Properties

Label 105.2.q.a.79.4
Level $105$
Weight $2$
Character 105.79
Analytic conductor $0.838$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,2,Mod(4,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.4
Root \(-0.556918 - 2.07845i\) of defining polynomial
Character \(\chi\) \(=\) 105.79
Dual form 105.2.q.a.4.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.248840 - 0.143668i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.958719 - 1.66055i) q^{4} +(1.47507 - 1.68052i) q^{5} +0.287336 q^{6} +(1.11487 - 2.39939i) q^{7} +1.12562i q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.608495 + 0.206261i) q^{10} +(1.66520 + 2.88421i) q^{11} +(1.66055 + 0.958719i) q^{12} -4.54754i q^{13} +(-0.622139 + 0.436894i) q^{14} +(-0.437190 + 2.19291i) q^{15} +(-1.75572 + 3.04100i) q^{16} +(-4.80431 + 2.77377i) q^{17} +(-0.248840 + 0.143668i) q^{18} +(-0.828617 + 1.43521i) q^{19} +(-4.20477 - 0.838284i) q^{20} +(0.234193 + 2.63537i) q^{21} -0.956942i q^{22} +(6.61094 + 3.81683i) q^{23} +(-0.562810 - 0.974816i) q^{24} +(-0.648315 - 4.95779i) q^{25} +(-0.653336 + 1.13161i) q^{26} +1.00000i q^{27} +(-5.05315 + 0.449051i) q^{28} +0.118657 q^{29} +(0.423842 - 0.482874i) q^{30} +(3.13010 + 5.42150i) q^{31} +(2.82342 - 1.63010i) q^{32} +(-2.88421 - 1.66520i) q^{33} +1.59401 q^{34} +(-2.38772 - 5.41284i) q^{35} -1.91744 q^{36} +(6.71665 + 3.87786i) q^{37} +(0.412386 - 0.238091i) q^{38} +(2.27377 + 3.93829i) q^{39} +(1.89163 + 1.66037i) q^{40} +0.0701896 q^{41} +(0.320341 - 0.689431i) q^{42} +2.92981i q^{43} +(3.19291 - 5.53029i) q^{44} +(-0.717839 - 2.11771i) q^{45} +(-1.09671 - 1.89956i) q^{46} +(-5.53029 - 3.19291i) q^{47} -3.51145i q^{48} +(-4.51415 - 5.35000i) q^{49} +(-0.550949 + 1.32684i) q^{50} +(2.77377 - 4.80431i) q^{51} +(-7.55142 + 4.35981i) q^{52} +(0.640682 - 0.369898i) q^{53} +(0.143668 - 0.248840i) q^{54} +(7.30326 + 1.45601i) q^{55} +(2.70080 + 1.25492i) q^{56} -1.65723i q^{57} +(-0.0295266 - 0.0170472i) q^{58} +(-0.815051 - 1.41171i) q^{59} +(4.06058 - 1.37641i) q^{60} +(3.65901 - 6.33759i) q^{61} -1.79878i q^{62} +(-1.52050 - 2.16520i) q^{63} +6.08612 q^{64} +(-7.64225 - 6.70796i) q^{65} +(0.478471 + 0.828736i) q^{66} +(-2.62934 + 1.51805i) q^{67} +(9.21197 + 5.31853i) q^{68} -7.63366 q^{69} +(-0.183490 + 1.68997i) q^{70} -3.77048 q^{71} +(0.974816 + 0.562810i) q^{72} +(2.03961 - 1.17757i) q^{73} +(-1.11425 - 1.92993i) q^{74} +(3.04035 + 3.96942i) q^{75} +3.17764 q^{76} +(8.77681 - 0.779956i) q^{77} -1.30667i q^{78} +(-5.97016 + 10.3406i) q^{79} +(2.52065 + 7.43623i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.0174660 - 0.0100840i) q^{82} +1.22411i q^{83} +(4.15163 - 2.91547i) q^{84} +(-2.42533 + 12.1653i) q^{85} +(0.420920 - 0.729054i) q^{86} +(-0.102760 + 0.0593285i) q^{87} +(-3.24652 + 1.87438i) q^{88} +(-6.50007 + 11.2585i) q^{89} +(-0.125620 + 0.630102i) q^{90} +(-10.9113 - 5.06990i) q^{91} -14.6371i q^{92} +(-5.42150 - 3.13010i) q^{93} +(0.917438 + 1.58905i) q^{94} +(1.18963 + 3.50954i) q^{95} +(-1.63010 + 2.82342i) q^{96} +3.04306i q^{97} +(0.354679 + 1.97983i) q^{98} +3.33039 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{5} - 8 q^{6} + 8 q^{9} - 4 q^{10} - 24 q^{14} - 4 q^{15} - 24 q^{19} - 8 q^{20} - 4 q^{21} - 12 q^{24} - 4 q^{25} - 12 q^{26} + 24 q^{29} - 12 q^{30} + 16 q^{31} + 16 q^{34} - 10 q^{35}+ \cdots + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.248840 0.143668i −0.175957 0.101589i 0.409435 0.912339i \(-0.365726\pi\)
−0.585392 + 0.810751i \(0.699059\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.958719 1.66055i −0.479360 0.830275i
\(5\) 1.47507 1.68052i 0.659673 0.751553i
\(6\) 0.287336 0.117304
\(7\) 1.11487 2.39939i 0.421380 0.906884i
\(8\) 1.12562i 0.397967i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.608495 + 0.206261i −0.192423 + 0.0652254i
\(11\) 1.66520 + 2.88421i 0.502076 + 0.869621i 0.999997 + 0.00239862i \(0.000763504\pi\)
−0.497921 + 0.867222i \(0.665903\pi\)
\(12\) 1.66055 + 0.958719i 0.479360 + 0.276758i
\(13\) 4.54754i 1.26126i −0.776083 0.630630i \(-0.782796\pi\)
0.776083 0.630630i \(-0.217204\pi\)
\(14\) −0.622139 + 0.436894i −0.166274 + 0.116765i
\(15\) −0.437190 + 2.19291i −0.112882 + 0.566208i
\(16\) −1.75572 + 3.04100i −0.438931 + 0.760250i
\(17\) −4.80431 + 2.77377i −1.16522 + 0.672738i −0.952549 0.304386i \(-0.901549\pi\)
−0.212668 + 0.977125i \(0.568215\pi\)
\(18\) −0.248840 + 0.143668i −0.0586522 + 0.0338629i
\(19\) −0.828617 + 1.43521i −0.190098 + 0.329259i −0.945282 0.326253i \(-0.894214\pi\)
0.755185 + 0.655512i \(0.227547\pi\)
\(20\) −4.20477 0.838284i −0.940216 0.187446i
\(21\) 0.234193 + 2.63537i 0.0511052 + 0.575084i
\(22\) 0.956942i 0.204021i
\(23\) 6.61094 + 3.81683i 1.37848 + 0.795864i 0.991976 0.126425i \(-0.0403505\pi\)
0.386500 + 0.922289i \(0.373684\pi\)
\(24\) −0.562810 0.974816i −0.114883 0.198983i
\(25\) −0.648315 4.95779i −0.129663 0.991558i
\(26\) −0.653336 + 1.13161i −0.128130 + 0.221927i
\(27\) 1.00000i 0.192450i
\(28\) −5.05315 + 0.449051i −0.954956 + 0.0848627i
\(29\) 0.118657 0.0220341 0.0110170 0.999939i \(-0.496493\pi\)
0.0110170 + 0.999939i \(0.496493\pi\)
\(30\) 0.423842 0.482874i 0.0773825 0.0881604i
\(31\) 3.13010 + 5.42150i 0.562183 + 0.973729i 0.997306 + 0.0733583i \(0.0233717\pi\)
−0.435123 + 0.900371i \(0.643295\pi\)
\(32\) 2.82342 1.63010i 0.499115 0.288164i
\(33\) −2.88421 1.66520i −0.502076 0.289874i
\(34\) 1.59401 0.273370
\(35\) −2.38772 5.41284i −0.403599 0.914936i
\(36\) −1.91744 −0.319573
\(37\) 6.71665 + 3.87786i 1.10421 + 0.637516i 0.937324 0.348460i \(-0.113295\pi\)
0.166887 + 0.985976i \(0.446628\pi\)
\(38\) 0.412386 0.238091i 0.0668979 0.0386235i
\(39\) 2.27377 + 3.93829i 0.364095 + 0.630630i
\(40\) 1.89163 + 1.66037i 0.299093 + 0.262528i
\(41\) 0.0701896 0.0109618 0.00548089 0.999985i \(-0.498255\pi\)
0.00548089 + 0.999985i \(0.498255\pi\)
\(42\) 0.320341 0.689431i 0.0494297 0.106381i
\(43\) 2.92981i 0.446792i 0.974728 + 0.223396i \(0.0717143\pi\)
−0.974728 + 0.223396i \(0.928286\pi\)
\(44\) 3.19291 5.53029i 0.481350 0.833722i
\(45\) −0.717839 2.11771i −0.107009 0.315690i
\(46\) −1.09671 1.89956i −0.161701 0.280075i
\(47\) −5.53029 3.19291i −0.806675 0.465734i 0.0391247 0.999234i \(-0.487543\pi\)
−0.845800 + 0.533500i \(0.820876\pi\)
\(48\) 3.51145i 0.506833i
\(49\) −4.51415 5.35000i −0.644879 0.764285i
\(50\) −0.550949 + 1.32684i −0.0779159 + 0.187643i
\(51\) 2.77377 4.80431i 0.388406 0.672738i
\(52\) −7.55142 + 4.35981i −1.04719 + 0.604597i
\(53\) 0.640682 0.369898i 0.0880044 0.0508094i −0.455352 0.890311i \(-0.650487\pi\)
0.543356 + 0.839502i \(0.317153\pi\)
\(54\) 0.143668 0.248840i 0.0195507 0.0338629i
\(55\) 7.30326 + 1.45601i 0.984772 + 0.196329i
\(56\) 2.70080 + 1.25492i 0.360910 + 0.167695i
\(57\) 1.65723i 0.219506i
\(58\) −0.0295266 0.0170472i −0.00387704 0.00223841i
\(59\) −0.815051 1.41171i −0.106111 0.183789i 0.808081 0.589072i \(-0.200506\pi\)
−0.914191 + 0.405283i \(0.867173\pi\)
\(60\) 4.06058 1.37641i 0.524219 0.177694i
\(61\) 3.65901 6.33759i 0.468488 0.811446i −0.530863 0.847458i \(-0.678132\pi\)
0.999351 + 0.0360120i \(0.0114655\pi\)
\(62\) 1.79878i 0.228445i
\(63\) −1.52050 2.16520i −0.191565 0.272789i
\(64\) 6.08612 0.760765
\(65\) −7.64225 6.70796i −0.947904 0.832020i
\(66\) 0.478471 + 0.828736i 0.0588957 + 0.102010i
\(67\) −2.62934 + 1.51805i −0.321224 + 0.185459i −0.651938 0.758272i \(-0.726044\pi\)
0.330714 + 0.943731i \(0.392711\pi\)
\(68\) 9.21197 + 5.31853i 1.11712 + 0.644967i
\(69\) −7.63366 −0.918984
\(70\) −0.183490 + 1.68997i −0.0219312 + 0.201990i
\(71\) −3.77048 −0.447474 −0.223737 0.974650i \(-0.571826\pi\)
−0.223737 + 0.974650i \(0.571826\pi\)
\(72\) 0.974816 + 0.562810i 0.114883 + 0.0663278i
\(73\) 2.03961 1.17757i 0.238718 0.137824i −0.375869 0.926673i \(-0.622656\pi\)
0.614588 + 0.788849i \(0.289322\pi\)
\(74\) −1.11425 1.92993i −0.129529 0.224350i
\(75\) 3.04035 + 3.96942i 0.351070 + 0.458349i
\(76\) 3.17764 0.364501
\(77\) 8.77681 0.779956i 1.00021 0.0888843i
\(78\) 1.30667i 0.147951i
\(79\) −5.97016 + 10.3406i −0.671696 + 1.16341i 0.305727 + 0.952119i \(0.401101\pi\)
−0.977423 + 0.211292i \(0.932233\pi\)
\(80\) 2.52065 + 7.43623i 0.281817 + 0.831396i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −0.0174660 0.0100840i −0.00192880 0.00111359i
\(83\) 1.22411i 0.134363i 0.997741 + 0.0671817i \(0.0214007\pi\)
−0.997741 + 0.0671817i \(0.978599\pi\)
\(84\) 4.15163 2.91547i 0.452980 0.318103i
\(85\) −2.42533 + 12.1653i −0.263064 + 1.31951i
\(86\) 0.420920 0.729054i 0.0453889 0.0786160i
\(87\) −0.102760 + 0.0593285i −0.0110170 + 0.00636069i
\(88\) −3.24652 + 1.87438i −0.346080 + 0.199810i
\(89\) −6.50007 + 11.2585i −0.689006 + 1.19339i 0.283153 + 0.959075i \(0.408619\pi\)
−0.972160 + 0.234319i \(0.924714\pi\)
\(90\) −0.125620 + 0.630102i −0.0132415 + 0.0664186i
\(91\) −10.9113 5.06990i −1.14382 0.531470i
\(92\) 14.6371i 1.52602i
\(93\) −5.42150 3.13010i −0.562183 0.324576i
\(94\) 0.917438 + 1.58905i 0.0946265 + 0.163898i
\(95\) 1.18963 + 3.50954i 0.122053 + 0.360072i
\(96\) −1.63010 + 2.82342i −0.166372 + 0.288164i
\(97\) 3.04306i 0.308976i 0.987995 + 0.154488i \(0.0493728\pi\)
−0.987995 + 0.154488i \(0.950627\pi\)
\(98\) 0.354679 + 1.97983i 0.0358280 + 0.199993i
\(99\) 3.33039 0.334717
\(100\) −7.61111 + 5.82969i −0.761111 + 0.582969i
\(101\) −8.01983 13.8907i −0.798002 1.38218i −0.920915 0.389763i \(-0.872557\pi\)
0.122913 0.992417i \(-0.460776\pi\)
\(102\) −1.38045 + 0.797004i −0.136685 + 0.0789151i
\(103\) −4.58293 2.64596i −0.451570 0.260714i 0.256923 0.966432i \(-0.417291\pi\)
−0.708493 + 0.705718i \(0.750625\pi\)
\(104\) 5.11880 0.501940
\(105\) 4.77425 + 3.49379i 0.465919 + 0.340959i
\(106\) −0.212570 −0.0206466
\(107\) 4.47018 + 2.58086i 0.432148 + 0.249501i 0.700261 0.713886i \(-0.253067\pi\)
−0.268113 + 0.963387i \(0.586400\pi\)
\(108\) 1.66055 0.958719i 0.159787 0.0922528i
\(109\) 1.62043 + 2.80668i 0.155209 + 0.268831i 0.933135 0.359525i \(-0.117061\pi\)
−0.777926 + 0.628356i \(0.783728\pi\)
\(110\) −1.60816 1.41156i −0.153332 0.134587i
\(111\) −7.75572 −0.736141
\(112\) 5.33915 + 7.60297i 0.504503 + 0.718413i
\(113\) 12.6608i 1.19103i 0.803345 + 0.595513i \(0.203051\pi\)
−0.803345 + 0.595513i \(0.796949\pi\)
\(114\) −0.238091 + 0.412386i −0.0222993 + 0.0386235i
\(115\) 16.1659 5.47973i 1.50748 0.510988i
\(116\) −0.113759 0.197036i −0.0105622 0.0182943i
\(117\) −3.93829 2.27377i −0.364095 0.210210i
\(118\) 0.468387i 0.0431185i
\(119\) 1.29920 + 14.6198i 0.119097 + 1.34019i
\(120\) −2.46839 0.492110i −0.225332 0.0449233i
\(121\) −0.0457629 + 0.0792637i −0.00416027 + 0.00720579i
\(122\) −1.82102 + 1.05136i −0.164867 + 0.0951861i
\(123\) −0.0607860 + 0.0350948i −0.00548089 + 0.00316439i
\(124\) 6.00178 10.3954i 0.538976 0.933533i
\(125\) −9.28799 6.22360i −0.830743 0.556656i
\(126\) 0.0672922 + 0.757235i 0.00599486 + 0.0674599i
\(127\) 16.5475i 1.46836i −0.678957 0.734178i \(-0.737568\pi\)
0.678957 0.734178i \(-0.262432\pi\)
\(128\) −7.16131 4.13458i −0.632976 0.365449i
\(129\) −1.46491 2.53729i −0.128978 0.223396i
\(130\) 0.937979 + 2.76715i 0.0822662 + 0.242696i
\(131\) 2.64893 4.58808i 0.231438 0.400862i −0.726794 0.686856i \(-0.758990\pi\)
0.958231 + 0.285994i \(0.0923237\pi\)
\(132\) 6.38582i 0.555815i
\(133\) 2.51982 + 3.58824i 0.218496 + 0.311140i
\(134\) 0.872379 0.0753621
\(135\) 1.68052 + 1.47507i 0.144636 + 0.126954i
\(136\) −3.12221 5.40783i −0.267727 0.463718i
\(137\) −12.8779 + 7.43507i −1.10023 + 0.635221i −0.936283 0.351247i \(-0.885758\pi\)
−0.163952 + 0.986468i \(0.552424\pi\)
\(138\) 1.89956 + 1.09671i 0.161701 + 0.0933583i
\(139\) 9.51685 0.807209 0.403605 0.914934i \(-0.367757\pi\)
0.403605 + 0.914934i \(0.367757\pi\)
\(140\) −6.69913 + 9.15432i −0.566180 + 0.773681i
\(141\) 6.38582 0.537783
\(142\) 0.938247 + 0.541697i 0.0787359 + 0.0454582i
\(143\) 13.1160 7.57255i 1.09682 0.633249i
\(144\) 1.75572 + 3.04100i 0.146310 + 0.253417i
\(145\) 0.175028 0.199406i 0.0145353 0.0165598i
\(146\) −0.676716 −0.0560054
\(147\) 6.58437 + 2.37616i 0.543069 + 0.195982i
\(148\) 14.8711i 1.22240i
\(149\) 5.68502 9.84675i 0.465735 0.806677i −0.533499 0.845801i \(-0.679123\pi\)
0.999234 + 0.0391236i \(0.0124566\pi\)
\(150\) −0.186284 1.42455i −0.0152100 0.116314i
\(151\) −4.47016 7.74255i −0.363777 0.630080i 0.624802 0.780783i \(-0.285180\pi\)
−0.988579 + 0.150703i \(0.951846\pi\)
\(152\) −1.61550 0.932708i −0.131034 0.0756526i
\(153\) 5.54754i 0.448492i
\(154\) −2.29608 1.06686i −0.185023 0.0859701i
\(155\) 13.7281 + 2.73690i 1.10267 + 0.219833i
\(156\) 4.35981 7.55142i 0.349064 0.604597i
\(157\) 2.89800 1.67316i 0.231286 0.133533i −0.379879 0.925036i \(-0.624035\pi\)
0.611165 + 0.791503i \(0.290701\pi\)
\(158\) 2.97123 1.71544i 0.236379 0.136473i
\(159\) −0.369898 + 0.640682i −0.0293348 + 0.0508094i
\(160\) 1.42533 7.14934i 0.112682 0.565205i
\(161\) 16.5284 11.6070i 1.30262 0.914758i
\(162\) 0.287336i 0.0225752i
\(163\) −13.6450 7.87793i −1.06876 0.617047i −0.140916 0.990022i \(-0.545005\pi\)
−0.927842 + 0.372974i \(0.878338\pi\)
\(164\) −0.0672922 0.116553i −0.00525463 0.00910129i
\(165\) −7.05282 + 2.39069i −0.549061 + 0.186115i
\(166\) 0.175865 0.304608i 0.0136498 0.0236421i
\(167\) 22.5942i 1.74839i 0.485577 + 0.874194i \(0.338610\pi\)
−0.485577 + 0.874194i \(0.661390\pi\)
\(168\) −2.96642 + 0.263613i −0.228864 + 0.0203382i
\(169\) −7.68012 −0.590779
\(170\) 2.35128 2.67877i 0.180335 0.205452i
\(171\) 0.828617 + 1.43521i 0.0633659 + 0.109753i
\(172\) 4.86510 2.80887i 0.370960 0.214174i
\(173\) −7.38391 4.26310i −0.561388 0.324118i 0.192314 0.981333i \(-0.438401\pi\)
−0.753703 + 0.657216i \(0.771734\pi\)
\(174\) 0.0340944 0.00258469
\(175\) −12.6185 3.97171i −0.953866 0.300233i
\(176\) −11.6945 −0.881506
\(177\) 1.41171 + 0.815051i 0.106111 + 0.0612630i
\(178\) 3.23496 1.86770i 0.242470 0.139990i
\(179\) −5.89031 10.2023i −0.440262 0.762557i 0.557446 0.830213i \(-0.311781\pi\)
−0.997709 + 0.0676564i \(0.978448\pi\)
\(180\) −2.82836 + 3.22230i −0.210814 + 0.240176i
\(181\) 9.08967 0.675630 0.337815 0.941213i \(-0.390312\pi\)
0.337815 + 0.941213i \(0.390312\pi\)
\(182\) 1.98679 + 2.82920i 0.147271 + 0.209714i
\(183\) 7.31802i 0.540964i
\(184\) −4.29630 + 7.44141i −0.316727 + 0.548588i
\(185\) 16.4244 5.56736i 1.20755 0.409320i
\(186\) 0.899391 + 1.55779i 0.0659465 + 0.114223i
\(187\) −16.0002 9.23775i −1.17005 0.675531i
\(188\) 12.2444i 0.893016i
\(189\) 2.39939 + 1.11487i 0.174530 + 0.0810945i
\(190\) 0.208182 1.04423i 0.0151031 0.0757562i
\(191\) −10.2478 + 17.7498i −0.741507 + 1.28433i 0.210302 + 0.977637i \(0.432555\pi\)
−0.951809 + 0.306692i \(0.900778\pi\)
\(192\) −5.27073 + 3.04306i −0.380382 + 0.219614i
\(193\) 7.39842 4.27148i 0.532550 0.307468i −0.209504 0.977808i \(-0.567185\pi\)
0.742054 + 0.670340i \(0.233852\pi\)
\(194\) 0.437190 0.757235i 0.0313884 0.0543663i
\(195\) 9.97236 + 1.98814i 0.714135 + 0.142374i
\(196\) −4.55613 + 12.6251i −0.325438 + 0.901794i
\(197\) 13.8086i 0.983820i −0.870646 0.491910i \(-0.836299\pi\)
0.870646 0.491910i \(-0.163701\pi\)
\(198\) −0.828736 0.478471i −0.0588957 0.0340034i
\(199\) 1.89549 + 3.28309i 0.134368 + 0.232732i 0.925356 0.379100i \(-0.123766\pi\)
−0.790988 + 0.611832i \(0.790433\pi\)
\(200\) 5.58059 0.729756i 0.394607 0.0516016i
\(201\) 1.51805 2.62934i 0.107075 0.185459i
\(202\) 4.60877i 0.324272i
\(203\) 0.132287 0.284705i 0.00928471 0.0199824i
\(204\) −10.6371 −0.744744
\(205\) 0.103535 0.117955i 0.00723119 0.00823836i
\(206\) 0.760278 + 1.31684i 0.0529711 + 0.0917486i
\(207\) 6.61094 3.81683i 0.459492 0.265288i
\(208\) 13.8291 + 7.98422i 0.958874 + 0.553606i
\(209\) −5.51924 −0.381774
\(210\) −0.686078 1.55530i −0.0473439 0.107326i
\(211\) −0.114416 −0.00787674 −0.00393837 0.999992i \(-0.501254\pi\)
−0.00393837 + 0.999992i \(0.501254\pi\)
\(212\) −1.22847 0.709256i −0.0843715 0.0487119i
\(213\) 3.26533 1.88524i 0.223737 0.129175i
\(214\) −0.741573 1.28444i −0.0506929 0.0878026i
\(215\) 4.92361 + 4.32169i 0.335788 + 0.294737i
\(216\) −1.12562 −0.0765888
\(217\) 16.4979 1.46610i 1.11995 0.0995253i
\(218\) 0.931218i 0.0630700i
\(219\) −1.17757 + 2.03961i −0.0795728 + 0.137824i
\(220\) −4.58399 13.5233i −0.309053 0.911744i
\(221\) 12.6138 + 21.8478i 0.848498 + 1.46964i
\(222\) 1.92993 + 1.11425i 0.129529 + 0.0747835i
\(223\) 7.86673i 0.526795i 0.964687 + 0.263398i \(0.0848431\pi\)
−0.964687 + 0.263398i \(0.915157\pi\)
\(224\) −0.763518 8.59183i −0.0510147 0.574066i
\(225\) −4.61773 1.91744i −0.307849 0.127829i
\(226\) 1.81895 3.15051i 0.120995 0.209569i
\(227\) −7.77575 + 4.48933i −0.516095 + 0.297967i −0.735335 0.677703i \(-0.762975\pi\)
0.219241 + 0.975671i \(0.429642\pi\)
\(228\) −2.75192 + 1.58882i −0.182250 + 0.105222i
\(229\) −2.54306 + 4.40471i −0.168050 + 0.291071i −0.937734 0.347354i \(-0.887080\pi\)
0.769684 + 0.638425i \(0.220414\pi\)
\(230\) −4.80999 0.958942i −0.317161 0.0632308i
\(231\) −7.21096 + 5.06387i −0.474446 + 0.333178i
\(232\) 0.133563i 0.00876883i
\(233\) −18.8952 10.9091i −1.23786 0.714681i −0.269207 0.963082i \(-0.586761\pi\)
−0.968657 + 0.248401i \(0.920095\pi\)
\(234\) 0.653336 + 1.13161i 0.0427099 + 0.0739757i
\(235\) −13.5233 + 4.58399i −0.882166 + 0.299027i
\(236\) −1.56281 + 2.70687i −0.101730 + 0.176202i
\(237\) 11.9403i 0.775608i
\(238\) 1.77710 3.82465i 0.115193 0.247915i
\(239\) −7.44905 −0.481839 −0.240920 0.970545i \(-0.577449\pi\)
−0.240920 + 0.970545i \(0.577449\pi\)
\(240\) −5.90106 5.17964i −0.380912 0.334344i
\(241\) 12.0879 + 20.9368i 0.778650 + 1.34866i 0.932720 + 0.360601i \(0.117428\pi\)
−0.154070 + 0.988060i \(0.549238\pi\)
\(242\) 0.0227753 0.0131493i 0.00146405 0.000845271i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −14.0319 −0.898297
\(245\) −15.6495 0.305506i −0.999810 0.0195180i
\(246\) 0.0201680 0.00128586
\(247\) 6.52666 + 3.76817i 0.415281 + 0.239763i
\(248\) −6.10255 + 3.52331i −0.387512 + 0.223730i
\(249\) −0.612055 1.06011i −0.0387874 0.0671817i
\(250\) 1.41709 + 2.88307i 0.0896249 + 0.182341i
\(251\) 6.00200 0.378843 0.189421 0.981896i \(-0.439339\pi\)
0.189421 + 0.981896i \(0.439339\pi\)
\(252\) −2.13769 + 4.60068i −0.134662 + 0.289816i
\(253\) 25.4231i 1.59834i
\(254\) −2.37735 + 4.11769i −0.149168 + 0.258367i
\(255\) −3.98224 11.7481i −0.249377 0.735694i
\(256\) −4.89810 8.48376i −0.306131 0.530235i
\(257\) 6.35139 + 3.66697i 0.396189 + 0.228740i 0.684838 0.728695i \(-0.259873\pi\)
−0.288650 + 0.957435i \(0.593206\pi\)
\(258\) 0.841839i 0.0524106i
\(259\) 16.7927 11.7926i 1.04345 0.732755i
\(260\) −3.81213 + 19.1214i −0.236418 + 1.18586i
\(261\) 0.0593285 0.102760i 0.00367234 0.00636069i
\(262\) −1.31832 + 0.761132i −0.0814460 + 0.0470229i
\(263\) 8.21661 4.74386i 0.506658 0.292519i −0.224801 0.974405i \(-0.572173\pi\)
0.731459 + 0.681886i \(0.238840\pi\)
\(264\) 1.87438 3.24652i 0.115360 0.199810i
\(265\) 0.323431 1.62231i 0.0198682 0.0996575i
\(266\) −0.111519 1.25492i −0.00683766 0.0769438i
\(267\) 13.0001i 0.795596i
\(268\) 5.04159 + 2.91076i 0.307964 + 0.177803i
\(269\) 8.02423 + 13.8984i 0.489246 + 0.847399i 0.999923 0.0123733i \(-0.00393863\pi\)
−0.510677 + 0.859772i \(0.670605\pi\)
\(270\) −0.206261 0.608495i −0.0125526 0.0370318i
\(271\) −12.0845 + 20.9309i −0.734080 + 1.27146i 0.221045 + 0.975264i \(0.429053\pi\)
−0.955126 + 0.296201i \(0.904280\pi\)
\(272\) 19.4799i 1.18114i
\(273\) 11.9844 1.06500i 0.725331 0.0644570i
\(274\) 4.27272 0.258125
\(275\) 13.2197 10.1256i 0.797179 0.610595i
\(276\) 7.31853 + 12.6761i 0.440524 + 0.763010i
\(277\) −20.1071 + 11.6088i −1.20812 + 0.697508i −0.962348 0.271820i \(-0.912374\pi\)
−0.245771 + 0.969328i \(0.579041\pi\)
\(278\) −2.36818 1.36727i −0.142034 0.0820032i
\(279\) 6.26020 0.374789
\(280\) 6.09280 2.68767i 0.364114 0.160619i
\(281\) 12.4472 0.742538 0.371269 0.928525i \(-0.378923\pi\)
0.371269 + 0.928525i \(0.378923\pi\)
\(282\) −1.58905 0.917438i −0.0946265 0.0546326i
\(283\) −7.50649 + 4.33388i −0.446215 + 0.257622i −0.706230 0.707982i \(-0.749606\pi\)
0.260016 + 0.965604i \(0.416272\pi\)
\(284\) 3.61483 + 6.26107i 0.214501 + 0.371526i
\(285\) −2.78502 2.44454i −0.164970 0.144802i
\(286\) −4.35173 −0.257323
\(287\) 0.0782520 0.168412i 0.00461907 0.00994107i
\(288\) 3.26020i 0.192109i
\(289\) 6.88760 11.9297i 0.405153 0.701746i
\(290\) −0.0722022 + 0.0244743i −0.00423986 + 0.00143718i
\(291\) −1.52153 2.63537i −0.0891936 0.154488i
\(292\) −3.91083 2.25792i −0.228864 0.132135i
\(293\) 27.0063i 1.57772i −0.614571 0.788862i \(-0.710671\pi\)
0.614571 0.788862i \(-0.289329\pi\)
\(294\) −1.29708 1.53725i −0.0756471 0.0896540i
\(295\) −3.57467 0.712664i −0.208125 0.0414929i
\(296\) −4.36500 + 7.56040i −0.253710 + 0.439439i
\(297\) −2.88421 + 1.66520i −0.167359 + 0.0966245i
\(298\) −2.82932 + 1.63351i −0.163898 + 0.0946267i
\(299\) 17.3572 30.0635i 1.00379 1.73862i
\(300\) 3.67657 8.85421i 0.212267 0.511198i
\(301\) 7.02976 + 3.26634i 0.405189 + 0.188269i
\(302\) 2.56888i 0.147822i
\(303\) 13.8907 + 8.01983i 0.798002 + 0.460727i
\(304\) −2.90964 5.03965i −0.166879 0.289044i
\(305\) −5.25316 15.4975i −0.300795 0.887382i
\(306\) 0.797004 1.38045i 0.0455617 0.0789151i
\(307\) 2.24681i 0.128232i −0.997942 0.0641161i \(-0.979577\pi\)
0.997942 0.0641161i \(-0.0204228\pi\)
\(308\) −9.70965 13.8266i −0.553259 0.787842i
\(309\) 5.29191 0.301046
\(310\) −3.02289 2.65333i −0.171689 0.150699i
\(311\) −14.2994 24.7672i −0.810843 1.40442i −0.912275 0.409578i \(-0.865676\pi\)
0.101432 0.994842i \(-0.467657\pi\)
\(312\) −4.43301 + 2.55940i −0.250970 + 0.144898i
\(313\) 11.5429 + 6.66427i 0.652441 + 0.376687i 0.789391 0.613891i \(-0.210397\pi\)
−0.136950 + 0.990578i \(0.543730\pi\)
\(314\) −0.961518 −0.0542616
\(315\) −5.88151 0.638590i −0.331386 0.0359804i
\(316\) 22.8948 1.28794
\(317\) 25.2815 + 14.5963i 1.41995 + 0.819808i 0.996294 0.0860147i \(-0.0274132\pi\)
0.423656 + 0.905823i \(0.360747\pi\)
\(318\) 0.184091 0.106285i 0.0103233 0.00596016i
\(319\) 0.197587 + 0.342231i 0.0110628 + 0.0191613i
\(320\) 8.97747 10.2279i 0.501856 0.571755i
\(321\) −5.16172 −0.288099
\(322\) −5.78047 + 0.513685i −0.322133 + 0.0286266i
\(323\) 9.19357i 0.511544i
\(324\) −0.958719 + 1.66055i −0.0532622 + 0.0922528i
\(325\) −22.5458 + 2.94824i −1.25061 + 0.163539i
\(326\) 2.26361 + 3.92069i 0.125370 + 0.217147i
\(327\) −2.80668 1.62043i −0.155209 0.0896102i
\(328\) 0.0790069i 0.00436243i
\(329\) −13.8266 + 9.70965i −0.762283 + 0.535310i
\(330\) 2.09849 + 0.418365i 0.115518 + 0.0230302i
\(331\) 12.4457 21.5566i 0.684080 1.18486i −0.289646 0.957134i \(-0.593537\pi\)
0.973725 0.227727i \(-0.0731293\pi\)
\(332\) 2.03270 1.17358i 0.111559 0.0644084i
\(333\) 6.71665 3.87786i 0.368070 0.212505i
\(334\) 3.24605 5.62233i 0.177616 0.307640i
\(335\) −1.32735 + 6.65789i −0.0725209 + 0.363759i
\(336\) −8.42533 3.91479i −0.459639 0.213569i
\(337\) 4.72659i 0.257474i −0.991679 0.128737i \(-0.958908\pi\)
0.991679 0.128737i \(-0.0410923\pi\)
\(338\) 1.91112 + 1.10339i 0.103951 + 0.0600164i
\(339\) −6.33039 10.9646i −0.343820 0.595513i
\(340\) 22.5263 7.63570i 1.22166 0.414104i
\(341\) −10.4245 + 18.0557i −0.564517 + 0.977772i
\(342\) 0.476183i 0.0257490i
\(343\) −17.8694 + 4.86668i −0.964857 + 0.262776i
\(344\) −3.29785 −0.177808
\(345\) −11.2602 + 12.8285i −0.606229 + 0.690665i
\(346\) 1.22494 + 2.12166i 0.0658533 + 0.114061i
\(347\) 12.2615 7.07915i 0.658229 0.380029i −0.133373 0.991066i \(-0.542581\pi\)
0.791602 + 0.611037i \(0.209247\pi\)
\(348\) 0.197036 + 0.113759i 0.0105622 + 0.00609811i
\(349\) −5.04930 −0.270283 −0.135141 0.990826i \(-0.543149\pi\)
−0.135141 + 0.990826i \(0.543149\pi\)
\(350\) 2.56937 + 2.80119i 0.137339 + 0.149730i
\(351\) 4.54754 0.242730
\(352\) 9.40310 + 5.42888i 0.501187 + 0.289360i
\(353\) −13.9417 + 8.04924i −0.742042 + 0.428418i −0.822811 0.568315i \(-0.807596\pi\)
0.0807694 + 0.996733i \(0.474262\pi\)
\(354\) −0.234193 0.405635i −0.0124472 0.0215592i
\(355\) −5.56174 + 6.33638i −0.295186 + 0.336300i
\(356\) 24.9270 1.32113
\(357\) −8.43504 12.0115i −0.446430 0.635717i
\(358\) 3.38499i 0.178902i
\(359\) 0.153241 0.265421i 0.00808776 0.0140084i −0.861953 0.506988i \(-0.830759\pi\)
0.870041 + 0.492979i \(0.164092\pi\)
\(360\) 2.38374 0.808014i 0.125634 0.0425861i
\(361\) 8.12679 + 14.0760i 0.427726 + 0.740843i
\(362\) −2.26188 1.30589i −0.118882 0.0686363i
\(363\) 0.0915259i 0.00480386i
\(364\) 2.04208 + 22.9794i 0.107034 + 1.20445i
\(365\) 1.02964 5.16461i 0.0538940 0.270328i
\(366\) 1.05136 1.82102i 0.0549557 0.0951861i
\(367\) −20.4813 + 11.8249i −1.06911 + 0.617253i −0.927939 0.372732i \(-0.878421\pi\)
−0.141174 + 0.989985i \(0.545088\pi\)
\(368\) −23.2140 + 13.4026i −1.21011 + 0.698658i
\(369\) 0.0350948 0.0607860i 0.00182696 0.00316439i
\(370\) −4.88690 0.974276i −0.254058 0.0506502i
\(371\) −0.173255 1.94963i −0.00899496 0.101220i
\(372\) 12.0036i 0.622355i
\(373\) 16.3140 + 9.41887i 0.844705 + 0.487691i 0.858861 0.512209i \(-0.171173\pi\)
−0.0141557 + 0.999900i \(0.504506\pi\)
\(374\) 2.65434 + 4.59744i 0.137252 + 0.237728i
\(375\) 11.1554 + 0.745798i 0.576064 + 0.0385128i
\(376\) 3.59401 6.22500i 0.185347 0.321030i
\(377\) 0.539598i 0.0277907i
\(378\) −0.436894 0.622139i −0.0224714 0.0319994i
\(379\) −14.2534 −0.732147 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(380\) 4.68726 5.34010i 0.240451 0.273941i
\(381\) 8.27377 + 14.3306i 0.423878 + 0.734178i
\(382\) 5.10014 2.94457i 0.260946 0.150657i
\(383\) −21.6995 12.5282i −1.10879 0.640161i −0.170276 0.985396i \(-0.554466\pi\)
−0.938516 + 0.345235i \(0.887799\pi\)
\(384\) 8.26917 0.421984
\(385\) 11.6357 15.9001i 0.593010 0.810345i
\(386\) −2.45470 −0.124941
\(387\) 2.53729 + 1.46491i 0.128978 + 0.0744653i
\(388\) 5.05315 2.91744i 0.256535 0.148110i
\(389\) −6.73590 11.6669i −0.341524 0.591536i 0.643192 0.765705i \(-0.277610\pi\)
−0.984716 + 0.174169i \(0.944276\pi\)
\(390\) −2.19589 1.92744i −0.111193 0.0975995i
\(391\) −42.3480 −2.14163
\(392\) 6.02206 5.08122i 0.304160 0.256640i
\(393\) 5.29785i 0.267241i
\(394\) −1.98385 + 3.43613i −0.0999449 + 0.173110i
\(395\) 8.57123 + 25.2862i 0.431265 + 1.27229i
\(396\) −3.19291 5.53029i −0.160450 0.277907i
\(397\) 15.9768 + 9.22418i 0.801850 + 0.462948i 0.844118 0.536158i \(-0.180125\pi\)
−0.0422675 + 0.999106i \(0.513458\pi\)
\(398\) 1.08929i 0.0546010i
\(399\) −3.97635 1.84759i −0.199067 0.0924953i
\(400\) 16.2149 + 6.73298i 0.810745 + 0.336649i
\(401\) −12.7093 + 22.0131i −0.634670 + 1.09928i 0.351915 + 0.936032i \(0.385531\pi\)
−0.986585 + 0.163249i \(0.947803\pi\)
\(402\) −0.755502 + 0.436189i −0.0376810 + 0.0217552i
\(403\) 24.6545 14.2343i 1.22813 0.709059i
\(404\) −15.3775 + 26.6346i −0.765060 + 1.32512i
\(405\) −2.19291 0.437190i −0.108967 0.0217241i
\(406\) −0.0738212 + 0.0518406i −0.00366368 + 0.00257281i
\(407\) 25.8296i 1.28033i
\(408\) 5.40783 + 3.12221i 0.267727 + 0.154573i
\(409\) −9.36556 16.2216i −0.463097 0.802108i 0.536016 0.844208i \(-0.319929\pi\)
−0.999113 + 0.0420997i \(0.986595\pi\)
\(410\) −0.0427100 + 0.0144774i −0.00210930 + 0.000714986i
\(411\) 7.43507 12.8779i 0.366745 0.635221i
\(412\) 10.1469i 0.499903i
\(413\) −4.29592 + 0.381759i −0.211388 + 0.0187851i
\(414\) −2.19342 −0.107801
\(415\) 2.05714 + 1.80565i 0.100981 + 0.0886360i
\(416\) −7.41296 12.8396i −0.363450 0.629514i
\(417\) −8.24184 + 4.75843i −0.403605 + 0.233021i
\(418\) 1.37341 + 0.792938i 0.0671756 + 0.0387839i
\(419\) −2.04745 −0.100024 −0.0500121 0.998749i \(-0.515926\pi\)
−0.0500121 + 0.998749i \(0.515926\pi\)
\(420\) 1.22446 11.2774i 0.0597473 0.550283i
\(421\) −16.0512 −0.782287 −0.391144 0.920330i \(-0.627920\pi\)
−0.391144 + 0.920330i \(0.627920\pi\)
\(422\) 0.0284714 + 0.0164380i 0.00138596 + 0.000800187i
\(423\) −5.53029 + 3.19291i −0.268892 + 0.155245i
\(424\) 0.416364 + 0.721164i 0.0202204 + 0.0350228i
\(425\) 16.8665 + 22.0205i 0.818144 + 1.06815i
\(426\) −1.08339 −0.0524906
\(427\) −11.1271 15.8450i −0.538476 0.766791i
\(428\) 9.89727i 0.478403i
\(429\) −7.57255 + 13.1160i −0.365606 + 0.633249i
\(430\) −0.604305 1.78277i −0.0291422 0.0859730i
\(431\) −18.3063 31.7075i −0.881784 1.52729i −0.849356 0.527820i \(-0.823009\pi\)
−0.0324277 0.999474i \(-0.510324\pi\)
\(432\) −3.04100 1.75572i −0.146310 0.0844722i
\(433\) 18.0047i 0.865252i −0.901574 0.432626i \(-0.857587\pi\)
0.901574 0.432626i \(-0.142413\pi\)
\(434\) −4.31598 2.00540i −0.207174 0.0962622i
\(435\) −0.0518757 + 0.260205i −0.00248725 + 0.0124759i
\(436\) 3.10708 5.38163i 0.148802 0.257733i
\(437\) −10.9559 + 6.32538i −0.524090 + 0.302584i
\(438\) 0.586053 0.338358i 0.0280027 0.0161674i
\(439\) −9.68731 + 16.7789i −0.462350 + 0.800814i −0.999078 0.0429418i \(-0.986327\pi\)
0.536727 + 0.843756i \(0.319660\pi\)
\(440\) −1.63892 + 8.22070i −0.0781324 + 0.391907i
\(441\) −6.89031 + 1.23437i −0.328110 + 0.0587796i
\(442\) 7.24881i 0.344791i
\(443\) 14.2396 + 8.22121i 0.676542 + 0.390602i 0.798551 0.601927i \(-0.205600\pi\)
−0.122009 + 0.992529i \(0.538934\pi\)
\(444\) 7.43556 + 12.8788i 0.352876 + 0.611199i
\(445\) 9.33201 + 27.5306i 0.442380 + 1.30507i
\(446\) 1.13020 1.95756i 0.0535164 0.0926931i
\(447\) 11.3700i 0.537785i
\(448\) 6.78520 14.6030i 0.320571 0.689926i
\(449\) 32.7245 1.54436 0.772182 0.635401i \(-0.219165\pi\)
0.772182 + 0.635401i \(0.219165\pi\)
\(450\) 0.873602 + 1.14056i 0.0411820 + 0.0537663i
\(451\) 0.116880 + 0.202441i 0.00550365 + 0.00953259i
\(452\) 21.0239 12.1381i 0.988880 0.570930i
\(453\) 7.74255 + 4.47016i 0.363777 + 0.210027i
\(454\) 2.57989 0.121080
\(455\) −24.6151 + 10.8583i −1.15397 + 0.509043i
\(456\) 1.86542 0.0873561
\(457\) −32.4156 18.7152i −1.51634 0.875459i −0.999816 0.0191857i \(-0.993893\pi\)
−0.516523 0.856273i \(-0.672774\pi\)
\(458\) 1.26563 0.730712i 0.0591390 0.0341439i
\(459\) −2.77377 4.80431i −0.129469 0.224246i
\(460\) −24.5979 21.5908i −1.14688 1.00667i
\(461\) 28.3604 1.32088 0.660438 0.750881i \(-0.270371\pi\)
0.660438 + 0.750881i \(0.270371\pi\)
\(462\) 2.52189 0.224109i 0.117329 0.0104265i
\(463\) 7.20833i 0.334999i −0.985872 0.167500i \(-0.946431\pi\)
0.985872 0.167500i \(-0.0535693\pi\)
\(464\) −0.208329 + 0.360836i −0.00967143 + 0.0167514i
\(465\) −13.2573 + 4.49382i −0.614793 + 0.208396i
\(466\) 3.13458 + 5.42926i 0.145207 + 0.251506i
\(467\) 10.4607 + 6.03950i 0.484065 + 0.279475i 0.722109 0.691779i \(-0.243173\pi\)
−0.238044 + 0.971254i \(0.576506\pi\)
\(468\) 8.71963i 0.403065i
\(469\) 0.711033 + 8.00122i 0.0328325 + 0.369462i
\(470\) 4.02372 + 0.802189i 0.185601 + 0.0370022i
\(471\) −1.67316 + 2.89800i −0.0770952 + 0.133533i
\(472\) 1.58905 0.917438i 0.0731419 0.0422285i
\(473\) −8.45018 + 4.87871i −0.388540 + 0.224323i
\(474\) −1.71544 + 2.97123i −0.0787929 + 0.136473i
\(475\) 7.65266 + 3.17764i 0.351128 + 0.145800i
\(476\) 23.0313 16.1737i 1.05564 0.741319i
\(477\) 0.739795i 0.0338729i
\(478\) 1.85362 + 1.07019i 0.0847827 + 0.0489493i
\(479\) 10.0708 + 17.4432i 0.460149 + 0.797001i 0.998968 0.0454204i \(-0.0144627\pi\)
−0.538819 + 0.842421i \(0.681129\pi\)
\(480\) 2.34030 + 6.90418i 0.106820 + 0.315131i
\(481\) 17.6347 30.5443i 0.804075 1.39270i
\(482\) 6.94657i 0.316408i
\(483\) −8.51050 + 18.3161i −0.387241 + 0.833413i
\(484\) 0.175495 0.00797705
\(485\) 5.11393 + 4.48874i 0.232212 + 0.203823i
\(486\) −0.143668 0.248840i −0.00651691 0.0112876i
\(487\) 34.5887 19.9698i 1.56737 0.904919i 0.570891 0.821026i \(-0.306598\pi\)
0.996475 0.0838930i \(-0.0267354\pi\)
\(488\) 7.13372 + 4.11866i 0.322928 + 0.186443i
\(489\) 15.7559 0.712505
\(490\) 3.85033 + 2.32435i 0.173940 + 0.105004i
\(491\) −31.5989 −1.42604 −0.713019 0.701145i \(-0.752673\pi\)
−0.713019 + 0.701145i \(0.752673\pi\)
\(492\) 0.116553 + 0.0672922i 0.00525463 + 0.00303376i
\(493\) −0.570066 + 0.329127i −0.0256745 + 0.0148232i
\(494\) −1.08273 1.87534i −0.0487143 0.0843757i
\(495\) 4.91258 5.59680i 0.220804 0.251558i
\(496\) −21.9824 −0.987037
\(497\) −4.20358 + 9.04686i −0.188556 + 0.405807i
\(498\) 0.351730i 0.0157614i
\(499\) 19.8929 34.4556i 0.890530 1.54244i 0.0512890 0.998684i \(-0.483667\pi\)
0.839241 0.543759i \(-0.183000\pi\)
\(500\) −1.43002 + 21.3899i −0.0639525 + 0.956584i
\(501\) −11.2971 19.5671i −0.504716 0.874194i
\(502\) −1.49354 0.862295i −0.0666599 0.0384861i
\(503\) 12.8734i 0.573995i −0.957931 0.286997i \(-0.907343\pi\)
0.957931 0.286997i \(-0.0926571\pi\)
\(504\) 2.43719 1.71151i 0.108561 0.0762365i
\(505\) −35.1735 7.01237i −1.56520 0.312046i
\(506\) 3.65248 6.32628i 0.162373 0.281238i
\(507\) 6.65118 3.84006i 0.295389 0.170543i
\(508\) −27.4780 + 15.8644i −1.21914 + 0.703871i
\(509\) 16.6981 28.9219i 0.740128 1.28194i −0.212308 0.977203i \(-0.568098\pi\)
0.952437 0.304737i \(-0.0985685\pi\)
\(510\) −0.696884 + 3.49552i −0.0308585 + 0.154784i
\(511\) −0.551558 6.20665i −0.0243995 0.274566i
\(512\) 19.3531i 0.855296i
\(513\) −1.43521 0.828617i −0.0633659 0.0365843i
\(514\) −1.05365 1.82498i −0.0464746 0.0804965i
\(515\) −11.2068 + 3.79874i −0.493828 + 0.167392i
\(516\) −2.80887 + 4.86510i −0.123653 + 0.214174i
\(517\) 21.2673i 0.935335i
\(518\) −5.87290 + 0.521899i −0.258041 + 0.0229309i
\(519\) 8.52620 0.374259
\(520\) 7.55061 8.60227i 0.331116 0.377234i
\(521\) −6.77589 11.7362i −0.296857 0.514172i 0.678558 0.734547i \(-0.262605\pi\)
−0.975415 + 0.220375i \(0.929272\pi\)
\(522\) −0.0295266 + 0.0170472i −0.00129235 + 0.000746136i
\(523\) −17.5052 10.1066i −0.765450 0.441933i 0.0657991 0.997833i \(-0.479040\pi\)
−0.831249 + 0.555900i \(0.812374\pi\)
\(524\) −10.1583 −0.443768
\(525\) 12.9138 2.86963i 0.563603 0.125241i
\(526\) −2.72616 −0.118866
\(527\) −30.0760 17.3644i −1.31013 0.756404i
\(528\) 10.1277 5.84725i 0.440753 0.254469i
\(529\) 17.6364 + 30.5471i 0.766798 + 1.32813i
\(530\) −0.313556 + 0.357228i −0.0136200 + 0.0155170i
\(531\) −1.63010 −0.0707404
\(532\) 3.54264 7.62441i 0.153593 0.330560i
\(533\) 0.319190i 0.0138257i
\(534\) −1.86770 + 3.23496i −0.0808235 + 0.139990i
\(535\) 10.9310 3.70528i 0.472590 0.160193i
\(536\) −1.70875 2.95963i −0.0738066 0.127837i
\(537\) 10.2023 + 5.89031i 0.440262 + 0.254186i
\(538\) 4.61130i 0.198807i
\(539\) 7.91354 21.9285i 0.340860 0.944529i
\(540\) 0.838284 4.20477i 0.0360740 0.180945i
\(541\) 16.4854 28.5535i 0.708762 1.22761i −0.256554 0.966530i \(-0.582587\pi\)
0.965317 0.261082i \(-0.0840794\pi\)
\(542\) 6.01421 3.47231i 0.258332 0.149148i
\(543\) −7.87189 + 4.54484i −0.337815 + 0.195038i
\(544\) −9.04306 + 15.6630i −0.387718 + 0.671547i
\(545\) 7.10694 + 1.41688i 0.304428 + 0.0606923i
\(546\) −3.13521 1.45676i −0.134175 0.0623437i
\(547\) 24.6221i 1.05277i 0.850248 + 0.526383i \(0.176452\pi\)
−0.850248 + 0.526383i \(0.823548\pi\)
\(548\) 24.6926 + 14.2563i 1.05482 + 0.608998i
\(549\) −3.65901 6.33759i −0.156163 0.270482i
\(550\) −4.74432 + 0.620399i −0.202298 + 0.0264539i
\(551\) −0.0983213 + 0.170297i −0.00418863 + 0.00725491i
\(552\) 8.59260i 0.365725i
\(553\) 18.1553 + 25.8532i 0.772041 + 1.09939i
\(554\) 6.67127 0.283435
\(555\) −11.4403 + 13.0337i −0.485612 + 0.553248i
\(556\) −9.12399 15.8032i −0.386943 0.670206i
\(557\) −20.7796 + 11.9971i −0.880460 + 0.508334i −0.870810 0.491620i \(-0.836405\pi\)
−0.00964963 + 0.999953i \(0.503072\pi\)
\(558\) −1.55779 0.899391i −0.0659465 0.0380742i
\(559\) 13.3234 0.563521
\(560\) 20.6526 + 2.24237i 0.872732 + 0.0947575i
\(561\) 18.4755 0.780036
\(562\) −3.09736 1.78826i −0.130654 0.0754333i
\(563\) 0.196151 0.113248i 0.00826680 0.00477284i −0.495861 0.868402i \(-0.665147\pi\)
0.504128 + 0.863629i \(0.331814\pi\)
\(564\) −6.12221 10.6040i −0.257792 0.446508i
\(565\) 21.2767 + 18.6756i 0.895119 + 0.785688i
\(566\) 2.49056 0.104686
\(567\) −2.63537 + 0.234193i −0.110675 + 0.00983520i
\(568\) 4.24413i 0.178080i
\(569\) −6.40275 + 11.0899i −0.268417 + 0.464912i −0.968453 0.249195i \(-0.919834\pi\)
0.700036 + 0.714108i \(0.253167\pi\)
\(570\) 0.341822 + 1.00842i 0.0143174 + 0.0422380i
\(571\) 0.780149 + 1.35126i 0.0326482 + 0.0565484i 0.881888 0.471459i \(-0.156273\pi\)
−0.849240 + 0.528008i \(0.822939\pi\)
\(572\) −25.1492 14.5199i −1.05154 0.607107i
\(573\) 20.4957i 0.856219i
\(574\) −0.0436677 + 0.0306655i −0.00182265 + 0.00127995i
\(575\) 14.6371 35.2502i 0.610408 1.47003i
\(576\) 3.04306 5.27073i 0.126794 0.219614i
\(577\) 37.8018 21.8249i 1.57371 0.908581i 0.578000 0.816037i \(-0.303833\pi\)
0.995709 0.0925443i \(-0.0295000\pi\)
\(578\) −3.42782 + 1.97905i −0.142579 + 0.0823178i
\(579\) −4.27148 + 7.39842i −0.177517 + 0.307468i
\(580\) −0.498926 0.0994684i −0.0207168 0.00413020i
\(581\) 2.93712 + 1.36472i 0.121852 + 0.0566180i
\(582\) 0.874380i 0.0362442i
\(583\) 2.13372 + 1.23191i 0.0883697 + 0.0510203i
\(584\) 1.32550 + 2.29583i 0.0548494 + 0.0950020i
\(585\) −9.63038 + 3.26440i −0.398167 + 0.134966i
\(586\) −3.87994 + 6.72025i −0.160279 + 0.277611i
\(587\) 13.6961i 0.565297i 0.959224 + 0.282648i \(0.0912129\pi\)
−0.959224 + 0.282648i \(0.908787\pi\)
\(588\) −2.36683 13.2117i −0.0976064 0.544843i
\(589\) −10.3746 −0.427479
\(590\) 0.787135 + 0.690905i 0.0324058 + 0.0284441i
\(591\) 6.90429 + 11.9586i 0.284004 + 0.491910i
\(592\) −23.5852 + 13.6169i −0.969344 + 0.559651i
\(593\) 7.92838 + 4.57745i 0.325579 + 0.187973i 0.653877 0.756601i \(-0.273141\pi\)
−0.328297 + 0.944574i \(0.606475\pi\)
\(594\) 0.956942 0.0392638
\(595\) 26.4853 + 19.3820i 1.08579 + 0.794583i
\(596\) −21.8014 −0.893018
\(597\) −3.28309 1.89549i −0.134368 0.0775773i
\(598\) −8.63833 + 4.98734i −0.353247 + 0.203948i
\(599\) 20.1368 + 34.8780i 0.822767 + 1.42507i 0.903614 + 0.428348i \(0.140904\pi\)
−0.0808467 + 0.996727i \(0.525762\pi\)
\(600\) −4.46805 + 3.42228i −0.182408 + 0.139714i
\(601\) −8.82450 −0.359959 −0.179980 0.983670i \(-0.557603\pi\)
−0.179980 + 0.983670i \(0.557603\pi\)
\(602\) −1.28002 1.82275i −0.0521696 0.0742897i
\(603\) 3.03610i 0.123639i
\(604\) −8.57126 + 14.8459i −0.348760 + 0.604070i
\(605\) 0.0657008 + 0.193826i 0.00267112 + 0.00788013i
\(606\) −2.30438 3.99131i −0.0936092 0.162136i
\(607\) 24.3409 + 14.0532i 0.987966 + 0.570402i 0.904666 0.426122i \(-0.140121\pi\)
0.0833003 + 0.996524i \(0.473454\pi\)
\(608\) 5.40292i 0.219117i
\(609\) 0.0277887 + 0.312705i 0.00112606 + 0.0126714i
\(610\) −0.919292 + 4.61110i −0.0372211 + 0.186698i
\(611\) −14.5199 + 25.1492i −0.587412 + 1.01743i
\(612\) 9.21197 5.31853i 0.372372 0.214989i
\(613\) −1.83025 + 1.05670i −0.0739232 + 0.0426796i −0.536506 0.843896i \(-0.680256\pi\)
0.462583 + 0.886576i \(0.346923\pi\)
\(614\) −0.322795 + 0.559097i −0.0130269 + 0.0225633i
\(615\) −0.0306862 + 0.153920i −0.00123739 + 0.00620664i
\(616\) 0.877935 + 9.87935i 0.0353730 + 0.398050i
\(617\) 18.0390i 0.726221i −0.931746 0.363111i \(-0.881715\pi\)
0.931746 0.363111i \(-0.118285\pi\)
\(618\) −1.31684 0.760278i −0.0529711 0.0305829i
\(619\) −7.31895 12.6768i −0.294173 0.509523i 0.680619 0.732638i \(-0.261711\pi\)
−0.974792 + 0.223114i \(0.928378\pi\)
\(620\) −8.61662 25.4201i −0.346052 1.02090i
\(621\) −3.81683 + 6.61094i −0.153164 + 0.265288i
\(622\) 8.21744i 0.329489i
\(623\) 19.7667 + 28.1479i 0.791937 + 1.12772i
\(624\) −15.9684 −0.639249
\(625\) −24.1594 + 6.42842i −0.966375 + 0.257137i
\(626\) −1.91488 3.31668i −0.0765341 0.132561i
\(627\) 4.77980 2.75962i 0.190887 0.110209i
\(628\) −5.55673 3.20818i −0.221738 0.128020i
\(629\) −43.0252 −1.71553
\(630\) 1.37181 + 1.00389i 0.0546543 + 0.0399960i
\(631\) 12.1251 0.482692 0.241346 0.970439i \(-0.422411\pi\)
0.241346 + 0.970439i \(0.422411\pi\)
\(632\) −11.6396 6.72014i −0.462999 0.267313i
\(633\) 0.0990874 0.0572082i 0.00393837 0.00227382i
\(634\) −4.19403 7.26428i −0.166566 0.288501i
\(635\) −27.8085 24.4088i −1.10355 0.968635i
\(636\) 1.41851 0.0562477
\(637\) −24.3293 + 20.5283i −0.963963 + 0.813360i
\(638\) 0.113548i 0.00449540i
\(639\) −1.88524 + 3.26533i −0.0745790 + 0.129175i
\(640\) −17.5117 + 5.93593i −0.692212 + 0.234638i
\(641\) 6.52024 + 11.2934i 0.257534 + 0.446062i 0.965581 0.260104i \(-0.0837567\pi\)
−0.708047 + 0.706166i \(0.750423\pi\)
\(642\) 1.28444 + 0.741573i 0.0506929 + 0.0292675i
\(643\) 27.0185i 1.06550i 0.846271 + 0.532752i \(0.178842\pi\)
−0.846271 + 0.532752i \(0.821158\pi\)
\(644\) −35.1200 16.3184i −1.38392 0.643033i
\(645\) −6.42482 1.28088i −0.252977 0.0504347i
\(646\) −1.32082 + 2.28773i −0.0519670 + 0.0900095i
\(647\) 30.2927 17.4895i 1.19093 0.687582i 0.232411 0.972618i \(-0.425339\pi\)
0.958517 + 0.285035i \(0.0920054\pi\)
\(648\) 0.974816 0.562810i 0.0382944 0.0221093i
\(649\) 2.71444 4.70155i 0.106551 0.184552i
\(650\) 6.03386 + 2.50546i 0.236667 + 0.0982723i
\(651\) −13.5546 + 9.51864i −0.531246 + 0.373065i
\(652\) 30.2109i 1.18315i
\(653\) −28.0168 16.1755i −1.09638 0.632997i −0.161114 0.986936i \(-0.551509\pi\)
−0.935269 + 0.353939i \(0.884842\pi\)
\(654\) 0.465609 + 0.806458i 0.0182067 + 0.0315350i
\(655\) −3.80300 11.2193i −0.148596 0.438376i
\(656\) −0.123234 + 0.213447i −0.00481146 + 0.00833370i
\(657\) 2.35514i 0.0918827i
\(658\) 4.83557 0.429716i 0.188510 0.0167521i
\(659\) −8.54282 −0.332781 −0.166390 0.986060i \(-0.553211\pi\)
−0.166390 + 0.986060i \(0.553211\pi\)
\(660\) 10.7315 + 9.41956i 0.417724 + 0.366656i
\(661\) 15.1715 + 26.2779i 0.590104 + 1.02209i 0.994218 + 0.107382i \(0.0342467\pi\)
−0.404114 + 0.914709i \(0.632420\pi\)
\(662\) −6.19400 + 3.57611i −0.240737 + 0.138989i
\(663\) −21.8478 12.6138i −0.848498 0.489881i
\(664\) −1.37788 −0.0534722
\(665\) 9.74704 + 1.05829i 0.377974 + 0.0410388i
\(666\) −2.22850 −0.0863525
\(667\) 0.784435 + 0.452894i 0.0303734 + 0.0175361i
\(668\) 37.5187 21.6614i 1.45164 0.838107i
\(669\) −3.93337 6.81279i −0.152073 0.263398i
\(670\) 1.28682 1.46605i 0.0497143 0.0566386i
\(671\) 24.3719 0.940867
\(672\) 4.95714 + 7.05899i 0.191226 + 0.272306i
\(673\) 40.5075i 1.56145i −0.624875 0.780725i \(-0.714850\pi\)
0.624875 0.780725i \(-0.285150\pi\)
\(674\) −0.679059 + 1.17617i −0.0261564 + 0.0453042i
\(675\) 4.95779 0.648315i 0.190825 0.0249537i
\(676\) 7.36308 + 12.7532i 0.283195 + 0.490509i
\(677\) 20.2833 + 11.7105i 0.779549 + 0.450073i 0.836270 0.548317i \(-0.184731\pi\)
−0.0567215 + 0.998390i \(0.518065\pi\)
\(678\) 3.63790i 0.139713i
\(679\) 7.30149 + 3.39260i 0.280205 + 0.130196i
\(680\) −13.6935 2.73000i −0.525121 0.104691i
\(681\) 4.48933 7.77575i 0.172032 0.297967i
\(682\) 5.18806 2.99533i 0.198661 0.114697i
\(683\) 44.1887 25.5124i 1.69083 0.976204i 0.736989 0.675904i \(-0.236247\pi\)
0.953845 0.300299i \(-0.0970866\pi\)
\(684\) 1.58882 2.75192i 0.0607501 0.105222i
\(685\) −6.50107 + 32.6089i −0.248393 + 1.24592i
\(686\) 5.14581 + 1.35623i 0.196468 + 0.0517812i
\(687\) 5.08612i 0.194047i
\(688\) −8.90956 5.14393i −0.339674 0.196111i
\(689\) −1.68212 2.91353i −0.0640838 0.110996i
\(690\) 4.64504 1.57452i 0.176834 0.0599411i
\(691\) −12.3057 + 21.3142i −0.468133 + 0.810829i −0.999337 0.0364144i \(-0.988406\pi\)
0.531204 + 0.847244i \(0.321740\pi\)
\(692\) 16.3485i 0.621476i
\(693\) 3.71294 7.99092i 0.141043 0.303550i
\(694\) −4.06819 −0.154426
\(695\) 14.0381 15.9933i 0.532494 0.606660i
\(696\) −0.0667814 0.115669i −0.00253134 0.00438441i
\(697\) −0.337213 + 0.194690i −0.0127728 + 0.00737441i
\(698\) 1.25647 + 0.725422i 0.0475580 + 0.0274576i
\(699\) 21.8183 0.825243
\(700\) 5.50234 + 24.7613i 0.207969 + 0.935891i
\(701\) 25.7244 0.971595 0.485798 0.874071i \(-0.338529\pi\)
0.485798 + 0.874071i \(0.338529\pi\)
\(702\) −1.13161 0.653336i −0.0427099 0.0246586i
\(703\) −11.1311 + 6.42652i −0.419816 + 0.242381i
\(704\) 10.1346 + 17.5536i 0.381962 + 0.661577i
\(705\) 9.41956 10.7315i 0.354761 0.404173i
\(706\) 4.62567 0.174089
\(707\) −42.2703 + 3.75638i −1.58974 + 0.141273i
\(708\) 3.12562i 0.117468i
\(709\) 5.85482 10.1408i 0.219882 0.380848i −0.734889 0.678187i \(-0.762766\pi\)
0.954772 + 0.297339i \(0.0960993\pi\)
\(710\) 2.29432 0.777702i 0.0861042 0.0291867i
\(711\) 5.97016 + 10.3406i 0.223899 + 0.387804i
\(712\) −12.6727 7.31661i −0.474931 0.274202i
\(713\) 47.7883i 1.78968i
\(714\) 0.373306 + 4.20079i 0.0139706 + 0.157211i
\(715\) 6.62129 33.2119i 0.247622 1.24205i
\(716\) −11.2943 + 19.5623i −0.422088 + 0.731077i
\(717\) 6.45107 3.72453i 0.240920 0.139095i
\(718\) −0.0762651 + 0.0440317i −0.00284619 + 0.00164325i
\(719\) −6.16037 + 10.6701i −0.229743 + 0.397927i −0.957732 0.287662i \(-0.907122\pi\)
0.727989 + 0.685589i \(0.240455\pi\)
\(720\) 7.70029 + 1.53517i 0.286973 + 0.0572123i
\(721\) −11.4580 + 8.04635i −0.426719 + 0.299662i
\(722\) 4.67023i 0.173808i
\(723\) −20.9368 12.0879i −0.778650 0.449554i
\(724\) −8.71444 15.0939i −0.323870 0.560959i
\(725\) −0.0769272 0.588277i −0.00285700 0.0218481i
\(726\) −0.0131493 + 0.0227753i −0.000488017 + 0.000845271i
\(727\) 17.6540i 0.654751i 0.944894 + 0.327376i \(0.106164\pi\)
−0.944894 + 0.327376i \(0.893836\pi\)
\(728\) 5.70678 12.2820i 0.211507 0.455202i
\(729\) −1.00000 −0.0370370
\(730\) −0.998206 + 1.13724i −0.0369452 + 0.0420910i
\(731\) −8.12662 14.0757i −0.300574 0.520609i
\(732\) 12.1519 7.01593i 0.449149 0.259316i
\(733\) −8.69135 5.01795i −0.321022 0.185342i 0.330826 0.943692i \(-0.392673\pi\)
−0.651848 + 0.758349i \(0.726006\pi\)
\(734\) 6.79541 0.250823
\(735\) 13.7056 7.56017i 0.505539 0.278861i
\(736\) 24.8873 0.917357
\(737\) −8.75672 5.05570i −0.322558 0.186229i
\(738\) −0.0174660 + 0.0100840i −0.000642932 + 0.000371197i
\(739\) −15.5360 26.9092i −0.571502 0.989870i −0.996412 0.0846345i \(-0.973028\pi\)
0.424910 0.905235i \(-0.360306\pi\)
\(740\) −24.9913 21.9360i −0.918697 0.806383i
\(741\) −7.53634 −0.276854
\(742\) −0.236987 + 0.510038i −0.00870005 + 0.0187241i
\(743\) 4.04189i 0.148283i −0.997248 0.0741413i \(-0.976378\pi\)
0.997248 0.0741413i \(-0.0236216\pi\)
\(744\) 3.52331 6.10255i 0.129171 0.223730i
\(745\) −8.16186 24.0785i −0.299027 0.882168i
\(746\) −2.70638 4.68759i −0.0990876 0.171625i
\(747\) 1.06011 + 0.612055i 0.0387874 + 0.0223939i
\(748\) 35.4256i 1.29529i
\(749\) 11.1761 7.84839i 0.408367 0.286774i
\(750\) −2.66877 1.78826i −0.0974498 0.0652981i
\(751\) −7.34725 + 12.7258i −0.268105 + 0.464371i −0.968372 0.249509i \(-0.919731\pi\)
0.700268 + 0.713881i \(0.253064\pi\)
\(752\) 19.4193 11.2117i 0.708149 0.408850i
\(753\) −5.19789 + 3.00100i −0.189421 + 0.109363i
\(754\) −0.0775229 + 0.134274i −0.00282322 + 0.00488996i
\(755\) −19.6054 3.90862i −0.713512 0.142249i
\(756\) −0.449051 5.05315i −0.0163318 0.183781i
\(757\) 29.6087i 1.07615i 0.842898 + 0.538073i \(0.180847\pi\)
−0.842898 + 0.538073i \(0.819153\pi\)
\(758\) 3.54681 + 2.04775i 0.128826 + 0.0743778i
\(759\) −12.7115 22.0170i −0.461400 0.799168i
\(760\) −3.95041 + 1.33907i −0.143297 + 0.0485731i
\(761\) 7.12611 12.3428i 0.258321 0.447426i −0.707471 0.706742i \(-0.750164\pi\)
0.965792 + 0.259317i \(0.0834974\pi\)
\(762\) 4.75470i 0.172245i
\(763\) 8.54088 0.758990i 0.309200 0.0274773i
\(764\) 39.2992 1.42179
\(765\) 9.32277 + 8.18303i 0.337065 + 0.295858i
\(766\) 3.59980 + 6.23504i 0.130066 + 0.225281i
\(767\) −6.41981 + 3.70648i −0.231806 + 0.133833i
\(768\) 8.48376 + 4.89810i 0.306131 + 0.176745i
\(769\) 20.6367 0.744178 0.372089 0.928197i \(-0.378642\pi\)
0.372089 + 0.928197i \(0.378642\pi\)
\(770\) −5.17977 + 2.28491i −0.186666 + 0.0823425i
\(771\) −7.33395 −0.264126
\(772\) −14.1860 8.19030i −0.510566 0.294775i
\(773\) −36.8580 + 21.2800i −1.32569 + 0.765387i −0.984630 0.174655i \(-0.944119\pi\)
−0.341059 + 0.940042i \(0.610786\pi\)
\(774\) −0.420920 0.729054i −0.0151296 0.0262053i
\(775\) 24.8494 19.0332i 0.892615 0.683694i
\(776\) −3.42533 −0.122962
\(777\) −8.64659 + 18.6090i −0.310195 + 0.667594i
\(778\) 3.87093i 0.138780i
\(779\) −0.0581603 + 0.100737i −0.00208381 + 0.00360926i
\(780\) −6.25929 18.4657i −0.224118 0.661177i
\(781\) −6.27860 10.8748i −0.224666 0.389133i
\(782\) 10.5379 + 6.08405i 0.376834 + 0.217565i
\(783\) 0.118657i 0.00424046i
\(784\) 24.1949 4.33442i 0.864105 0.154801i
\(785\) 1.46298 7.33819i 0.0522159 0.261911i
\(786\) 0.761132 1.31832i 0.0271487 0.0470229i
\(787\) 21.8231 12.5996i 0.777909 0.449126i −0.0577798 0.998329i \(-0.518402\pi\)
0.835689 + 0.549203i \(0.185069\pi\)
\(788\) −22.9298 + 13.2385i −0.816842 + 0.471604i
\(789\) −4.74386 + 8.21661i −0.168886 + 0.292519i
\(790\) 1.49995 7.52363i 0.0533657 0.267679i
\(791\) 30.3782 + 14.1151i 1.08012 + 0.501874i
\(792\) 3.74876i 0.133206i
\(793\) −28.8205 16.6395i −1.02344 0.590886i
\(794\) −2.65044 4.59069i −0.0940605 0.162918i
\(795\) 0.531054 + 1.56667i 0.0188345 + 0.0555642i
\(796\) 3.63449 6.29512i 0.128821 0.223125i
\(797\) 51.7211i 1.83205i −0.401116 0.916027i \(-0.631377\pi\)
0.401116 0.916027i \(-0.368623\pi\)
\(798\) 0.724036 + 1.03103i 0.0256306 + 0.0364980i
\(799\) 35.4256 1.25327
\(800\) −9.91217 12.9411i −0.350448 0.457537i
\(801\) 6.50007 + 11.2585i 0.229669 + 0.397798i
\(802\) 6.32515 3.65182i 0.223349 0.128950i
\(803\) 6.79271 + 3.92177i 0.239709 + 0.138396i
\(804\) −5.82152 −0.205309
\(805\) 4.87477 44.8975i 0.171813 1.58243i
\(806\) −8.18003 −0.288129
\(807\) −13.8984 8.02423i −0.489246 0.282466i
\(808\) 15.6357 9.02728i 0.550062 0.317579i
\(809\) −25.8890 44.8410i −0.910207 1.57653i −0.813770 0.581187i \(-0.802589\pi\)
−0.0964371 0.995339i \(-0.530745\pi\)
\(810\) 0.482874 + 0.423842i 0.0169665 + 0.0148923i
\(811\) 12.0263 0.422299 0.211149 0.977454i \(-0.432279\pi\)
0.211149 + 0.977454i \(0.432279\pi\)
\(812\) −0.599592 + 0.0532831i −0.0210416 + 0.00186987i
\(813\) 24.1690i 0.847643i
\(814\) 3.71089 6.42744i 0.130067 0.225282i
\(815\) −33.3664 + 11.3102i −1.16877 + 0.396178i
\(816\) 9.73994 + 16.8701i 0.340966 + 0.590571i
\(817\) −4.20488 2.42769i −0.147110 0.0849341i
\(818\) 5.38212i 0.188182i
\(819\) −9.84632 + 6.91454i −0.344058 + 0.241613i
\(820\) −0.295132 0.0588389i −0.0103064 0.00205474i
\(821\) −4.03967 + 6.99692i −0.140985 + 0.244194i −0.927868 0.372909i \(-0.878360\pi\)
0.786882 + 0.617103i \(0.211694\pi\)
\(822\) −3.70029 + 2.13636i −0.129062 + 0.0745142i
\(823\) −4.42994 + 2.55762i −0.154418 + 0.0891532i −0.575218 0.818000i \(-0.695083\pi\)
0.420800 + 0.907153i \(0.361749\pi\)
\(824\) 2.97834 5.15864i 0.103755 0.179710i
\(825\) −6.38582 + 15.3789i −0.222326 + 0.535423i
\(826\) 1.12384 + 0.522188i 0.0391035 + 0.0181693i
\(827\) 0.705254i 0.0245241i −0.999925 0.0122620i \(-0.996097\pi\)
0.999925 0.0122620i \(-0.00390323\pi\)
\(828\) −12.6761 7.31853i −0.440524 0.254337i
\(829\) 12.4790 + 21.6143i 0.433415 + 0.750696i 0.997165 0.0752491i \(-0.0239752\pi\)
−0.563750 + 0.825945i \(0.690642\pi\)
\(830\) −0.252486 0.744864i −0.00876391 0.0258546i
\(831\) 11.6088 20.1071i 0.402706 0.697508i
\(832\) 27.6769i 0.959523i
\(833\) 36.5270 + 13.1818i 1.26559 + 0.456723i
\(834\) 2.73453 0.0946891
\(835\) 37.9700 + 33.3280i 1.31401 + 1.15336i
\(836\) 5.29140 + 9.16498i 0.183007 + 0.316977i
\(837\) −5.42150 + 3.13010i −0.187394 + 0.108192i
\(838\) 0.509487 + 0.294152i 0.0175999 + 0.0101613i
\(839\) 11.6389 0.401819 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(840\) −3.93268 + 5.37399i −0.135690 + 0.185420i
\(841\) −28.9859 −0.999514
\(842\) 3.99418 + 2.30604i 0.137649 + 0.0794714i
\(843\) −10.7796 + 6.22360i −0.371269 + 0.214352i
\(844\) 0.109693 + 0.189994i 0.00377579 + 0.00653986i
\(845\) −11.3287 + 12.9066i −0.389721 + 0.444001i
\(846\) 1.83488 0.0630843
\(847\) 0.139165 + 0.198172i 0.00478177 + 0.00680926i
\(848\) 2.59775i 0.0892071i
\(849\) 4.33388 7.50649i 0.148738 0.257622i
\(850\) −1.03342 7.90275i −0.0354460 0.271062i
\(851\) 29.6023 + 51.2726i 1.01475 + 1.75760i
\(852\) −6.26107 3.61483i −0.214501 0.123842i
\(853\) 32.5996i 1.11619i −0.829778 0.558094i \(-0.811533\pi\)
0.829778 0.558094i \(-0.188467\pi\)
\(854\) 0.492445 + 5.54146i 0.0168511 + 0.189625i
\(855\) 3.63417 + 0.724526i 0.124286 + 0.0247783i
\(856\) −2.90507 + 5.03172i −0.0992931 + 0.171981i
\(857\) 27.4455 15.8456i 0.937519 0.541277i 0.0483371 0.998831i \(-0.484608\pi\)
0.889182 + 0.457554i \(0.151274\pi\)
\(858\) 3.76871 2.17587i 0.128662 0.0742828i
\(859\) −21.8456 + 37.8377i −0.745363 + 1.29101i 0.204662 + 0.978833i \(0.434390\pi\)
−0.950025 + 0.312174i \(0.898943\pi\)
\(860\) 2.45601 12.3192i 0.0837494 0.420081i
\(861\) 0.0164380 + 0.184975i 0.000560204 + 0.00630394i
\(862\) 10.5201i 0.358317i
\(863\) 33.6005 + 19.3992i 1.14377 + 0.660358i 0.947362 0.320164i \(-0.103738\pi\)
0.196411 + 0.980522i \(0.437071\pi\)
\(864\) 1.63010 + 2.82342i 0.0554572 + 0.0960547i
\(865\) −18.0561 + 6.12044i −0.613924 + 0.208101i
\(866\) −2.58670 + 4.48030i −0.0878997 + 0.152247i
\(867\) 13.7752i 0.467830i
\(868\) −18.2514 25.9901i −0.619493 0.882160i
\(869\) −39.7660 −1.34897
\(870\) 0.0502918 0.0572965i 0.00170505 0.00194253i
\(871\) 6.90338 + 11.9570i 0.233912 + 0.405148i
\(872\) −3.15925 + 1.82399i −0.106986 + 0.0617682i
\(873\) 2.63537 + 1.52153i 0.0891936 + 0.0514960i
\(874\) 3.63501 0.122956
\(875\) −25.2877 + 15.3470i −0.854881 + 0.518825i
\(876\) 4.51583 0.152576
\(877\) 3.72454 + 2.15036i 0.125769 + 0.0726127i 0.561565 0.827433i \(-0.310200\pi\)
−0.435796 + 0.900046i \(0.643533\pi\)
\(878\) 4.82118 2.78351i 0.162707 0.0939390i
\(879\) 13.5031 + 23.3881i 0.455450 + 0.788862i
\(880\) −17.2502 + 19.6529i −0.581506 + 0.662498i
\(881\) −1.29308 −0.0435650 −0.0217825 0.999763i \(-0.506934\pi\)
−0.0217825 + 0.999763i \(0.506934\pi\)
\(882\) 1.89192 + 0.682755i 0.0637044 + 0.0229896i
\(883\) 1.49533i 0.0503218i 0.999683 + 0.0251609i \(0.00800981\pi\)
−0.999683 + 0.0251609i \(0.991990\pi\)
\(884\) 24.1862 41.8918i 0.813471 1.40897i
\(885\) 3.45209 1.17015i 0.116041 0.0393342i
\(886\) −2.36225 4.09153i −0.0793613 0.137458i
\(887\) 8.73964 + 5.04584i 0.293449 + 0.169423i 0.639496 0.768794i \(-0.279143\pi\)
−0.346047 + 0.938217i \(0.612476\pi\)
\(888\) 8.73000i 0.292960i
\(889\) −39.7040 18.4483i −1.33163 0.618736i
\(890\) 1.63308 8.19142i 0.0547410 0.274577i
\(891\) 1.66520 2.88421i 0.0557862 0.0966245i
\(892\) 13.0631 7.54198i 0.437385 0.252524i
\(893\) 9.16498 5.29140i 0.306694 0.177070i
\(894\) 1.63351 2.82932i 0.0546328 0.0946267i
\(895\) −25.8339 5.15036i −0.863531 0.172158i
\(896\) −17.9044 + 12.5733i −0.598143 + 0.420044i
\(897\) 34.7144i 1.15908i
\(898\) −8.14317 4.70146i −0.271741 0.156890i
\(899\) 0.371409 + 0.643299i 0.0123872 + 0.0214552i
\(900\) 1.24310 + 9.50626i 0.0414368 + 0.316875i
\(901\) −2.05202 + 3.55421i −0.0683628 + 0.118408i
\(902\) 0.0671674i 0.00223643i
\(903\) −7.72112 + 0.686142i −0.256943 + 0.0228334i
\(904\) −14.2512 −0.473989
\(905\) 13.4079 15.2754i 0.445695 0.507772i
\(906\) −1.28444 2.22471i −0.0426726 0.0739111i
\(907\) −3.69531 + 2.13349i −0.122701 + 0.0708414i −0.560094 0.828429i \(-0.689235\pi\)
0.437393 + 0.899270i \(0.355902\pi\)
\(908\) 14.9095 + 8.60802i 0.494790 + 0.285667i
\(909\) −16.0397 −0.532002
\(910\) 7.68520 + 0.834427i 0.254762 + 0.0276610i
\(911\) −28.5451 −0.945742 −0.472871 0.881132i \(-0.656782\pi\)
−0.472871 + 0.881132i \(0.656782\pi\)
\(912\) 5.03965 + 2.90964i 0.166879 + 0.0963479i
\(913\) −3.53058 + 2.03838i −0.116845 + 0.0674606i
\(914\) 5.37754 + 9.31417i 0.177873 + 0.308085i
\(915\) 12.2981 + 10.7946i 0.406563 + 0.356859i
\(916\) 9.75231 0.322226
\(917\) −8.05539 11.4709i −0.266012 0.378802i
\(918\) 1.59401i 0.0526101i
\(919\) −23.2822 + 40.3259i −0.768008 + 1.33023i 0.170634 + 0.985335i \(0.445419\pi\)
−0.938642 + 0.344894i \(0.887915\pi\)
\(920\) 6.16810 + 18.1967i 0.203356 + 0.599926i
\(921\) 1.12341 + 1.94580i 0.0370175 + 0.0641161i
\(922\) −7.05720 4.07448i −0.232417 0.134186i
\(923\) 17.1464i 0.564381i
\(924\) 15.3221 + 7.11934i 0.504060 + 0.234209i
\(925\) 14.8711 35.8138i 0.488959 1.17755i
\(926\) −1.03561 + 1.79372i −0.0340321 + 0.0589453i
\(927\) −4.58293 + 2.64596i −0.150523 + 0.0869046i
\(928\) 0.335019 0.193423i 0.0109975 0.00634943i
\(929\) 3.69774 6.40467i 0.121319 0.210130i −0.798969 0.601372i \(-0.794621\pi\)
0.920288 + 0.391242i \(0.127954\pi\)
\(930\) 3.94457 + 0.786409i 0.129348 + 0.0257874i
\(931\) 11.4188 2.04564i 0.374238 0.0670432i
\(932\) 41.8352i 1.37036i
\(933\) 24.7672 + 14.2994i 0.810843 + 0.468140i
\(934\) −1.73537 3.00574i −0.0567829 0.0983509i
\(935\) −39.1258 + 13.2624i −1.27955 + 0.433728i
\(936\) 2.55940 4.43301i 0.0836567 0.144898i
\(937\) 44.1988i 1.44391i −0.691939 0.721956i \(-0.743243\pi\)
0.691939 0.721956i \(-0.256757\pi\)
\(938\) 0.972585 2.09318i 0.0317560 0.0683447i
\(939\) −13.3285 −0.434960
\(940\) 20.5770 + 18.0614i 0.671149 + 0.589099i
\(941\) −18.0180 31.2080i −0.587369 1.01735i −0.994576 0.104017i \(-0.966830\pi\)
0.407206 0.913336i \(-0.366503\pi\)
\(942\) 0.832699 0.480759i 0.0271308 0.0156640i
\(943\) 0.464020 + 0.267902i 0.0151106 + 0.00872408i
\(944\) 5.72401 0.186301
\(945\) 5.41284 2.38772i 0.176080 0.0776726i
\(946\) 2.80366 0.0911548
\(947\) −29.6476 17.1170i −0.963417 0.556229i −0.0661943 0.997807i \(-0.521086\pi\)
−0.897223 + 0.441577i \(0.854419\pi\)
\(948\) −19.8275 + 11.4474i −0.643968 + 0.371795i
\(949\) −5.35504 9.27521i −0.173832 0.301086i
\(950\) −1.44776 1.89017i −0.0469716 0.0613251i
\(951\) −29.1925 −0.946633
\(952\) −16.4563 + 1.46240i −0.533353 + 0.0473967i
\(953\) 30.9689i 1.00318i 0.865105 + 0.501591i \(0.167252\pi\)
−0.865105 + 0.501591i \(0.832748\pi\)
\(954\) −0.106285 + 0.184091i −0.00344110 + 0.00596016i
\(955\) 14.7126 + 43.4039i 0.476088 + 1.40452i
\(956\) 7.14155 + 12.3695i 0.230974 + 0.400059i
\(957\) −0.342231 0.197587i −0.0110628 0.00638709i
\(958\) 5.78743i 0.186983i
\(959\) 3.48249 + 39.1883i 0.112455 + 1.26545i
\(960\) −2.66079 + 13.3463i −0.0858766 + 0.430751i
\(961\) −4.09508 + 7.09289i −0.132099 + 0.228803i
\(962\) −8.77646 + 5.06709i −0.282964 + 0.163370i
\(963\) 4.47018 2.58086i 0.144049 0.0831670i
\(964\) 23.1778 40.1451i 0.746506 1.29299i
\(965\) 3.73490 18.7340i 0.120231 0.603068i
\(966\) 4.74919 3.33510i 0.152803 0.107305i
\(967\) 21.0270i 0.676184i −0.941113 0.338092i \(-0.890218\pi\)
0.941113 0.338092i \(-0.109782\pi\)
\(968\) −0.0892209 0.0515117i −0.00286767 0.00165565i
\(969\) 4.59678 + 7.96187i 0.147670 + 0.255772i
\(970\) −0.627664 1.85169i −0.0201531 0.0594540i
\(971\) −22.3468 + 38.7058i −0.717144 + 1.24213i 0.244983 + 0.969527i \(0.421218\pi\)
−0.962127 + 0.272602i \(0.912116\pi\)
\(972\) 1.91744i 0.0615019i
\(973\) 10.6100 22.8346i 0.340141 0.732045i
\(974\) −11.4761 −0.367718
\(975\) 18.0511 13.8261i 0.578097 0.442790i
\(976\) 12.8484 + 22.2541i 0.411268 + 0.712337i
\(977\) 12.5029 7.21858i 0.400005 0.230943i −0.286481 0.958086i \(-0.592486\pi\)
0.686486 + 0.727143i \(0.259152\pi\)
\(978\) −3.92069 2.26361i −0.125370 0.0723824i
\(979\) −43.2956 −1.38373
\(980\) 14.4962 + 26.2797i 0.463063 + 0.839473i
\(981\) 3.24087 0.103473
\(982\) 7.86307 + 4.53974i 0.250921 + 0.144869i
\(983\) −14.5389 + 8.39401i −0.463717 + 0.267727i −0.713606 0.700547i \(-0.752939\pi\)
0.249889 + 0.968275i \(0.419606\pi\)
\(984\) −0.0395034 0.0684220i −0.00125932 0.00218121i
\(985\) −23.2056 20.3687i −0.739393 0.649000i
\(986\) 0.189140 0.00602345
\(987\) 7.11934 15.3221i 0.226611 0.487707i
\(988\) 14.4505i 0.459730i
\(989\) −11.1826 + 19.3688i −0.355585 + 0.615892i
\(990\) −2.02653 + 0.686930i −0.0644073 + 0.0218321i
\(991\) −20.0539 34.7344i −0.637033 1.10337i −0.986081 0.166268i \(-0.946828\pi\)
0.349048 0.937105i \(-0.386505\pi\)
\(992\) 17.6752 + 10.2048i 0.561188 + 0.324002i
\(993\) 24.8915i 0.789907i
\(994\) 2.34576 1.64730i 0.0744031 0.0522492i
\(995\) 8.31330 + 1.65738i 0.263549 + 0.0525425i
\(996\) −1.17358 + 2.03270i −0.0371862 + 0.0644084i
\(997\) −44.4447 + 25.6602i −1.40758 + 0.812666i −0.995154 0.0983259i \(-0.968651\pi\)
−0.412424 + 0.910992i \(0.635318\pi\)
\(998\) −9.90032 + 5.71595i −0.313389 + 0.180935i
\(999\) −3.87786 + 6.71665i −0.122690 + 0.212505i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.q.a.79.4 yes 16
3.2 odd 2 315.2.bf.b.289.5 16
4.3 odd 2 1680.2.di.d.289.7 16
5.2 odd 4 525.2.i.h.226.3 8
5.3 odd 4 525.2.i.k.226.2 8
5.4 even 2 inner 105.2.q.a.79.5 yes 16
7.2 even 3 735.2.d.d.589.5 8
7.3 odd 6 735.2.q.g.214.5 16
7.4 even 3 inner 105.2.q.a.4.5 yes 16
7.5 odd 6 735.2.d.e.589.5 8
7.6 odd 2 735.2.q.g.79.4 16
15.14 odd 2 315.2.bf.b.289.4 16
20.19 odd 2 1680.2.di.d.289.3 16
21.2 odd 6 2205.2.d.s.1324.4 8
21.5 even 6 2205.2.d.o.1324.4 8
21.11 odd 6 315.2.bf.b.109.4 16
28.11 odd 6 1680.2.di.d.529.3 16
35.2 odd 12 3675.2.a.bz.1.2 4
35.4 even 6 inner 105.2.q.a.4.4 16
35.9 even 6 735.2.d.d.589.4 8
35.12 even 12 3675.2.a.cb.1.2 4
35.18 odd 12 525.2.i.k.151.2 8
35.19 odd 6 735.2.d.e.589.4 8
35.23 odd 12 3675.2.a.bp.1.3 4
35.24 odd 6 735.2.q.g.214.4 16
35.32 odd 12 525.2.i.h.151.3 8
35.33 even 12 3675.2.a.bn.1.3 4
35.34 odd 2 735.2.q.g.79.5 16
105.44 odd 6 2205.2.d.s.1324.5 8
105.74 odd 6 315.2.bf.b.109.5 16
105.89 even 6 2205.2.d.o.1324.5 8
140.39 odd 6 1680.2.di.d.529.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.4 16 35.4 even 6 inner
105.2.q.a.4.5 yes 16 7.4 even 3 inner
105.2.q.a.79.4 yes 16 1.1 even 1 trivial
105.2.q.a.79.5 yes 16 5.4 even 2 inner
315.2.bf.b.109.4 16 21.11 odd 6
315.2.bf.b.109.5 16 105.74 odd 6
315.2.bf.b.289.4 16 15.14 odd 2
315.2.bf.b.289.5 16 3.2 odd 2
525.2.i.h.151.3 8 35.32 odd 12
525.2.i.h.226.3 8 5.2 odd 4
525.2.i.k.151.2 8 35.18 odd 12
525.2.i.k.226.2 8 5.3 odd 4
735.2.d.d.589.4 8 35.9 even 6
735.2.d.d.589.5 8 7.2 even 3
735.2.d.e.589.4 8 35.19 odd 6
735.2.d.e.589.5 8 7.5 odd 6
735.2.q.g.79.4 16 7.6 odd 2
735.2.q.g.79.5 16 35.34 odd 2
735.2.q.g.214.4 16 35.24 odd 6
735.2.q.g.214.5 16 7.3 odd 6
1680.2.di.d.289.3 16 20.19 odd 2
1680.2.di.d.289.7 16 4.3 odd 2
1680.2.di.d.529.3 16 28.11 odd 6
1680.2.di.d.529.7 16 140.39 odd 6
2205.2.d.o.1324.4 8 21.5 even 6
2205.2.d.o.1324.5 8 105.89 even 6
2205.2.d.s.1324.4 8 21.2 odd 6
2205.2.d.s.1324.5 8 105.44 odd 6
3675.2.a.bn.1.3 4 35.33 even 12
3675.2.a.bp.1.3 4 35.23 odd 12
3675.2.a.bz.1.2 4 35.2 odd 12
3675.2.a.cb.1.2 4 35.12 even 12