Properties

Label 315.2.bf.b.109.5
Level $315$
Weight $2$
Character 315.109
Analytic conductor $2.515$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(109,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.5
Root \(2.07845 + 0.556918i\) of defining polynomial
Character \(\chi\) \(=\) 315.109
Dual form 315.2.bf.b.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.248840 - 0.143668i) q^{2} +(-0.958719 + 1.66055i) q^{4} +(-1.47507 - 1.68052i) q^{5} +(1.11487 + 2.39939i) q^{7} +1.12562i q^{8} +(-0.608495 - 0.206261i) q^{10} +(-1.66520 + 2.88421i) q^{11} +4.54754i q^{13} +(0.622139 + 0.436894i) q^{14} +(-1.75572 - 3.04100i) q^{16} +(4.80431 + 2.77377i) q^{17} +(-0.828617 - 1.43521i) q^{19} +(4.20477 - 0.838284i) q^{20} +0.956942i q^{22} +(-6.61094 + 3.81683i) q^{23} +(-0.648315 + 4.95779i) q^{25} +(0.653336 + 1.13161i) q^{26} +(-5.05315 - 0.449051i) q^{28} -0.118657 q^{29} +(3.13010 - 5.42150i) q^{31} +(-2.82342 - 1.63010i) q^{32} +1.59401 q^{34} +(2.38772 - 5.41284i) q^{35} +(6.71665 - 3.87786i) q^{37} +(-0.412386 - 0.238091i) q^{38} +(1.89163 - 1.66037i) q^{40} -0.0701896 q^{41} -2.92981i q^{43} +(-3.19291 - 5.53029i) q^{44} +(-1.09671 + 1.89956i) q^{46} +(5.53029 - 3.19291i) q^{47} +(-4.51415 + 5.35000i) q^{49} +(0.550949 + 1.32684i) q^{50} +(-7.55142 - 4.35981i) q^{52} +(-0.640682 - 0.369898i) q^{53} +(7.30326 - 1.45601i) q^{55} +(-2.70080 + 1.25492i) q^{56} +(-0.0295266 + 0.0170472i) q^{58} +(0.815051 - 1.41171i) q^{59} +(3.65901 + 6.33759i) q^{61} -1.79878i q^{62} +6.08612 q^{64} +(7.64225 - 6.70796i) q^{65} +(-2.62934 - 1.51805i) q^{67} +(-9.21197 + 5.31853i) q^{68} +(-0.183490 - 1.68997i) q^{70} +3.77048 q^{71} +(2.03961 + 1.17757i) q^{73} +(1.11425 - 1.92993i) q^{74} +3.17764 q^{76} +(-8.77681 - 0.779956i) q^{77} +(-5.97016 - 10.3406i) q^{79} +(-2.52065 + 7.43623i) q^{80} +(-0.0174660 + 0.0100840i) q^{82} +1.22411i q^{83} +(-2.42533 - 12.1653i) q^{85} +(-0.420920 - 0.729054i) q^{86} +(-3.24652 - 1.87438i) q^{88} +(6.50007 + 11.2585i) q^{89} +(-10.9113 + 5.06990i) q^{91} -14.6371i q^{92} +(0.917438 - 1.58905i) q^{94} +(-1.18963 + 3.50954i) q^{95} -3.04306i q^{97} +(-0.354679 + 1.97983i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} - 4 q^{10} + 24 q^{14} - 24 q^{19} + 8 q^{20} - 4 q^{25} + 12 q^{26} - 24 q^{29} + 16 q^{31} + 16 q^{34} + 10 q^{35} + 32 q^{40} - 16 q^{41} - 20 q^{44} - 32 q^{46} - 40 q^{49}+ \cdots + 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.248840 0.143668i 0.175957 0.101589i −0.409435 0.912339i \(-0.634274\pi\)
0.585392 + 0.810751i \(0.300941\pi\)
\(3\) 0 0
\(4\) −0.958719 + 1.66055i −0.479360 + 0.830275i
\(5\) −1.47507 1.68052i −0.659673 0.751553i
\(6\) 0 0
\(7\) 1.11487 + 2.39939i 0.421380 + 0.906884i
\(8\) 1.12562i 0.397967i
\(9\) 0 0
\(10\) −0.608495 0.206261i −0.192423 0.0652254i
\(11\) −1.66520 + 2.88421i −0.502076 + 0.869621i 0.497921 + 0.867222i \(0.334097\pi\)
−0.999997 + 0.00239862i \(0.999236\pi\)
\(12\) 0 0
\(13\) 4.54754i 1.26126i 0.776083 + 0.630630i \(0.217204\pi\)
−0.776083 + 0.630630i \(0.782796\pi\)
\(14\) 0.622139 + 0.436894i 0.166274 + 0.116765i
\(15\) 0 0
\(16\) −1.75572 3.04100i −0.438931 0.760250i
\(17\) 4.80431 + 2.77377i 1.16522 + 0.672738i 0.952549 0.304386i \(-0.0984514\pi\)
0.212668 + 0.977125i \(0.431785\pi\)
\(18\) 0 0
\(19\) −0.828617 1.43521i −0.190098 0.329259i 0.755185 0.655512i \(-0.227547\pi\)
−0.945282 + 0.326253i \(0.894214\pi\)
\(20\) 4.20477 0.838284i 0.940216 0.187446i
\(21\) 0 0
\(22\) 0.956942i 0.204021i
\(23\) −6.61094 + 3.81683i −1.37848 + 0.795864i −0.991976 0.126425i \(-0.959650\pi\)
−0.386500 + 0.922289i \(0.626316\pi\)
\(24\) 0 0
\(25\) −0.648315 + 4.95779i −0.129663 + 0.991558i
\(26\) 0.653336 + 1.13161i 0.128130 + 0.221927i
\(27\) 0 0
\(28\) −5.05315 0.449051i −0.954956 0.0848627i
\(29\) −0.118657 −0.0220341 −0.0110170 0.999939i \(-0.503507\pi\)
−0.0110170 + 0.999939i \(0.503507\pi\)
\(30\) 0 0
\(31\) 3.13010 5.42150i 0.562183 0.973729i −0.435123 0.900371i \(-0.643295\pi\)
0.997306 0.0733583i \(-0.0233717\pi\)
\(32\) −2.82342 1.63010i −0.499115 0.288164i
\(33\) 0 0
\(34\) 1.59401 0.273370
\(35\) 2.38772 5.41284i 0.403599 0.914936i
\(36\) 0 0
\(37\) 6.71665 3.87786i 1.10421 0.637516i 0.166887 0.985976i \(-0.446628\pi\)
0.937324 + 0.348460i \(0.113295\pi\)
\(38\) −0.412386 0.238091i −0.0668979 0.0386235i
\(39\) 0 0
\(40\) 1.89163 1.66037i 0.299093 0.262528i
\(41\) −0.0701896 −0.0109618 −0.00548089 0.999985i \(-0.501745\pi\)
−0.00548089 + 0.999985i \(0.501745\pi\)
\(42\) 0 0
\(43\) 2.92981i 0.446792i −0.974728 0.223396i \(-0.928286\pi\)
0.974728 0.223396i \(-0.0717143\pi\)
\(44\) −3.19291 5.53029i −0.481350 0.833722i
\(45\) 0 0
\(46\) −1.09671 + 1.89956i −0.161701 + 0.280075i
\(47\) 5.53029 3.19291i 0.806675 0.465734i −0.0391247 0.999234i \(-0.512457\pi\)
0.845800 + 0.533500i \(0.179124\pi\)
\(48\) 0 0
\(49\) −4.51415 + 5.35000i −0.644879 + 0.764285i
\(50\) 0.550949 + 1.32684i 0.0779159 + 0.187643i
\(51\) 0 0
\(52\) −7.55142 4.35981i −1.04719 0.604597i
\(53\) −0.640682 0.369898i −0.0880044 0.0508094i 0.455352 0.890311i \(-0.349513\pi\)
−0.543356 + 0.839502i \(0.682847\pi\)
\(54\) 0 0
\(55\) 7.30326 1.45601i 0.984772 0.196329i
\(56\) −2.70080 + 1.25492i −0.360910 + 0.167695i
\(57\) 0 0
\(58\) −0.0295266 + 0.0170472i −0.00387704 + 0.00223841i
\(59\) 0.815051 1.41171i 0.106111 0.183789i −0.808081 0.589072i \(-0.799494\pi\)
0.914191 + 0.405283i \(0.132827\pi\)
\(60\) 0 0
\(61\) 3.65901 + 6.33759i 0.468488 + 0.811446i 0.999351 0.0360120i \(-0.0114655\pi\)
−0.530863 + 0.847458i \(0.678132\pi\)
\(62\) 1.79878i 0.228445i
\(63\) 0 0
\(64\) 6.08612 0.760765
\(65\) 7.64225 6.70796i 0.947904 0.832020i
\(66\) 0 0
\(67\) −2.62934 1.51805i −0.321224 0.185459i 0.330714 0.943731i \(-0.392711\pi\)
−0.651938 + 0.758272i \(0.726044\pi\)
\(68\) −9.21197 + 5.31853i −1.11712 + 0.644967i
\(69\) 0 0
\(70\) −0.183490 1.68997i −0.0219312 0.201990i
\(71\) 3.77048 0.447474 0.223737 0.974650i \(-0.428174\pi\)
0.223737 + 0.974650i \(0.428174\pi\)
\(72\) 0 0
\(73\) 2.03961 + 1.17757i 0.238718 + 0.137824i 0.614588 0.788849i \(-0.289322\pi\)
−0.375869 + 0.926673i \(0.622656\pi\)
\(74\) 1.11425 1.92993i 0.129529 0.224350i
\(75\) 0 0
\(76\) 3.17764 0.364501
\(77\) −8.77681 0.779956i −1.00021 0.0888843i
\(78\) 0 0
\(79\) −5.97016 10.3406i −0.671696 1.16341i −0.977423 0.211292i \(-0.932233\pi\)
0.305727 0.952119i \(-0.401101\pi\)
\(80\) −2.52065 + 7.43623i −0.281817 + 0.831396i
\(81\) 0 0
\(82\) −0.0174660 + 0.0100840i −0.00192880 + 0.00111359i
\(83\) 1.22411i 0.134363i 0.997741 + 0.0671817i \(0.0214007\pi\)
−0.997741 + 0.0671817i \(0.978599\pi\)
\(84\) 0 0
\(85\) −2.42533 12.1653i −0.263064 1.31951i
\(86\) −0.420920 0.729054i −0.0453889 0.0786160i
\(87\) 0 0
\(88\) −3.24652 1.87438i −0.346080 0.199810i
\(89\) 6.50007 + 11.2585i 0.689006 + 1.19339i 0.972160 + 0.234319i \(0.0752862\pi\)
−0.283153 + 0.959075i \(0.591381\pi\)
\(90\) 0 0
\(91\) −10.9113 + 5.06990i −1.14382 + 0.531470i
\(92\) 14.6371i 1.52602i
\(93\) 0 0
\(94\) 0.917438 1.58905i 0.0946265 0.163898i
\(95\) −1.18963 + 3.50954i −0.122053 + 0.360072i
\(96\) 0 0
\(97\) 3.04306i 0.308976i −0.987995 0.154488i \(-0.950627\pi\)
0.987995 0.154488i \(-0.0493728\pi\)
\(98\) −0.354679 + 1.97983i −0.0358280 + 0.199993i
\(99\) 0 0
\(100\) −7.61111 5.82969i −0.761111 0.582969i
\(101\) 8.01983 13.8907i 0.798002 1.38218i −0.122913 0.992417i \(-0.539224\pi\)
0.920915 0.389763i \(-0.127443\pi\)
\(102\) 0 0
\(103\) −4.58293 + 2.64596i −0.451570 + 0.260714i −0.708493 0.705718i \(-0.750625\pi\)
0.256923 + 0.966432i \(0.417291\pi\)
\(104\) −5.11880 −0.501940
\(105\) 0 0
\(106\) −0.212570 −0.0206466
\(107\) −4.47018 + 2.58086i −0.432148 + 0.249501i −0.700261 0.713886i \(-0.746933\pi\)
0.268113 + 0.963387i \(0.413600\pi\)
\(108\) 0 0
\(109\) 1.62043 2.80668i 0.155209 0.268831i −0.777926 0.628356i \(-0.783728\pi\)
0.933135 + 0.359525i \(0.117061\pi\)
\(110\) 1.60816 1.41156i 0.153332 0.134587i
\(111\) 0 0
\(112\) 5.33915 7.60297i 0.504503 0.718413i
\(113\) 12.6608i 1.19103i 0.803345 + 0.595513i \(0.203051\pi\)
−0.803345 + 0.595513i \(0.796949\pi\)
\(114\) 0 0
\(115\) 16.1659 + 5.47973i 1.50748 + 0.510988i
\(116\) 0.113759 0.197036i 0.0105622 0.0182943i
\(117\) 0 0
\(118\) 0.468387i 0.0431185i
\(119\) −1.29920 + 14.6198i −0.119097 + 1.34019i
\(120\) 0 0
\(121\) −0.0457629 0.0792637i −0.00416027 0.00720579i
\(122\) 1.82102 + 1.05136i 0.164867 + 0.0951861i
\(123\) 0 0
\(124\) 6.00178 + 10.3954i 0.538976 + 0.933533i
\(125\) 9.28799 6.22360i 0.830743 0.556656i
\(126\) 0 0
\(127\) 16.5475i 1.46836i 0.678957 + 0.734178i \(0.262432\pi\)
−0.678957 + 0.734178i \(0.737568\pi\)
\(128\) 7.16131 4.13458i 0.632976 0.365449i
\(129\) 0 0
\(130\) 0.937979 2.76715i 0.0822662 0.242696i
\(131\) −2.64893 4.58808i −0.231438 0.400862i 0.726794 0.686856i \(-0.241010\pi\)
−0.958231 + 0.285994i \(0.907676\pi\)
\(132\) 0 0
\(133\) 2.51982 3.58824i 0.218496 0.311140i
\(134\) −0.872379 −0.0753621
\(135\) 0 0
\(136\) −3.12221 + 5.40783i −0.267727 + 0.463718i
\(137\) 12.8779 + 7.43507i 1.10023 + 0.635221i 0.936283 0.351247i \(-0.114242\pi\)
0.163952 + 0.986468i \(0.447576\pi\)
\(138\) 0 0
\(139\) 9.51685 0.807209 0.403605 0.914934i \(-0.367757\pi\)
0.403605 + 0.914934i \(0.367757\pi\)
\(140\) 6.69913 + 9.15432i 0.566180 + 0.773681i
\(141\) 0 0
\(142\) 0.938247 0.541697i 0.0787359 0.0454582i
\(143\) −13.1160 7.57255i −1.09682 0.633249i
\(144\) 0 0
\(145\) 0.175028 + 0.199406i 0.0145353 + 0.0165598i
\(146\) 0.676716 0.0560054
\(147\) 0 0
\(148\) 14.8711i 1.22240i
\(149\) −5.68502 9.84675i −0.465735 0.806677i 0.533499 0.845801i \(-0.320877\pi\)
−0.999234 + 0.0391236i \(0.987543\pi\)
\(150\) 0 0
\(151\) −4.47016 + 7.74255i −0.363777 + 0.630080i −0.988579 0.150703i \(-0.951846\pi\)
0.624802 + 0.780783i \(0.285180\pi\)
\(152\) 1.61550 0.932708i 0.131034 0.0756526i
\(153\) 0 0
\(154\) −2.29608 + 1.06686i −0.185023 + 0.0859701i
\(155\) −13.7281 + 2.73690i −1.10267 + 0.219833i
\(156\) 0 0
\(157\) 2.89800 + 1.67316i 0.231286 + 0.133533i 0.611165 0.791503i \(-0.290701\pi\)
−0.379879 + 0.925036i \(0.624035\pi\)
\(158\) −2.97123 1.71544i −0.236379 0.136473i
\(159\) 0 0
\(160\) 1.42533 + 7.14934i 0.112682 + 0.565205i
\(161\) −16.5284 11.6070i −1.30262 0.914758i
\(162\) 0 0
\(163\) −13.6450 + 7.87793i −1.06876 + 0.617047i −0.927842 0.372974i \(-0.878338\pi\)
−0.140916 + 0.990022i \(0.545005\pi\)
\(164\) 0.0672922 0.116553i 0.00525463 0.00910129i
\(165\) 0 0
\(166\) 0.175865 + 0.304608i 0.0136498 + 0.0236421i
\(167\) 22.5942i 1.74839i 0.485577 + 0.874194i \(0.338610\pi\)
−0.485577 + 0.874194i \(0.661390\pi\)
\(168\) 0 0
\(169\) −7.68012 −0.590779
\(170\) −2.35128 2.67877i −0.180335 0.205452i
\(171\) 0 0
\(172\) 4.86510 + 2.80887i 0.370960 + 0.214174i
\(173\) 7.38391 4.26310i 0.561388 0.324118i −0.192314 0.981333i \(-0.561599\pi\)
0.753703 + 0.657216i \(0.228266\pi\)
\(174\) 0 0
\(175\) −12.6185 + 3.97171i −0.953866 + 0.300233i
\(176\) 11.6945 0.881506
\(177\) 0 0
\(178\) 3.23496 + 1.86770i 0.242470 + 0.139990i
\(179\) 5.89031 10.2023i 0.440262 0.762557i −0.557446 0.830213i \(-0.688219\pi\)
0.997709 + 0.0676564i \(0.0215522\pi\)
\(180\) 0 0
\(181\) 9.08967 0.675630 0.337815 0.941213i \(-0.390312\pi\)
0.337815 + 0.941213i \(0.390312\pi\)
\(182\) −1.98679 + 2.82920i −0.147271 + 0.209714i
\(183\) 0 0
\(184\) −4.29630 7.44141i −0.316727 0.548588i
\(185\) −16.4244 5.56736i −1.20755 0.409320i
\(186\) 0 0
\(187\) −16.0002 + 9.23775i −1.17005 + 0.675531i
\(188\) 12.2444i 0.893016i
\(189\) 0 0
\(190\) 0.208182 + 1.04423i 0.0151031 + 0.0757562i
\(191\) 10.2478 + 17.7498i 0.741507 + 1.28433i 0.951809 + 0.306692i \(0.0992220\pi\)
−0.210302 + 0.977637i \(0.567445\pi\)
\(192\) 0 0
\(193\) 7.39842 + 4.27148i 0.532550 + 0.307468i 0.742054 0.670340i \(-0.233852\pi\)
−0.209504 + 0.977808i \(0.567185\pi\)
\(194\) −0.437190 0.757235i −0.0313884 0.0543663i
\(195\) 0 0
\(196\) −4.55613 12.6251i −0.325438 0.901794i
\(197\) 13.8086i 0.983820i −0.870646 0.491910i \(-0.836299\pi\)
0.870646 0.491910i \(-0.163701\pi\)
\(198\) 0 0
\(199\) 1.89549 3.28309i 0.134368 0.232732i −0.790988 0.611832i \(-0.790433\pi\)
0.925356 + 0.379100i \(0.123766\pi\)
\(200\) −5.58059 0.729756i −0.394607 0.0516016i
\(201\) 0 0
\(202\) 4.60877i 0.324272i
\(203\) −0.132287 0.284705i −0.00928471 0.0199824i
\(204\) 0 0
\(205\) 0.103535 + 0.117955i 0.00723119 + 0.00823836i
\(206\) −0.760278 + 1.31684i −0.0529711 + 0.0917486i
\(207\) 0 0
\(208\) 13.8291 7.98422i 0.958874 0.553606i
\(209\) 5.51924 0.381774
\(210\) 0 0
\(211\) −0.114416 −0.00787674 −0.00393837 0.999992i \(-0.501254\pi\)
−0.00393837 + 0.999992i \(0.501254\pi\)
\(212\) 1.22847 0.709256i 0.0843715 0.0487119i
\(213\) 0 0
\(214\) −0.741573 + 1.28444i −0.0506929 + 0.0878026i
\(215\) −4.92361 + 4.32169i −0.335788 + 0.294737i
\(216\) 0 0
\(217\) 16.4979 + 1.46610i 1.11995 + 0.0995253i
\(218\) 0.931218i 0.0630700i
\(219\) 0 0
\(220\) −4.58399 + 13.5233i −0.309053 + 0.911744i
\(221\) −12.6138 + 21.8478i −0.848498 + 1.46964i
\(222\) 0 0
\(223\) 7.86673i 0.526795i −0.964687 0.263398i \(-0.915157\pi\)
0.964687 0.263398i \(-0.0848431\pi\)
\(224\) 0.763518 8.59183i 0.0510147 0.574066i
\(225\) 0 0
\(226\) 1.81895 + 3.15051i 0.120995 + 0.209569i
\(227\) 7.77575 + 4.48933i 0.516095 + 0.297967i 0.735335 0.677703i \(-0.237025\pi\)
−0.219241 + 0.975671i \(0.570358\pi\)
\(228\) 0 0
\(229\) −2.54306 4.40471i −0.168050 0.291071i 0.769684 0.638425i \(-0.220414\pi\)
−0.937734 + 0.347354i \(0.887080\pi\)
\(230\) 4.80999 0.958942i 0.317161 0.0632308i
\(231\) 0 0
\(232\) 0.133563i 0.00876883i
\(233\) 18.8952 10.9091i 1.23786 0.714681i 0.269207 0.963082i \(-0.413239\pi\)
0.968657 + 0.248401i \(0.0799052\pi\)
\(234\) 0 0
\(235\) −13.5233 4.58399i −0.882166 0.299027i
\(236\) 1.56281 + 2.70687i 0.101730 + 0.176202i
\(237\) 0 0
\(238\) 1.77710 + 3.82465i 0.115193 + 0.247915i
\(239\) 7.44905 0.481839 0.240920 0.970545i \(-0.422551\pi\)
0.240920 + 0.970545i \(0.422551\pi\)
\(240\) 0 0
\(241\) 12.0879 20.9368i 0.778650 1.34866i −0.154070 0.988060i \(-0.549238\pi\)
0.932720 0.360601i \(-0.117428\pi\)
\(242\) −0.0227753 0.0131493i −0.00146405 0.000845271i
\(243\) 0 0
\(244\) −14.0319 −0.898297
\(245\) 15.6495 0.305506i 0.999810 0.0195180i
\(246\) 0 0
\(247\) 6.52666 3.76817i 0.415281 0.239763i
\(248\) 6.10255 + 3.52331i 0.387512 + 0.223730i
\(249\) 0 0
\(250\) 1.41709 2.88307i 0.0896249 0.182341i
\(251\) −6.00200 −0.378843 −0.189421 0.981896i \(-0.560661\pi\)
−0.189421 + 0.981896i \(0.560661\pi\)
\(252\) 0 0
\(253\) 25.4231i 1.59834i
\(254\) 2.37735 + 4.11769i 0.149168 + 0.258367i
\(255\) 0 0
\(256\) −4.89810 + 8.48376i −0.306131 + 0.530235i
\(257\) −6.35139 + 3.66697i −0.396189 + 0.228740i −0.684838 0.728695i \(-0.740127\pi\)
0.288650 + 0.957435i \(0.406794\pi\)
\(258\) 0 0
\(259\) 16.7927 + 11.7926i 1.04345 + 0.732755i
\(260\) 3.81213 + 19.1214i 0.236418 + 1.18586i
\(261\) 0 0
\(262\) −1.31832 0.761132i −0.0814460 0.0470229i
\(263\) −8.21661 4.74386i −0.506658 0.292519i 0.224801 0.974405i \(-0.427827\pi\)
−0.731459 + 0.681886i \(0.761160\pi\)
\(264\) 0 0
\(265\) 0.323431 + 1.62231i 0.0198682 + 0.0996575i
\(266\) 0.111519 1.25492i 0.00683766 0.0769438i
\(267\) 0 0
\(268\) 5.04159 2.91076i 0.307964 0.177803i
\(269\) −8.02423 + 13.8984i −0.489246 + 0.847399i −0.999923 0.0123733i \(-0.996061\pi\)
0.510677 + 0.859772i \(0.329395\pi\)
\(270\) 0 0
\(271\) −12.0845 20.9309i −0.734080 1.27146i −0.955126 0.296201i \(-0.904280\pi\)
0.221045 0.975264i \(-0.429053\pi\)
\(272\) 19.4799i 1.18114i
\(273\) 0 0
\(274\) 4.27272 0.258125
\(275\) −13.2197 10.1256i −0.797179 0.610595i
\(276\) 0 0
\(277\) −20.1071 11.6088i −1.20812 0.697508i −0.245771 0.969328i \(-0.579041\pi\)
−0.962348 + 0.271820i \(0.912374\pi\)
\(278\) 2.36818 1.36727i 0.142034 0.0820032i
\(279\) 0 0
\(280\) 6.09280 + 2.68767i 0.364114 + 0.160619i
\(281\) −12.4472 −0.742538 −0.371269 0.928525i \(-0.621077\pi\)
−0.371269 + 0.928525i \(0.621077\pi\)
\(282\) 0 0
\(283\) −7.50649 4.33388i −0.446215 0.257622i 0.260016 0.965604i \(-0.416272\pi\)
−0.706230 + 0.707982i \(0.749606\pi\)
\(284\) −3.61483 + 6.26107i −0.214501 + 0.371526i
\(285\) 0 0
\(286\) −4.35173 −0.257323
\(287\) −0.0782520 0.168412i −0.00461907 0.00994107i
\(288\) 0 0
\(289\) 6.88760 + 11.9297i 0.405153 + 0.701746i
\(290\) 0.0722022 + 0.0244743i 0.00423986 + 0.00143718i
\(291\) 0 0
\(292\) −3.91083 + 2.25792i −0.228864 + 0.132135i
\(293\) 27.0063i 1.57772i −0.614571 0.788862i \(-0.710671\pi\)
0.614571 0.788862i \(-0.289329\pi\)
\(294\) 0 0
\(295\) −3.57467 + 0.712664i −0.208125 + 0.0414929i
\(296\) 4.36500 + 7.56040i 0.253710 + 0.439439i
\(297\) 0 0
\(298\) −2.82932 1.63351i −0.163898 0.0946267i
\(299\) −17.3572 30.0635i −1.00379 1.73862i
\(300\) 0 0
\(301\) 7.02976 3.26634i 0.405189 0.188269i
\(302\) 2.56888i 0.147822i
\(303\) 0 0
\(304\) −2.90964 + 5.03965i −0.166879 + 0.289044i
\(305\) 5.25316 15.4975i 0.300795 0.887382i
\(306\) 0 0
\(307\) 2.24681i 0.128232i 0.997942 + 0.0641161i \(0.0204228\pi\)
−0.997942 + 0.0641161i \(0.979577\pi\)
\(308\) 9.70965 13.8266i 0.553259 0.787842i
\(309\) 0 0
\(310\) −3.02289 + 2.65333i −0.171689 + 0.150699i
\(311\) 14.2994 24.7672i 0.810843 1.40442i −0.101432 0.994842i \(-0.532343\pi\)
0.912275 0.409578i \(-0.134324\pi\)
\(312\) 0 0
\(313\) 11.5429 6.66427i 0.652441 0.376687i −0.136950 0.990578i \(-0.543730\pi\)
0.789391 + 0.613891i \(0.210397\pi\)
\(314\) 0.961518 0.0542616
\(315\) 0 0
\(316\) 22.8948 1.28794
\(317\) −25.2815 + 14.5963i −1.41995 + 0.819808i −0.996294 0.0860147i \(-0.972587\pi\)
−0.423656 + 0.905823i \(0.639253\pi\)
\(318\) 0 0
\(319\) 0.197587 0.342231i 0.0110628 0.0191613i
\(320\) −8.97747 10.2279i −0.501856 0.571755i
\(321\) 0 0
\(322\) −5.78047 0.513685i −0.322133 0.0286266i
\(323\) 9.19357i 0.511544i
\(324\) 0 0
\(325\) −22.5458 2.94824i −1.25061 0.163539i
\(326\) −2.26361 + 3.92069i −0.125370 + 0.217147i
\(327\) 0 0
\(328\) 0.0790069i 0.00436243i
\(329\) 13.8266 + 9.70965i 0.762283 + 0.535310i
\(330\) 0 0
\(331\) 12.4457 + 21.5566i 0.684080 + 1.18486i 0.973725 + 0.227727i \(0.0731293\pi\)
−0.289646 + 0.957134i \(0.593537\pi\)
\(332\) −2.03270 1.17358i −0.111559 0.0644084i
\(333\) 0 0
\(334\) 3.24605 + 5.62233i 0.177616 + 0.307640i
\(335\) 1.32735 + 6.65789i 0.0725209 + 0.363759i
\(336\) 0 0
\(337\) 4.72659i 0.257474i 0.991679 + 0.128737i \(0.0410923\pi\)
−0.991679 + 0.128737i \(0.958908\pi\)
\(338\) −1.91112 + 1.10339i −0.103951 + 0.0600164i
\(339\) 0 0
\(340\) 22.5263 + 7.63570i 1.22166 + 0.414104i
\(341\) 10.4245 + 18.0557i 0.564517 + 0.977772i
\(342\) 0 0
\(343\) −17.8694 4.86668i −0.964857 0.262776i
\(344\) 3.29785 0.177808
\(345\) 0 0
\(346\) 1.22494 2.12166i 0.0658533 0.114061i
\(347\) −12.2615 7.07915i −0.658229 0.380029i 0.133373 0.991066i \(-0.457419\pi\)
−0.791602 + 0.611037i \(0.790753\pi\)
\(348\) 0 0
\(349\) −5.04930 −0.270283 −0.135141 0.990826i \(-0.543149\pi\)
−0.135141 + 0.990826i \(0.543149\pi\)
\(350\) −2.56937 + 2.80119i −0.137339 + 0.149730i
\(351\) 0 0
\(352\) 9.40310 5.42888i 0.501187 0.289360i
\(353\) 13.9417 + 8.04924i 0.742042 + 0.428418i 0.822811 0.568315i \(-0.192404\pi\)
−0.0807694 + 0.996733i \(0.525738\pi\)
\(354\) 0 0
\(355\) −5.56174 6.33638i −0.295186 0.336300i
\(356\) −24.9270 −1.32113
\(357\) 0 0
\(358\) 3.38499i 0.178902i
\(359\) −0.153241 0.265421i −0.00808776 0.0140084i 0.861953 0.506988i \(-0.169241\pi\)
−0.870041 + 0.492979i \(0.835908\pi\)
\(360\) 0 0
\(361\) 8.12679 14.0760i 0.427726 0.740843i
\(362\) 2.26188 1.30589i 0.118882 0.0686363i
\(363\) 0 0
\(364\) 2.04208 22.9794i 0.107034 1.20445i
\(365\) −1.02964 5.16461i −0.0538940 0.270328i
\(366\) 0 0
\(367\) −20.4813 11.8249i −1.06911 0.617253i −0.141174 0.989985i \(-0.545088\pi\)
−0.927939 + 0.372732i \(0.878421\pi\)
\(368\) 23.2140 + 13.4026i 1.21011 + 0.698658i
\(369\) 0 0
\(370\) −4.88690 + 0.974276i −0.254058 + 0.0506502i
\(371\) 0.173255 1.94963i 0.00899496 0.101220i
\(372\) 0 0
\(373\) 16.3140 9.41887i 0.844705 0.487691i −0.0141557 0.999900i \(-0.504506\pi\)
0.858861 + 0.512209i \(0.171173\pi\)
\(374\) −2.65434 + 4.59744i −0.137252 + 0.237728i
\(375\) 0 0
\(376\) 3.59401 + 6.22500i 0.185347 + 0.321030i
\(377\) 0.539598i 0.0277907i
\(378\) 0 0
\(379\) −14.2534 −0.732147 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(380\) −4.68726 5.34010i −0.240451 0.273941i
\(381\) 0 0
\(382\) 5.10014 + 2.94457i 0.260946 + 0.150657i
\(383\) 21.6995 12.5282i 1.10879 0.640161i 0.170276 0.985396i \(-0.445534\pi\)
0.938516 + 0.345235i \(0.112201\pi\)
\(384\) 0 0
\(385\) 11.6357 + 15.9001i 0.593010 + 0.810345i
\(386\) 2.45470 0.124941
\(387\) 0 0
\(388\) 5.05315 + 2.91744i 0.256535 + 0.148110i
\(389\) 6.73590 11.6669i 0.341524 0.591536i −0.643192 0.765705i \(-0.722390\pi\)
0.984716 + 0.174169i \(0.0557238\pi\)
\(390\) 0 0
\(391\) −42.3480 −2.14163
\(392\) −6.02206 5.08122i −0.304160 0.256640i
\(393\) 0 0
\(394\) −1.98385 3.43613i −0.0999449 0.173110i
\(395\) −8.57123 + 25.2862i −0.431265 + 1.27229i
\(396\) 0 0
\(397\) 15.9768 9.22418i 0.801850 0.462948i −0.0422675 0.999106i \(-0.513458\pi\)
0.844118 + 0.536158i \(0.180125\pi\)
\(398\) 1.08929i 0.0546010i
\(399\) 0 0
\(400\) 16.2149 6.73298i 0.810745 0.336649i
\(401\) 12.7093 + 22.0131i 0.634670 + 1.09928i 0.986585 + 0.163249i \(0.0521973\pi\)
−0.351915 + 0.936032i \(0.614469\pi\)
\(402\) 0 0
\(403\) 24.6545 + 14.2343i 1.22813 + 0.709059i
\(404\) 15.3775 + 26.6346i 0.765060 + 1.32512i
\(405\) 0 0
\(406\) −0.0738212 0.0518406i −0.00366368 0.00257281i
\(407\) 25.8296i 1.28033i
\(408\) 0 0
\(409\) −9.36556 + 16.2216i −0.463097 + 0.802108i −0.999113 0.0420997i \(-0.986595\pi\)
0.536016 + 0.844208i \(0.319929\pi\)
\(410\) 0.0427100 + 0.0144774i 0.00210930 + 0.000714986i
\(411\) 0 0
\(412\) 10.1469i 0.499903i
\(413\) 4.29592 + 0.381759i 0.211388 + 0.0187851i
\(414\) 0 0
\(415\) 2.05714 1.80565i 0.100981 0.0886360i
\(416\) 7.41296 12.8396i 0.363450 0.629514i
\(417\) 0 0
\(418\) 1.37341 0.792938i 0.0671756 0.0387839i
\(419\) 2.04745 0.100024 0.0500121 0.998749i \(-0.484074\pi\)
0.0500121 + 0.998749i \(0.484074\pi\)
\(420\) 0 0
\(421\) −16.0512 −0.782287 −0.391144 0.920330i \(-0.627920\pi\)
−0.391144 + 0.920330i \(0.627920\pi\)
\(422\) −0.0284714 + 0.0164380i −0.00138596 + 0.000800187i
\(423\) 0 0
\(424\) 0.416364 0.721164i 0.0202204 0.0350228i
\(425\) −16.8665 + 22.0205i −0.818144 + 1.06815i
\(426\) 0 0
\(427\) −11.1271 + 15.8450i −0.538476 + 0.766791i
\(428\) 9.89727i 0.478403i
\(429\) 0 0
\(430\) −0.604305 + 1.78277i −0.0291422 + 0.0859730i
\(431\) 18.3063 31.7075i 0.881784 1.52729i 0.0324277 0.999474i \(-0.489676\pi\)
0.849356 0.527820i \(-0.176991\pi\)
\(432\) 0 0
\(433\) 18.0047i 0.865252i 0.901574 + 0.432626i \(0.142413\pi\)
−0.901574 + 0.432626i \(0.857587\pi\)
\(434\) 4.31598 2.00540i 0.207174 0.0962622i
\(435\) 0 0
\(436\) 3.10708 + 5.38163i 0.148802 + 0.257733i
\(437\) 10.9559 + 6.32538i 0.524090 + 0.302584i
\(438\) 0 0
\(439\) −9.68731 16.7789i −0.462350 0.800814i 0.536727 0.843756i \(-0.319660\pi\)
−0.999078 + 0.0429418i \(0.986327\pi\)
\(440\) 1.63892 + 8.22070i 0.0781324 + 0.391907i
\(441\) 0 0
\(442\) 7.24881i 0.344791i
\(443\) −14.2396 + 8.22121i −0.676542 + 0.390602i −0.798551 0.601927i \(-0.794400\pi\)
0.122009 + 0.992529i \(0.461066\pi\)
\(444\) 0 0
\(445\) 9.33201 27.5306i 0.442380 1.30507i
\(446\) −1.13020 1.95756i −0.0535164 0.0926931i
\(447\) 0 0
\(448\) 6.78520 + 14.6030i 0.320571 + 0.689926i
\(449\) −32.7245 −1.54436 −0.772182 0.635401i \(-0.780835\pi\)
−0.772182 + 0.635401i \(0.780835\pi\)
\(450\) 0 0
\(451\) 0.116880 0.202441i 0.00550365 0.00953259i
\(452\) −21.0239 12.1381i −0.988880 0.570930i
\(453\) 0 0
\(454\) 2.57989 0.121080
\(455\) 24.6151 + 10.8583i 1.15397 + 0.509043i
\(456\) 0 0
\(457\) −32.4156 + 18.7152i −1.51634 + 0.875459i −0.516523 + 0.856273i \(0.672774\pi\)
−0.999816 + 0.0191857i \(0.993893\pi\)
\(458\) −1.26563 0.730712i −0.0591390 0.0341439i
\(459\) 0 0
\(460\) −24.5979 + 21.5908i −1.14688 + 1.00667i
\(461\) −28.3604 −1.32088 −0.660438 0.750881i \(-0.729629\pi\)
−0.660438 + 0.750881i \(0.729629\pi\)
\(462\) 0 0
\(463\) 7.20833i 0.334999i 0.985872 + 0.167500i \(0.0535693\pi\)
−0.985872 + 0.167500i \(0.946431\pi\)
\(464\) 0.208329 + 0.360836i 0.00967143 + 0.0167514i
\(465\) 0 0
\(466\) 3.13458 5.42926i 0.145207 0.251506i
\(467\) −10.4607 + 6.03950i −0.484065 + 0.279475i −0.722109 0.691779i \(-0.756827\pi\)
0.238044 + 0.971254i \(0.423494\pi\)
\(468\) 0 0
\(469\) 0.711033 8.00122i 0.0328325 0.369462i
\(470\) −4.02372 + 0.802189i −0.185601 + 0.0370022i
\(471\) 0 0
\(472\) 1.58905 + 0.917438i 0.0731419 + 0.0422285i
\(473\) 8.45018 + 4.87871i 0.388540 + 0.224323i
\(474\) 0 0
\(475\) 7.65266 3.17764i 0.351128 0.145800i
\(476\) −23.0313 16.1737i −1.05564 0.741319i
\(477\) 0 0
\(478\) 1.85362 1.07019i 0.0847827 0.0489493i
\(479\) −10.0708 + 17.4432i −0.460149 + 0.797001i −0.998968 0.0454204i \(-0.985537\pi\)
0.538819 + 0.842421i \(0.318871\pi\)
\(480\) 0 0
\(481\) 17.6347 + 30.5443i 0.804075 + 1.39270i
\(482\) 6.94657i 0.316408i
\(483\) 0 0
\(484\) 0.175495 0.00797705
\(485\) −5.11393 + 4.48874i −0.232212 + 0.203823i
\(486\) 0 0
\(487\) 34.5887 + 19.9698i 1.56737 + 0.904919i 0.996475 + 0.0838930i \(0.0267354\pi\)
0.570891 + 0.821026i \(0.306598\pi\)
\(488\) −7.13372 + 4.11866i −0.322928 + 0.186443i
\(489\) 0 0
\(490\) 3.85033 2.32435i 0.173940 0.105004i
\(491\) 31.5989 1.42604 0.713019 0.701145i \(-0.247327\pi\)
0.713019 + 0.701145i \(0.247327\pi\)
\(492\) 0 0
\(493\) −0.570066 0.329127i −0.0256745 0.0148232i
\(494\) 1.08273 1.87534i 0.0487143 0.0843757i
\(495\) 0 0
\(496\) −21.9824 −0.987037
\(497\) 4.20358 + 9.04686i 0.188556 + 0.405807i
\(498\) 0 0
\(499\) 19.8929 + 34.4556i 0.890530 + 1.54244i 0.839241 + 0.543759i \(0.183000\pi\)
0.0512890 + 0.998684i \(0.483667\pi\)
\(500\) 1.43002 + 21.3899i 0.0639525 + 0.956584i
\(501\) 0 0
\(502\) −1.49354 + 0.862295i −0.0666599 + 0.0384861i
\(503\) 12.8734i 0.573995i −0.957931 0.286997i \(-0.907343\pi\)
0.957931 0.286997i \(-0.0926571\pi\)
\(504\) 0 0
\(505\) −35.1735 + 7.01237i −1.56520 + 0.312046i
\(506\) −3.65248 6.32628i −0.162373 0.281238i
\(507\) 0 0
\(508\) −27.4780 15.8644i −1.21914 0.703871i
\(509\) −16.6981 28.9219i −0.740128 1.28194i −0.952437 0.304737i \(-0.901431\pi\)
0.212308 0.977203i \(-0.431902\pi\)
\(510\) 0 0
\(511\) −0.551558 + 6.20665i −0.0243995 + 0.274566i
\(512\) 19.3531i 0.855296i
\(513\) 0 0
\(514\) −1.05365 + 1.82498i −0.0464746 + 0.0804965i
\(515\) 11.2068 + 3.79874i 0.493828 + 0.167392i
\(516\) 0 0
\(517\) 21.2673i 0.935335i
\(518\) 5.87290 + 0.521899i 0.258041 + 0.0229309i
\(519\) 0 0
\(520\) 7.55061 + 8.60227i 0.331116 + 0.377234i
\(521\) 6.77589 11.7362i 0.296857 0.514172i −0.678558 0.734547i \(-0.737395\pi\)
0.975415 + 0.220375i \(0.0707281\pi\)
\(522\) 0 0
\(523\) −17.5052 + 10.1066i −0.765450 + 0.441933i −0.831249 0.555900i \(-0.812374\pi\)
0.0657991 + 0.997833i \(0.479040\pi\)
\(524\) 10.1583 0.443768
\(525\) 0 0
\(526\) −2.72616 −0.118866
\(527\) 30.0760 17.3644i 1.31013 0.756404i
\(528\) 0 0
\(529\) 17.6364 30.5471i 0.766798 1.32813i
\(530\) 0.313556 + 0.357228i 0.0136200 + 0.0155170i
\(531\) 0 0
\(532\) 3.54264 + 7.62441i 0.153593 + 0.330560i
\(533\) 0.319190i 0.0138257i
\(534\) 0 0
\(535\) 10.9310 + 3.70528i 0.472590 + 0.160193i
\(536\) 1.70875 2.95963i 0.0738066 0.127837i
\(537\) 0 0
\(538\) 4.61130i 0.198807i
\(539\) −7.91354 21.9285i −0.340860 0.944529i
\(540\) 0 0
\(541\) 16.4854 + 28.5535i 0.708762 + 1.22761i 0.965317 + 0.261082i \(0.0840794\pi\)
−0.256554 + 0.966530i \(0.582587\pi\)
\(542\) −6.01421 3.47231i −0.258332 0.149148i
\(543\) 0 0
\(544\) −9.04306 15.6630i −0.387718 0.671547i
\(545\) −7.10694 + 1.41688i −0.304428 + 0.0606923i
\(546\) 0 0
\(547\) 24.6221i 1.05277i −0.850248 0.526383i \(-0.823548\pi\)
0.850248 0.526383i \(-0.176452\pi\)
\(548\) −24.6926 + 14.2563i −1.05482 + 0.608998i
\(549\) 0 0
\(550\) −4.74432 0.620399i −0.202298 0.0264539i
\(551\) 0.0983213 + 0.170297i 0.00418863 + 0.00725491i
\(552\) 0 0
\(553\) 18.1553 25.8532i 0.772041 1.09939i
\(554\) −6.67127 −0.283435
\(555\) 0 0
\(556\) −9.12399 + 15.8032i −0.386943 + 0.670206i
\(557\) 20.7796 + 11.9971i 0.880460 + 0.508334i 0.870810 0.491620i \(-0.163595\pi\)
0.00964963 + 0.999953i \(0.496928\pi\)
\(558\) 0 0
\(559\) 13.3234 0.563521
\(560\) −20.6526 + 2.24237i −0.872732 + 0.0947575i
\(561\) 0 0
\(562\) −3.09736 + 1.78826i −0.130654 + 0.0754333i
\(563\) −0.196151 0.113248i −0.00826680 0.00477284i 0.495861 0.868402i \(-0.334853\pi\)
−0.504128 + 0.863629i \(0.668186\pi\)
\(564\) 0 0
\(565\) 21.2767 18.6756i 0.895119 0.785688i
\(566\) −2.49056 −0.104686
\(567\) 0 0
\(568\) 4.24413i 0.178080i
\(569\) 6.40275 + 11.0899i 0.268417 + 0.464912i 0.968453 0.249195i \(-0.0801660\pi\)
−0.700036 + 0.714108i \(0.746833\pi\)
\(570\) 0 0
\(571\) 0.780149 1.35126i 0.0326482 0.0565484i −0.849240 0.528008i \(-0.822939\pi\)
0.881888 + 0.471459i \(0.156273\pi\)
\(572\) 25.1492 14.5199i 1.05154 0.607107i
\(573\) 0 0
\(574\) −0.0436677 0.0306655i −0.00182265 0.00127995i
\(575\) −14.6371 35.2502i −0.610408 1.47003i
\(576\) 0 0
\(577\) 37.8018 + 21.8249i 1.57371 + 0.908581i 0.995709 + 0.0925443i \(0.0295000\pi\)
0.578000 + 0.816037i \(0.303833\pi\)
\(578\) 3.42782 + 1.97905i 0.142579 + 0.0823178i
\(579\) 0 0
\(580\) −0.498926 + 0.0994684i −0.0207168 + 0.00413020i
\(581\) −2.93712 + 1.36472i −0.121852 + 0.0566180i
\(582\) 0 0
\(583\) 2.13372 1.23191i 0.0883697 0.0510203i
\(584\) −1.32550 + 2.29583i −0.0548494 + 0.0950020i
\(585\) 0 0
\(586\) −3.87994 6.72025i −0.160279 0.277611i
\(587\) 13.6961i 0.565297i 0.959224 + 0.282648i \(0.0912129\pi\)
−0.959224 + 0.282648i \(0.908787\pi\)
\(588\) 0 0
\(589\) −10.3746 −0.427479
\(590\) −0.787135 + 0.690905i −0.0324058 + 0.0284441i
\(591\) 0 0
\(592\) −23.5852 13.6169i −0.969344 0.559651i
\(593\) −7.92838 + 4.57745i −0.325579 + 0.187973i −0.653877 0.756601i \(-0.726859\pi\)
0.328297 + 0.944574i \(0.393525\pi\)
\(594\) 0 0
\(595\) 26.4853 19.3820i 1.08579 0.794583i
\(596\) 21.8014 0.893018
\(597\) 0 0
\(598\) −8.63833 4.98734i −0.353247 0.203948i
\(599\) −20.1368 + 34.8780i −0.822767 + 1.42507i 0.0808467 + 0.996727i \(0.474238\pi\)
−0.903614 + 0.428348i \(0.859096\pi\)
\(600\) 0 0
\(601\) −8.82450 −0.359959 −0.179980 0.983670i \(-0.557603\pi\)
−0.179980 + 0.983670i \(0.557603\pi\)
\(602\) 1.28002 1.82275i 0.0521696 0.0742897i
\(603\) 0 0
\(604\) −8.57126 14.8459i −0.348760 0.604070i
\(605\) −0.0657008 + 0.193826i −0.00267112 + 0.00788013i
\(606\) 0 0
\(607\) 24.3409 14.0532i 0.987966 0.570402i 0.0833003 0.996524i \(-0.473454\pi\)
0.904666 + 0.426122i \(0.140121\pi\)
\(608\) 5.40292i 0.219117i
\(609\) 0 0
\(610\) −0.919292 4.61110i −0.0372211 0.186698i
\(611\) 14.5199 + 25.1492i 0.587412 + 1.01743i
\(612\) 0 0
\(613\) −1.83025 1.05670i −0.0739232 0.0426796i 0.462583 0.886576i \(-0.346923\pi\)
−0.536506 + 0.843896i \(0.680256\pi\)
\(614\) 0.322795 + 0.559097i 0.0130269 + 0.0225633i
\(615\) 0 0
\(616\) 0.877935 9.87935i 0.0353730 0.398050i
\(617\) 18.0390i 0.726221i −0.931746 0.363111i \(-0.881715\pi\)
0.931746 0.363111i \(-0.118285\pi\)
\(618\) 0 0
\(619\) −7.31895 + 12.6768i −0.294173 + 0.509523i −0.974792 0.223114i \(-0.928378\pi\)
0.680619 + 0.732638i \(0.261711\pi\)
\(620\) 8.61662 25.4201i 0.346052 1.02090i
\(621\) 0 0
\(622\) 8.21744i 0.329489i
\(623\) −19.7667 + 28.1479i −0.791937 + 1.12772i
\(624\) 0 0
\(625\) −24.1594 6.42842i −0.966375 0.257137i
\(626\) 1.91488 3.31668i 0.0765341 0.132561i
\(627\) 0 0
\(628\) −5.55673 + 3.20818i −0.221738 + 0.128020i
\(629\) 43.0252 1.71553
\(630\) 0 0
\(631\) 12.1251 0.482692 0.241346 0.970439i \(-0.422411\pi\)
0.241346 + 0.970439i \(0.422411\pi\)
\(632\) 11.6396 6.72014i 0.462999 0.267313i
\(633\) 0 0
\(634\) −4.19403 + 7.26428i −0.166566 + 0.288501i
\(635\) 27.8085 24.4088i 1.10355 0.968635i
\(636\) 0 0
\(637\) −24.3293 20.5283i −0.963963 0.813360i
\(638\) 0.113548i 0.00449540i
\(639\) 0 0
\(640\) −17.5117 5.93593i −0.692212 0.234638i
\(641\) −6.52024 + 11.2934i −0.257534 + 0.446062i −0.965581 0.260104i \(-0.916243\pi\)
0.708047 + 0.706166i \(0.249577\pi\)
\(642\) 0 0
\(643\) 27.0185i 1.06550i −0.846271 0.532752i \(-0.821158\pi\)
0.846271 0.532752i \(-0.178842\pi\)
\(644\) 35.1200 16.3184i 1.38392 0.643033i
\(645\) 0 0
\(646\) −1.32082 2.28773i −0.0519670 0.0900095i
\(647\) −30.2927 17.4895i −1.19093 0.687582i −0.232411 0.972618i \(-0.574661\pi\)
−0.958517 + 0.285035i \(0.907995\pi\)
\(648\) 0 0
\(649\) 2.71444 + 4.70155i 0.106551 + 0.184552i
\(650\) −6.03386 + 2.50546i −0.236667 + 0.0982723i
\(651\) 0 0
\(652\) 30.2109i 1.18315i
\(653\) 28.0168 16.1755i 1.09638 0.632997i 0.161114 0.986936i \(-0.448491\pi\)
0.935269 + 0.353939i \(0.115158\pi\)
\(654\) 0 0
\(655\) −3.80300 + 11.2193i −0.148596 + 0.438376i
\(656\) 0.123234 + 0.213447i 0.00481146 + 0.00833370i
\(657\) 0 0
\(658\) 4.83557 + 0.429716i 0.188510 + 0.0167521i
\(659\) 8.54282 0.332781 0.166390 0.986060i \(-0.446789\pi\)
0.166390 + 0.986060i \(0.446789\pi\)
\(660\) 0 0
\(661\) 15.1715 26.2779i 0.590104 1.02209i −0.404114 0.914709i \(-0.632420\pi\)
0.994218 0.107382i \(-0.0342467\pi\)
\(662\) 6.19400 + 3.57611i 0.240737 + 0.138989i
\(663\) 0 0
\(664\) −1.37788 −0.0534722
\(665\) −9.74704 + 1.05829i −0.377974 + 0.0410388i
\(666\) 0 0
\(667\) 0.784435 0.452894i 0.0303734 0.0175361i
\(668\) −37.5187 21.6614i −1.45164 0.838107i
\(669\) 0 0
\(670\) 1.28682 + 1.46605i 0.0497143 + 0.0566386i
\(671\) −24.3719 −0.940867
\(672\) 0 0
\(673\) 40.5075i 1.56145i 0.624875 + 0.780725i \(0.285150\pi\)
−0.624875 + 0.780725i \(0.714850\pi\)
\(674\) 0.679059 + 1.17617i 0.0261564 + 0.0453042i
\(675\) 0 0
\(676\) 7.36308 12.7532i 0.283195 0.490509i
\(677\) −20.2833 + 11.7105i −0.779549 + 0.450073i −0.836270 0.548317i \(-0.815269\pi\)
0.0567215 + 0.998390i \(0.481935\pi\)
\(678\) 0 0
\(679\) 7.30149 3.39260i 0.280205 0.130196i
\(680\) 13.6935 2.73000i 0.525121 0.104691i
\(681\) 0 0
\(682\) 5.18806 + 2.99533i 0.198661 + 0.114697i
\(683\) −44.1887 25.5124i −1.69083 0.976204i −0.953845 0.300299i \(-0.902913\pi\)
−0.736989 0.675904i \(-0.763753\pi\)
\(684\) 0 0
\(685\) −6.50107 32.6089i −0.248393 1.24592i
\(686\) −5.14581 + 1.35623i −0.196468 + 0.0517812i
\(687\) 0 0
\(688\) −8.90956 + 5.14393i −0.339674 + 0.196111i
\(689\) 1.68212 2.91353i 0.0640838 0.110996i
\(690\) 0 0
\(691\) −12.3057 21.3142i −0.468133 0.810829i 0.531204 0.847244i \(-0.321740\pi\)
−0.999337 + 0.0364144i \(0.988406\pi\)
\(692\) 16.3485i 0.621476i
\(693\) 0 0
\(694\) −4.06819 −0.154426
\(695\) −14.0381 15.9933i −0.532494 0.606660i
\(696\) 0 0
\(697\) −0.337213 0.194690i −0.0127728 0.00737441i
\(698\) −1.25647 + 0.725422i −0.0475580 + 0.0274576i
\(699\) 0 0
\(700\) 5.50234 24.7613i 0.207969 0.935891i
\(701\) −25.7244 −0.971595 −0.485798 0.874071i \(-0.661471\pi\)
−0.485798 + 0.874071i \(0.661471\pi\)
\(702\) 0 0
\(703\) −11.1311 6.42652i −0.419816 0.242381i
\(704\) −10.1346 + 17.5536i −0.381962 + 0.661577i
\(705\) 0 0
\(706\) 4.62567 0.174089
\(707\) 42.2703 + 3.75638i 1.58974 + 0.141273i
\(708\) 0 0
\(709\) 5.85482 + 10.1408i 0.219882 + 0.380848i 0.954772 0.297339i \(-0.0960993\pi\)
−0.734889 + 0.678187i \(0.762766\pi\)
\(710\) −2.29432 0.777702i −0.0861042 0.0291867i
\(711\) 0 0
\(712\) −12.6727 + 7.31661i −0.474931 + 0.274202i
\(713\) 47.7883i 1.78968i
\(714\) 0 0
\(715\) 6.62129 + 33.2119i 0.247622 + 1.24205i
\(716\) 11.2943 + 19.5623i 0.422088 + 0.731077i
\(717\) 0 0
\(718\) −0.0762651 0.0440317i −0.00284619 0.00164325i
\(719\) 6.16037 + 10.6701i 0.229743 + 0.397927i 0.957732 0.287662i \(-0.0928781\pi\)
−0.727989 + 0.685589i \(0.759545\pi\)
\(720\) 0 0
\(721\) −11.4580 8.04635i −0.426719 0.299662i
\(722\) 4.67023i 0.173808i
\(723\) 0 0
\(724\) −8.71444 + 15.0939i −0.323870 + 0.560959i
\(725\) 0.0769272 0.588277i 0.00285700 0.0218481i
\(726\) 0 0
\(727\) 17.6540i 0.654751i −0.944894 0.327376i \(-0.893836\pi\)
0.944894 0.327376i \(-0.106164\pi\)
\(728\) −5.70678 12.2820i −0.211507 0.455202i
\(729\) 0 0
\(730\) −0.998206 1.13724i −0.0369452 0.0420910i
\(731\) 8.12662 14.0757i 0.300574 0.520609i
\(732\) 0 0
\(733\) −8.69135 + 5.01795i −0.321022 + 0.185342i −0.651848 0.758349i \(-0.726006\pi\)
0.330826 + 0.943692i \(0.392673\pi\)
\(734\) −6.79541 −0.250823
\(735\) 0 0
\(736\) 24.8873 0.917357
\(737\) 8.75672 5.05570i 0.322558 0.186229i
\(738\) 0 0
\(739\) −15.5360 + 26.9092i −0.571502 + 0.989870i 0.424910 + 0.905235i \(0.360306\pi\)
−0.996412 + 0.0846345i \(0.973028\pi\)
\(740\) 24.9913 21.9360i 0.918697 0.806383i
\(741\) 0 0
\(742\) −0.236987 0.510038i −0.00870005 0.0187241i
\(743\) 4.04189i 0.148283i −0.997248 0.0741413i \(-0.976378\pi\)
0.997248 0.0741413i \(-0.0236216\pi\)
\(744\) 0 0
\(745\) −8.16186 + 24.0785i −0.299027 + 0.882168i
\(746\) 2.70638 4.68759i 0.0990876 0.171625i
\(747\) 0 0
\(748\) 35.4256i 1.29529i
\(749\) −11.1761 7.84839i −0.408367 0.286774i
\(750\) 0 0
\(751\) −7.34725 12.7258i −0.268105 0.464371i 0.700268 0.713881i \(-0.253064\pi\)
−0.968372 + 0.249509i \(0.919731\pi\)
\(752\) −19.4193 11.2117i −0.708149 0.408850i
\(753\) 0 0
\(754\) −0.0775229 0.134274i −0.00282322 0.00488996i
\(755\) 19.6054 3.90862i 0.713512 0.142249i
\(756\) 0 0
\(757\) 29.6087i 1.07615i −0.842898 0.538073i \(-0.819153\pi\)
0.842898 0.538073i \(-0.180847\pi\)
\(758\) −3.54681 + 2.04775i −0.128826 + 0.0743778i
\(759\) 0 0
\(760\) −3.95041 1.33907i −0.143297 0.0485731i
\(761\) −7.12611 12.3428i −0.258321 0.447426i 0.707471 0.706742i \(-0.249836\pi\)
−0.965792 + 0.259317i \(0.916503\pi\)
\(762\) 0 0
\(763\) 8.54088 + 0.758990i 0.309200 + 0.0274773i
\(764\) −39.2992 −1.42179
\(765\) 0 0
\(766\) 3.59980 6.23504i 0.130066 0.225281i
\(767\) 6.41981 + 3.70648i 0.231806 + 0.133833i
\(768\) 0 0
\(769\) 20.6367 0.744178 0.372089 0.928197i \(-0.378642\pi\)
0.372089 + 0.928197i \(0.378642\pi\)
\(770\) 5.17977 + 2.28491i 0.186666 + 0.0823425i
\(771\) 0 0
\(772\) −14.1860 + 8.19030i −0.510566 + 0.294775i
\(773\) 36.8580 + 21.2800i 1.32569 + 0.765387i 0.984630 0.174655i \(-0.0558811\pi\)
0.341059 + 0.940042i \(0.389214\pi\)
\(774\) 0 0
\(775\) 24.8494 + 19.0332i 0.892615 + 0.683694i
\(776\) 3.42533 0.122962
\(777\) 0 0
\(778\) 3.87093i 0.138780i
\(779\) 0.0581603 + 0.100737i 0.00208381 + 0.00360926i
\(780\) 0 0
\(781\) −6.27860 + 10.8748i −0.224666 + 0.389133i
\(782\) −10.5379 + 6.08405i −0.376834 + 0.217565i
\(783\) 0 0
\(784\) 24.1949 + 4.33442i 0.864105 + 0.154801i
\(785\) −1.46298 7.33819i −0.0522159 0.261911i
\(786\) 0 0
\(787\) 21.8231 + 12.5996i 0.777909 + 0.449126i 0.835689 0.549203i \(-0.185069\pi\)
−0.0577798 + 0.998329i \(0.518402\pi\)
\(788\) 22.9298 + 13.2385i 0.816842 + 0.471604i
\(789\) 0 0
\(790\) 1.49995 + 7.52363i 0.0533657 + 0.267679i
\(791\) −30.3782 + 14.1151i −1.08012 + 0.501874i
\(792\) 0 0
\(793\) −28.8205 + 16.6395i −1.02344 + 0.590886i
\(794\) 2.65044 4.59069i 0.0940605 0.162918i
\(795\) 0 0
\(796\) 3.63449 + 6.29512i 0.128821 + 0.223125i
\(797\) 51.7211i 1.83205i −0.401116 0.916027i \(-0.631377\pi\)
0.401116 0.916027i \(-0.368623\pi\)
\(798\) 0 0
\(799\) 35.4256 1.25327
\(800\) 9.91217 12.9411i 0.350448 0.457537i
\(801\) 0 0
\(802\) 6.32515 + 3.65182i 0.223349 + 0.128950i
\(803\) −6.79271 + 3.92177i −0.239709 + 0.138396i
\(804\) 0 0
\(805\) 4.87477 + 44.8975i 0.171813 + 1.58243i
\(806\) 8.18003 0.288129
\(807\) 0 0
\(808\) 15.6357 + 9.02728i 0.550062 + 0.317579i
\(809\) 25.8890 44.8410i 0.910207 1.57653i 0.0964371 0.995339i \(-0.469255\pi\)
0.813770 0.581187i \(-0.197411\pi\)
\(810\) 0 0
\(811\) 12.0263 0.422299 0.211149 0.977454i \(-0.432279\pi\)
0.211149 + 0.977454i \(0.432279\pi\)
\(812\) 0.599592 + 0.0532831i 0.0210416 + 0.00186987i
\(813\) 0 0
\(814\) 3.71089 + 6.42744i 0.130067 + 0.225282i
\(815\) 33.3664 + 11.3102i 1.16877 + 0.396178i
\(816\) 0 0
\(817\) −4.20488 + 2.42769i −0.147110 + 0.0849341i
\(818\) 5.38212i 0.188182i
\(819\) 0 0
\(820\) −0.295132 + 0.0588389i −0.0103064 + 0.00205474i
\(821\) 4.03967 + 6.99692i 0.140985 + 0.244194i 0.927868 0.372909i \(-0.121640\pi\)
−0.786882 + 0.617103i \(0.788306\pi\)
\(822\) 0 0
\(823\) −4.42994 2.55762i −0.154418 0.0891532i 0.420800 0.907153i \(-0.361749\pi\)
−0.575218 + 0.818000i \(0.695083\pi\)
\(824\) −2.97834 5.15864i −0.103755 0.179710i
\(825\) 0 0
\(826\) 1.12384 0.522188i 0.0391035 0.0181693i
\(827\) 0.705254i 0.0245241i −0.999925 0.0122620i \(-0.996097\pi\)
0.999925 0.0122620i \(-0.00390323\pi\)
\(828\) 0 0
\(829\) 12.4790 21.6143i 0.433415 0.750696i −0.563750 0.825945i \(-0.690642\pi\)
0.997165 + 0.0752491i \(0.0239752\pi\)
\(830\) 0.252486 0.744864i 0.00876391 0.0258546i
\(831\) 0 0
\(832\) 27.6769i 0.959523i
\(833\) −36.5270 + 13.1818i −1.26559 + 0.456723i
\(834\) 0 0
\(835\) 37.9700 33.3280i 1.31401 1.15336i
\(836\) −5.29140 + 9.16498i −0.183007 + 0.316977i
\(837\) 0 0
\(838\) 0.509487 0.294152i 0.0175999 0.0101613i
\(839\) −11.6389 −0.401819 −0.200909 0.979610i \(-0.564390\pi\)
−0.200909 + 0.979610i \(0.564390\pi\)
\(840\) 0 0
\(841\) −28.9859 −0.999514
\(842\) −3.99418 + 2.30604i −0.137649 + 0.0794714i
\(843\) 0 0
\(844\) 0.109693 0.189994i 0.00377579 0.00653986i
\(845\) 11.3287 + 12.9066i 0.389721 + 0.444001i
\(846\) 0 0
\(847\) 0.139165 0.198172i 0.00478177 0.00680926i
\(848\) 2.59775i 0.0892071i
\(849\) 0 0
\(850\) −1.03342 + 7.90275i −0.0354460 + 0.271062i
\(851\) −29.6023 + 51.2726i −1.01475 + 1.75760i
\(852\) 0 0
\(853\) 32.5996i 1.11619i 0.829778 + 0.558094i \(0.188467\pi\)
−0.829778 + 0.558094i \(0.811533\pi\)
\(854\) −0.492445 + 5.54146i −0.0168511 + 0.189625i
\(855\) 0 0
\(856\) −2.90507 5.03172i −0.0992931 0.171981i
\(857\) −27.4455 15.8456i −0.937519 0.541277i −0.0483371 0.998831i \(-0.515392\pi\)
−0.889182 + 0.457554i \(0.848726\pi\)
\(858\) 0 0
\(859\) −21.8456 37.8377i −0.745363 1.29101i −0.950025 0.312174i \(-0.898943\pi\)
0.204662 0.978833i \(-0.434390\pi\)
\(860\) −2.45601 12.3192i −0.0837494 0.420081i
\(861\) 0 0
\(862\) 10.5201i 0.358317i
\(863\) −33.6005 + 19.3992i −1.14377 + 0.660358i −0.947362 0.320164i \(-0.896262\pi\)
−0.196411 + 0.980522i \(0.562929\pi\)
\(864\) 0 0
\(865\) −18.0561 6.12044i −0.613924 0.208101i
\(866\) 2.58670 + 4.48030i 0.0878997 + 0.152247i
\(867\) 0 0
\(868\) −18.2514 + 25.9901i −0.619493 + 0.882160i
\(869\) 39.7660 1.34897
\(870\) 0 0
\(871\) 6.90338 11.9570i 0.233912 0.405148i
\(872\) 3.15925 + 1.82399i 0.106986 + 0.0617682i
\(873\) 0 0
\(874\) 3.63501 0.122956
\(875\) 25.2877 + 15.3470i 0.854881 + 0.518825i
\(876\) 0 0
\(877\) 3.72454 2.15036i 0.125769 0.0726127i −0.435796 0.900046i \(-0.643533\pi\)
0.561565 + 0.827433i \(0.310200\pi\)
\(878\) −4.82118 2.78351i −0.162707 0.0939390i
\(879\) 0 0
\(880\) −17.2502 19.6529i −0.581506 0.662498i
\(881\) 1.29308 0.0435650 0.0217825 0.999763i \(-0.493066\pi\)
0.0217825 + 0.999763i \(0.493066\pi\)
\(882\) 0 0
\(883\) 1.49533i 0.0503218i −0.999683 0.0251609i \(-0.991990\pi\)
0.999683 0.0251609i \(-0.00800981\pi\)
\(884\) −24.1862 41.8918i −0.813471 1.40897i
\(885\) 0 0
\(886\) −2.36225 + 4.09153i −0.0793613 + 0.137458i
\(887\) −8.73964 + 5.04584i −0.293449 + 0.169423i −0.639496 0.768794i \(-0.720857\pi\)
0.346047 + 0.938217i \(0.387524\pi\)
\(888\) 0 0
\(889\) −39.7040 + 18.4483i −1.33163 + 0.618736i
\(890\) −1.63308 8.19142i −0.0547410 0.274577i
\(891\) 0 0
\(892\) 13.0631 + 7.54198i 0.437385 + 0.252524i
\(893\) −9.16498 5.29140i −0.306694 0.177070i
\(894\) 0 0
\(895\) −25.8339 + 5.15036i −0.863531 + 0.172158i
\(896\) 17.9044 + 12.5733i 0.598143 + 0.420044i
\(897\) 0 0
\(898\) −8.14317 + 4.70146i −0.271741 + 0.156890i
\(899\) −0.371409 + 0.643299i −0.0123872 + 0.0214552i
\(900\) 0 0
\(901\) −2.05202 3.55421i −0.0683628 0.118408i
\(902\) 0.0671674i 0.00223643i
\(903\) 0 0
\(904\) −14.2512 −0.473989
\(905\) −13.4079 15.2754i −0.445695 0.507772i
\(906\) 0 0
\(907\) −3.69531 2.13349i −0.122701 0.0708414i 0.437393 0.899270i \(-0.355902\pi\)
−0.560094 + 0.828429i \(0.689235\pi\)
\(908\) −14.9095 + 8.60802i −0.494790 + 0.285667i
\(909\) 0 0
\(910\) 7.68520 0.834427i 0.254762 0.0276610i
\(911\) 28.5451 0.945742 0.472871 0.881132i \(-0.343218\pi\)
0.472871 + 0.881132i \(0.343218\pi\)
\(912\) 0 0
\(913\) −3.53058 2.03838i −0.116845 0.0674606i
\(914\) −5.37754 + 9.31417i −0.177873 + 0.308085i
\(915\) 0 0
\(916\) 9.75231 0.322226
\(917\) 8.05539 11.4709i 0.266012 0.378802i
\(918\) 0 0
\(919\) −23.2822 40.3259i −0.768008 1.33023i −0.938642 0.344894i \(-0.887915\pi\)
0.170634 0.985335i \(-0.445419\pi\)
\(920\) −6.16810 + 18.1967i −0.203356 + 0.599926i
\(921\) 0 0
\(922\) −7.05720 + 4.07448i −0.232417 + 0.134186i
\(923\) 17.1464i 0.564381i
\(924\) 0 0
\(925\) 14.8711 + 35.8138i 0.488959 + 1.17755i
\(926\) 1.03561 + 1.79372i 0.0340321 + 0.0589453i
\(927\) 0 0
\(928\) 0.335019 + 0.193423i 0.0109975 + 0.00634943i
\(929\) −3.69774 6.40467i −0.121319 0.210130i 0.798969 0.601372i \(-0.205379\pi\)
−0.920288 + 0.391242i \(0.872046\pi\)
\(930\) 0 0
\(931\) 11.4188 + 2.04564i 0.374238 + 0.0670432i
\(932\) 41.8352i 1.37036i
\(933\) 0 0
\(934\) −1.73537 + 3.00574i −0.0567829 + 0.0983509i
\(935\) 39.1258 + 13.2624i 1.27955 + 0.433728i
\(936\) 0 0
\(937\) 44.1988i 1.44391i 0.691939 + 0.721956i \(0.256757\pi\)
−0.691939 + 0.721956i \(0.743243\pi\)
\(938\) −0.972585 2.09318i −0.0317560 0.0683447i
\(939\) 0 0
\(940\) 20.5770 18.0614i 0.671149 0.589099i
\(941\) 18.0180 31.2080i 0.587369 1.01735i −0.407206 0.913336i \(-0.633497\pi\)
0.994576 0.104017i \(-0.0331696\pi\)
\(942\) 0 0
\(943\) 0.464020 0.267902i 0.0151106 0.00872408i
\(944\) −5.72401 −0.186301
\(945\) 0 0
\(946\) 2.80366 0.0911548
\(947\) 29.6476 17.1170i 0.963417 0.556229i 0.0661943 0.997807i \(-0.478914\pi\)
0.897223 + 0.441577i \(0.145581\pi\)
\(948\) 0 0
\(949\) −5.35504 + 9.27521i −0.173832 + 0.301086i
\(950\) 1.44776 1.89017i 0.0469716 0.0613251i
\(951\) 0 0
\(952\) −16.4563 1.46240i −0.533353 0.0473967i
\(953\) 30.9689i 1.00318i 0.865105 + 0.501591i \(0.167252\pi\)
−0.865105 + 0.501591i \(0.832748\pi\)
\(954\) 0 0
\(955\) 14.7126 43.4039i 0.476088 1.40452i
\(956\) −7.14155 + 12.3695i −0.230974 + 0.400059i
\(957\) 0 0
\(958\) 5.78743i 0.186983i
\(959\) −3.48249 + 39.1883i −0.112455 + 1.26545i
\(960\) 0 0
\(961\) −4.09508 7.09289i −0.132099 0.228803i
\(962\) 8.77646 + 5.06709i 0.282964 + 0.163370i
\(963\) 0 0
\(964\) 23.1778 + 40.1451i 0.746506 + 1.29299i
\(965\) −3.73490 18.7340i −0.120231 0.603068i
\(966\) 0 0
\(967\) 21.0270i 0.676184i 0.941113 + 0.338092i \(0.109782\pi\)
−0.941113 + 0.338092i \(0.890218\pi\)
\(968\) 0.0892209 0.0515117i 0.00286767 0.00165565i
\(969\) 0 0
\(970\) −0.627664 + 1.85169i −0.0201531 + 0.0594540i
\(971\) 22.3468 + 38.7058i 0.717144 + 1.24213i 0.962127 + 0.272602i \(0.0878843\pi\)
−0.244983 + 0.969527i \(0.578782\pi\)
\(972\) 0 0
\(973\) 10.6100 + 22.8346i 0.340141 + 0.732045i
\(974\) 11.4761 0.367718
\(975\) 0 0
\(976\) 12.8484 22.2541i 0.411268 0.712337i
\(977\) −12.5029 7.21858i −0.400005 0.230943i 0.286481 0.958086i \(-0.407514\pi\)
−0.686486 + 0.727143i \(0.740848\pi\)
\(978\) 0 0
\(979\) −43.2956 −1.38373
\(980\) −14.4962 + 26.2797i −0.463063 + 0.839473i
\(981\) 0 0
\(982\) 7.86307 4.53974i 0.250921 0.144869i
\(983\) 14.5389 + 8.39401i 0.463717 + 0.267727i 0.713606 0.700547i \(-0.247061\pi\)
−0.249889 + 0.968275i \(0.580394\pi\)
\(984\) 0 0
\(985\) −23.2056 + 20.3687i −0.739393 + 0.649000i
\(986\) −0.189140 −0.00602345
\(987\) 0 0
\(988\) 14.4505i 0.459730i
\(989\) 11.1826 + 19.3688i 0.355585 + 0.615892i
\(990\) 0 0
\(991\) −20.0539 + 34.7344i −0.637033 + 1.10337i 0.349048 + 0.937105i \(0.386505\pi\)
−0.986081 + 0.166268i \(0.946828\pi\)
\(992\) −17.6752 + 10.2048i −0.561188 + 0.324002i
\(993\) 0 0
\(994\) 2.34576 + 1.64730i 0.0744031 + 0.0522492i
\(995\) −8.31330 + 1.65738i −0.263549 + 0.0525425i
\(996\) 0 0
\(997\) −44.4447 25.6602i −1.40758 0.812666i −0.412424 0.910992i \(-0.635318\pi\)
−0.995154 + 0.0983259i \(0.968651\pi\)
\(998\) 9.90032 + 5.71595i 0.313389 + 0.180935i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.bf.b.109.5 16
3.2 odd 2 105.2.q.a.4.4 16
5.4 even 2 inner 315.2.bf.b.109.4 16
7.2 even 3 inner 315.2.bf.b.289.4 16
7.3 odd 6 2205.2.d.o.1324.5 8
7.4 even 3 2205.2.d.s.1324.5 8
12.11 even 2 1680.2.di.d.529.7 16
15.2 even 4 525.2.i.k.151.2 8
15.8 even 4 525.2.i.h.151.3 8
15.14 odd 2 105.2.q.a.4.5 yes 16
21.2 odd 6 105.2.q.a.79.5 yes 16
21.5 even 6 735.2.q.g.79.5 16
21.11 odd 6 735.2.d.d.589.4 8
21.17 even 6 735.2.d.e.589.4 8
21.20 even 2 735.2.q.g.214.4 16
35.4 even 6 2205.2.d.s.1324.4 8
35.9 even 6 inner 315.2.bf.b.289.5 16
35.24 odd 6 2205.2.d.o.1324.4 8
60.59 even 2 1680.2.di.d.529.3 16
84.23 even 6 1680.2.di.d.289.3 16
105.2 even 12 525.2.i.k.226.2 8
105.17 odd 12 3675.2.a.bn.1.3 4
105.23 even 12 525.2.i.h.226.3 8
105.32 even 12 3675.2.a.bp.1.3 4
105.38 odd 12 3675.2.a.cb.1.2 4
105.44 odd 6 105.2.q.a.79.4 yes 16
105.53 even 12 3675.2.a.bz.1.2 4
105.59 even 6 735.2.d.e.589.5 8
105.74 odd 6 735.2.d.d.589.5 8
105.89 even 6 735.2.q.g.79.4 16
105.104 even 2 735.2.q.g.214.5 16
420.359 even 6 1680.2.di.d.289.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.4 16 3.2 odd 2
105.2.q.a.4.5 yes 16 15.14 odd 2
105.2.q.a.79.4 yes 16 105.44 odd 6
105.2.q.a.79.5 yes 16 21.2 odd 6
315.2.bf.b.109.4 16 5.4 even 2 inner
315.2.bf.b.109.5 16 1.1 even 1 trivial
315.2.bf.b.289.4 16 7.2 even 3 inner
315.2.bf.b.289.5 16 35.9 even 6 inner
525.2.i.h.151.3 8 15.8 even 4
525.2.i.h.226.3 8 105.23 even 12
525.2.i.k.151.2 8 15.2 even 4
525.2.i.k.226.2 8 105.2 even 12
735.2.d.d.589.4 8 21.11 odd 6
735.2.d.d.589.5 8 105.74 odd 6
735.2.d.e.589.4 8 21.17 even 6
735.2.d.e.589.5 8 105.59 even 6
735.2.q.g.79.4 16 105.89 even 6
735.2.q.g.79.5 16 21.5 even 6
735.2.q.g.214.4 16 21.20 even 2
735.2.q.g.214.5 16 105.104 even 2
1680.2.di.d.289.3 16 84.23 even 6
1680.2.di.d.289.7 16 420.359 even 6
1680.2.di.d.529.3 16 60.59 even 2
1680.2.di.d.529.7 16 12.11 even 2
2205.2.d.o.1324.4 8 35.24 odd 6
2205.2.d.o.1324.5 8 7.3 odd 6
2205.2.d.s.1324.4 8 35.4 even 6
2205.2.d.s.1324.5 8 7.4 even 3
3675.2.a.bn.1.3 4 105.17 odd 12
3675.2.a.bp.1.3 4 105.32 even 12
3675.2.a.bz.1.2 4 105.53 even 12
3675.2.a.cb.1.2 4 105.38 odd 12