680.2.di.d.529.7 16 420.299 odd 6
2205.2.d.o.1324.4 8 1.1 even 1 trivial
2205.2.d.o.1324.5 8 5.4 even 2 inner
2205.2.d.s.1324.4 8 7.6 odd 2
2205.2.d.s.1324.5 8 35.34 odd 2
3675.2.a.bn.1.3 4 15.8 even 4
3675.2.a.bp.1.3 4 105.83 odd 4
3675.2.a.bz.1.2 4 105.62 odd 4
3675.2.a.cb.1.2 4 15.2 even 4