Properties

Label 735.2.q.g.214.5
Level $735$
Weight $2$
Character 735.214
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.27814731656356152999936.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 4 x^{13} - 14 x^{12} + 38 x^{11} - 40 x^{10} + 64 x^{9} + 291 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.5
Root \(2.07845 + 0.556918i\) of defining polynomial
Character \(\chi\) \(=\) 735.214
Dual form 735.2.q.g.79.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.248840 - 0.143668i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.958719 + 1.66055i) q^{4} +(-0.717839 - 2.11771i) q^{5} -0.287336 q^{6} +1.12562i q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.482874 - 0.423842i) q^{10} +(1.66520 - 2.88421i) q^{11} +(1.66055 - 0.958719i) q^{12} +4.54754i q^{13} +(-0.437190 + 2.19291i) q^{15} +(-1.75572 - 3.04100i) q^{16} +(-4.80431 - 2.77377i) q^{17} +(0.248840 + 0.143668i) q^{18} +(0.828617 + 1.43521i) q^{19} +(4.20477 + 0.838284i) q^{20} -0.956942i q^{22} +(-6.61094 + 3.81683i) q^{23} +(0.562810 - 0.974816i) q^{24} +(-3.96942 + 3.04035i) q^{25} +(0.653336 + 1.13161i) q^{26} -1.00000i q^{27} +0.118657 q^{29} +(0.206261 + 0.608495i) q^{30} +(-3.13010 + 5.42150i) q^{31} +(-2.82342 - 1.63010i) q^{32} +(-2.88421 + 1.66520i) q^{33} -1.59401 q^{34} -1.91744 q^{36} +(-6.71665 + 3.87786i) q^{37} +(0.412386 + 0.238091i) q^{38} +(2.27377 - 3.93829i) q^{39} +(2.38374 - 0.808014i) q^{40} -0.0701896 q^{41} +2.92981i q^{43} +(3.19291 + 5.53029i) q^{44} +(1.47507 - 1.68052i) q^{45} +(-1.09671 + 1.89956i) q^{46} +(-5.53029 + 3.19291i) q^{47} +3.51145i q^{48} +(-0.550949 + 1.32684i) q^{50} +(2.77377 + 4.80431i) q^{51} +(-7.55142 - 4.35981i) q^{52} +(-0.640682 - 0.369898i) q^{53} +(-0.143668 - 0.248840i) q^{54} +(-7.30326 - 1.45601i) q^{55} -1.65723i q^{57} +(0.0295266 - 0.0170472i) q^{58} +(0.815051 - 1.41171i) q^{59} +(-3.22230 - 2.82836i) q^{60} +(-3.65901 - 6.33759i) q^{61} +1.79878i q^{62} +6.08612 q^{64} +(9.63038 - 3.26440i) q^{65} +(-0.478471 + 0.828736i) q^{66} +(2.62934 + 1.51805i) q^{67} +(9.21197 - 5.31853i) q^{68} +7.63366 q^{69} -3.77048 q^{71} +(-0.974816 + 0.562810i) q^{72} +(2.03961 + 1.17757i) q^{73} +(-1.11425 + 1.92993i) q^{74} +(4.95779 - 0.648315i) q^{75} -3.17764 q^{76} -1.30667i q^{78} +(-5.97016 - 10.3406i) q^{79} +(-5.17964 + 5.90106i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.0174660 + 0.0100840i) q^{82} -1.22411i q^{83} +(-2.42533 + 12.1653i) q^{85} +(0.420920 + 0.729054i) q^{86} +(-0.102760 - 0.0593285i) q^{87} +(3.24652 + 1.87438i) q^{88} +(6.50007 + 11.2585i) q^{89} +(0.125620 - 0.630102i) q^{90} -14.6371i q^{92} +(5.42150 - 3.13010i) q^{93} +(-0.917438 + 1.58905i) q^{94} +(2.44454 - 2.78502i) q^{95} +(1.63010 + 2.82342i) q^{96} -3.04306i q^{97} +3.33039 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 2 q^{5} + 8 q^{6} + 8 q^{9} + 4 q^{10} - 4 q^{15} + 24 q^{19} + 8 q^{20} + 12 q^{24} - 4 q^{25} + 12 q^{26} + 24 q^{29} - 12 q^{30} - 16 q^{31} - 16 q^{34} + 16 q^{36} - 4 q^{39} - 32 q^{40}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.248840 0.143668i 0.175957 0.101589i −0.409435 0.912339i \(-0.634274\pi\)
0.585392 + 0.810751i \(0.300941\pi\)
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.958719 + 1.66055i −0.479360 + 0.830275i
\(5\) −0.717839 2.11771i −0.321027 0.947070i
\(6\) −0.287336 −0.117304
\(7\) 0 0
\(8\) 1.12562i 0.397967i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.482874 0.423842i −0.152698 0.134030i
\(11\) 1.66520 2.88421i 0.502076 0.869621i −0.497921 0.867222i \(-0.665903\pi\)
0.999997 0.00239862i \(-0.000763504\pi\)
\(12\) 1.66055 0.958719i 0.479360 0.276758i
\(13\) 4.54754i 1.26126i 0.776083 + 0.630630i \(0.217204\pi\)
−0.776083 + 0.630630i \(0.782796\pi\)
\(14\) 0 0
\(15\) −0.437190 + 2.19291i −0.112882 + 0.566208i
\(16\) −1.75572 3.04100i −0.438931 0.760250i
\(17\) −4.80431 2.77377i −1.16522 0.672738i −0.212668 0.977125i \(-0.568215\pi\)
−0.952549 + 0.304386i \(0.901549\pi\)
\(18\) 0.248840 + 0.143668i 0.0586522 + 0.0338629i
\(19\) 0.828617 + 1.43521i 0.190098 + 0.329259i 0.945282 0.326253i \(-0.105786\pi\)
−0.755185 + 0.655512i \(0.772453\pi\)
\(20\) 4.20477 + 0.838284i 0.940216 + 0.187446i
\(21\) 0 0
\(22\) 0.956942i 0.204021i
\(23\) −6.61094 + 3.81683i −1.37848 + 0.795864i −0.991976 0.126425i \(-0.959650\pi\)
−0.386500 + 0.922289i \(0.626316\pi\)
\(24\) 0.562810 0.974816i 0.114883 0.198983i
\(25\) −3.96942 + 3.04035i −0.793883 + 0.608070i
\(26\) 0.653336 + 1.13161i 0.128130 + 0.221927i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.118657 0.0220341 0.0110170 0.999939i \(-0.496493\pi\)
0.0110170 + 0.999939i \(0.496493\pi\)
\(30\) 0.206261 + 0.608495i 0.0376579 + 0.111095i
\(31\) −3.13010 + 5.42150i −0.562183 + 0.973729i 0.435123 + 0.900371i \(0.356705\pi\)
−0.997306 + 0.0733583i \(0.976628\pi\)
\(32\) −2.82342 1.63010i −0.499115 0.288164i
\(33\) −2.88421 + 1.66520i −0.502076 + 0.289874i
\(34\) −1.59401 −0.273370
\(35\) 0 0
\(36\) −1.91744 −0.319573
\(37\) −6.71665 + 3.87786i −1.10421 + 0.637516i −0.937324 0.348460i \(-0.886705\pi\)
−0.166887 + 0.985976i \(0.553372\pi\)
\(38\) 0.412386 + 0.238091i 0.0668979 + 0.0386235i
\(39\) 2.27377 3.93829i 0.364095 0.630630i
\(40\) 2.38374 0.808014i 0.376902 0.127758i
\(41\) −0.0701896 −0.0109618 −0.00548089 0.999985i \(-0.501745\pi\)
−0.00548089 + 0.999985i \(0.501745\pi\)
\(42\) 0 0
\(43\) 2.92981i 0.446792i 0.974728 + 0.223396i \(0.0717143\pi\)
−0.974728 + 0.223396i \(0.928286\pi\)
\(44\) 3.19291 + 5.53029i 0.481350 + 0.833722i
\(45\) 1.47507 1.68052i 0.219891 0.250518i
\(46\) −1.09671 + 1.89956i −0.161701 + 0.280075i
\(47\) −5.53029 + 3.19291i −0.806675 + 0.465734i −0.845800 0.533500i \(-0.820876\pi\)
0.0391247 + 0.999234i \(0.487543\pi\)
\(48\) 3.51145i 0.506833i
\(49\) 0 0
\(50\) −0.550949 + 1.32684i −0.0779159 + 0.187643i
\(51\) 2.77377 + 4.80431i 0.388406 + 0.672738i
\(52\) −7.55142 4.35981i −1.04719 0.604597i
\(53\) −0.640682 0.369898i −0.0880044 0.0508094i 0.455352 0.890311i \(-0.349513\pi\)
−0.543356 + 0.839502i \(0.682847\pi\)
\(54\) −0.143668 0.248840i −0.0195507 0.0338629i
\(55\) −7.30326 1.45601i −0.984772 0.196329i
\(56\) 0 0
\(57\) 1.65723i 0.219506i
\(58\) 0.0295266 0.0170472i 0.00387704 0.00223841i
\(59\) 0.815051 1.41171i 0.106111 0.183789i −0.808081 0.589072i \(-0.799494\pi\)
0.914191 + 0.405283i \(0.132827\pi\)
\(60\) −3.22230 2.82836i −0.415997 0.365140i
\(61\) −3.65901 6.33759i −0.468488 0.811446i 0.530863 0.847458i \(-0.321868\pi\)
−0.999351 + 0.0360120i \(0.988535\pi\)
\(62\) 1.79878i 0.228445i
\(63\) 0 0
\(64\) 6.08612 0.760765
\(65\) 9.63038 3.26440i 1.19450 0.404899i
\(66\) −0.478471 + 0.828736i −0.0588957 + 0.102010i
\(67\) 2.62934 + 1.51805i 0.321224 + 0.185459i 0.651938 0.758272i \(-0.273956\pi\)
−0.330714 + 0.943731i \(0.607289\pi\)
\(68\) 9.21197 5.31853i 1.11712 0.644967i
\(69\) 7.63366 0.918984
\(70\) 0 0
\(71\) −3.77048 −0.447474 −0.223737 0.974650i \(-0.571826\pi\)
−0.223737 + 0.974650i \(0.571826\pi\)
\(72\) −0.974816 + 0.562810i −0.114883 + 0.0663278i
\(73\) 2.03961 + 1.17757i 0.238718 + 0.137824i 0.614588 0.788849i \(-0.289322\pi\)
−0.375869 + 0.926673i \(0.622656\pi\)
\(74\) −1.11425 + 1.92993i −0.129529 + 0.224350i
\(75\) 4.95779 0.648315i 0.572476 0.0748610i
\(76\) −3.17764 −0.364501
\(77\) 0 0
\(78\) 1.30667i 0.147951i
\(79\) −5.97016 10.3406i −0.671696 1.16341i −0.977423 0.211292i \(-0.932233\pi\)
0.305727 0.952119i \(-0.401101\pi\)
\(80\) −5.17964 + 5.90106i −0.579101 + 0.659759i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.0174660 + 0.0100840i −0.00192880 + 0.00111359i
\(83\) 1.22411i 0.134363i −0.997741 0.0671817i \(-0.978599\pi\)
0.997741 0.0671817i \(-0.0214007\pi\)
\(84\) 0 0
\(85\) −2.42533 + 12.1653i −0.263064 + 1.31951i
\(86\) 0.420920 + 0.729054i 0.0453889 + 0.0786160i
\(87\) −0.102760 0.0593285i −0.0110170 0.00636069i
\(88\) 3.24652 + 1.87438i 0.346080 + 0.199810i
\(89\) 6.50007 + 11.2585i 0.689006 + 1.19339i 0.972160 + 0.234319i \(0.0752862\pi\)
−0.283153 + 0.959075i \(0.591381\pi\)
\(90\) 0.125620 0.630102i 0.0132415 0.0664186i
\(91\) 0 0
\(92\) 14.6371i 1.52602i
\(93\) 5.42150 3.13010i 0.562183 0.324576i
\(94\) −0.917438 + 1.58905i −0.0946265 + 0.163898i
\(95\) 2.44454 2.78502i 0.250805 0.285737i
\(96\) 1.63010 + 2.82342i 0.166372 + 0.288164i
\(97\) 3.04306i 0.308976i −0.987995 0.154488i \(-0.950627\pi\)
0.987995 0.154488i \(-0.0493728\pi\)
\(98\) 0 0
\(99\) 3.33039 0.334717
\(100\) −1.24310 9.50626i −0.124310 0.950626i
\(101\) 8.01983 13.8907i 0.798002 1.38218i −0.122913 0.992417i \(-0.539224\pi\)
0.920915 0.389763i \(-0.127443\pi\)
\(102\) 1.38045 + 0.797004i 0.136685 + 0.0789151i
\(103\) −4.58293 + 2.64596i −0.451570 + 0.260714i −0.708493 0.705718i \(-0.750625\pi\)
0.256923 + 0.966432i \(0.417291\pi\)
\(104\) −5.11880 −0.501940
\(105\) 0 0
\(106\) −0.212570 −0.0206466
\(107\) −4.47018 + 2.58086i −0.432148 + 0.249501i −0.700261 0.713886i \(-0.746933\pi\)
0.268113 + 0.963387i \(0.413600\pi\)
\(108\) 1.66055 + 0.958719i 0.159787 + 0.0922528i
\(109\) 1.62043 2.80668i 0.155209 0.268831i −0.777926 0.628356i \(-0.783728\pi\)
0.933135 + 0.359525i \(0.117061\pi\)
\(110\) −2.02653 + 0.686930i −0.193222 + 0.0654962i
\(111\) 7.75572 0.736141
\(112\) 0 0
\(113\) 12.6608i 1.19103i 0.803345 + 0.595513i \(0.203051\pi\)
−0.803345 + 0.595513i \(0.796949\pi\)
\(114\) −0.238091 0.412386i −0.0222993 0.0386235i
\(115\) 12.8285 + 11.2602i 1.19627 + 1.05002i
\(116\) −0.113759 + 0.197036i −0.0105622 + 0.0182943i
\(117\) −3.93829 + 2.27377i −0.364095 + 0.210210i
\(118\) 0.468387i 0.0431185i
\(119\) 0 0
\(120\) −2.46839 0.492110i −0.225332 0.0449233i
\(121\) −0.0457629 0.0792637i −0.00416027 0.00720579i
\(122\) −1.82102 1.05136i −0.164867 0.0951861i
\(123\) 0.0607860 + 0.0350948i 0.00548089 + 0.00316439i
\(124\) −6.00178 10.3954i −0.538976 0.933533i
\(125\) 9.28799 + 6.22360i 0.830743 + 0.556656i
\(126\) 0 0
\(127\) 16.5475i 1.46836i −0.678957 0.734178i \(-0.737568\pi\)
0.678957 0.734178i \(-0.262432\pi\)
\(128\) 7.16131 4.13458i 0.632976 0.365449i
\(129\) 1.46491 2.53729i 0.128978 0.223396i
\(130\) 1.92744 2.19589i 0.169047 0.192592i
\(131\) −2.64893 4.58808i −0.231438 0.400862i 0.726794 0.686856i \(-0.241010\pi\)
−0.958231 + 0.285994i \(0.907676\pi\)
\(132\) 6.38582i 0.555815i
\(133\) 0 0
\(134\) 0.872379 0.0753621
\(135\) −2.11771 + 0.717839i −0.182264 + 0.0617817i
\(136\) 3.12221 5.40783i 0.267727 0.463718i
\(137\) 12.8779 + 7.43507i 1.10023 + 0.635221i 0.936283 0.351247i \(-0.114242\pi\)
0.163952 + 0.986468i \(0.447576\pi\)
\(138\) 1.89956 1.09671i 0.161701 0.0933583i
\(139\) −9.51685 −0.807209 −0.403605 0.914934i \(-0.632243\pi\)
−0.403605 + 0.914934i \(0.632243\pi\)
\(140\) 0 0
\(141\) 6.38582 0.537783
\(142\) −0.938247 + 0.541697i −0.0787359 + 0.0454582i
\(143\) 13.1160 + 7.57255i 1.09682 + 0.633249i
\(144\) 1.75572 3.04100i 0.146310 0.253417i
\(145\) −0.0851767 0.251282i −0.00707354 0.0208678i
\(146\) 0.676716 0.0560054
\(147\) 0 0
\(148\) 14.8711i 1.22240i
\(149\) 5.68502 + 9.84675i 0.465735 + 0.806677i 0.999234 0.0391236i \(-0.0124566\pi\)
−0.533499 + 0.845801i \(0.679123\pi\)
\(150\) 1.14056 0.873602i 0.0931259 0.0713293i
\(151\) −4.47016 + 7.74255i −0.363777 + 0.630080i −0.988579 0.150703i \(-0.951846\pi\)
0.624802 + 0.780783i \(0.285180\pi\)
\(152\) −1.61550 + 0.932708i −0.131034 + 0.0756526i
\(153\) 5.54754i 0.448492i
\(154\) 0 0
\(155\) 13.7281 + 2.73690i 1.10267 + 0.219833i
\(156\) 4.35981 + 7.55142i 0.349064 + 0.604597i
\(157\) 2.89800 + 1.67316i 0.231286 + 0.133533i 0.611165 0.791503i \(-0.290701\pi\)
−0.379879 + 0.925036i \(0.624035\pi\)
\(158\) −2.97123 1.71544i −0.236379 0.136473i
\(159\) 0.369898 + 0.640682i 0.0293348 + 0.0508094i
\(160\) −1.42533 + 7.14934i −0.112682 + 0.565205i
\(161\) 0 0
\(162\) 0.287336i 0.0225752i
\(163\) 13.6450 7.87793i 1.06876 0.617047i 0.140916 0.990022i \(-0.454995\pi\)
0.927842 + 0.372974i \(0.121662\pi\)
\(164\) 0.0672922 0.116553i 0.00525463 0.00910129i
\(165\) 5.59680 + 4.91258i 0.435711 + 0.382444i
\(166\) −0.175865 0.304608i −0.0136498 0.0236421i
\(167\) 22.5942i 1.74839i −0.485577 0.874194i \(-0.661390\pi\)
0.485577 0.874194i \(-0.338610\pi\)
\(168\) 0 0
\(169\) −7.68012 −0.590779
\(170\) 1.14424 + 3.37565i 0.0877592 + 0.258900i
\(171\) −0.828617 + 1.43521i −0.0633659 + 0.109753i
\(172\) −4.86510 2.80887i −0.370960 0.214174i
\(173\) −7.38391 + 4.26310i −0.561388 + 0.324118i −0.753703 0.657216i \(-0.771734\pi\)
0.192314 + 0.981333i \(0.438401\pi\)
\(174\) −0.0340944 −0.00258469
\(175\) 0 0
\(176\) −11.6945 −0.881506
\(177\) −1.41171 + 0.815051i −0.106111 + 0.0612630i
\(178\) 3.23496 + 1.86770i 0.242470 + 0.139990i
\(179\) −5.89031 + 10.2023i −0.440262 + 0.762557i −0.997709 0.0676564i \(-0.978448\pi\)
0.557446 + 0.830213i \(0.311781\pi\)
\(180\) 1.37641 + 4.06058i 0.102592 + 0.302658i
\(181\) −9.08967 −0.675630 −0.337815 0.941213i \(-0.609688\pi\)
−0.337815 + 0.941213i \(0.609688\pi\)
\(182\) 0 0
\(183\) 7.31802i 0.540964i
\(184\) −4.29630 7.44141i −0.316727 0.548588i
\(185\) 13.0337 + 11.4403i 0.958254 + 0.841105i
\(186\) 0.899391 1.55779i 0.0659465 0.114223i
\(187\) −16.0002 + 9.23775i −1.17005 + 0.675531i
\(188\) 12.2444i 0.893016i
\(189\) 0 0
\(190\) 0.208182 1.04423i 0.0151031 0.0757562i
\(191\) −10.2478 17.7498i −0.741507 1.28433i −0.951809 0.306692i \(-0.900778\pi\)
0.210302 0.977637i \(-0.432555\pi\)
\(192\) −5.27073 3.04306i −0.380382 0.219614i
\(193\) −7.39842 4.27148i −0.532550 0.307468i 0.209504 0.977808i \(-0.432815\pi\)
−0.742054 + 0.670340i \(0.766148\pi\)
\(194\) −0.437190 0.757235i −0.0313884 0.0543663i
\(195\) −9.97236 1.98814i −0.714135 0.142374i
\(196\) 0 0
\(197\) 13.8086i 0.983820i −0.870646 0.491910i \(-0.836299\pi\)
0.870646 0.491910i \(-0.163701\pi\)
\(198\) 0.828736 0.478471i 0.0588957 0.0340034i
\(199\) −1.89549 + 3.28309i −0.134368 + 0.232732i −0.925356 0.379100i \(-0.876234\pi\)
0.790988 + 0.611832i \(0.209567\pi\)
\(200\) −3.42228 4.46805i −0.241992 0.315939i
\(201\) −1.51805 2.62934i −0.107075 0.185459i
\(202\) 4.60877i 0.324272i
\(203\) 0 0
\(204\) −10.6371 −0.744744
\(205\) 0.0503848 + 0.148642i 0.00351903 + 0.0103816i
\(206\) −0.760278 + 1.31684i −0.0529711 + 0.0917486i
\(207\) −6.61094 3.81683i −0.459492 0.265288i
\(208\) 13.8291 7.98422i 0.958874 0.553606i
\(209\) 5.51924 0.381774
\(210\) 0 0
\(211\) −0.114416 −0.00787674 −0.00393837 0.999992i \(-0.501254\pi\)
−0.00393837 + 0.999992i \(0.501254\pi\)
\(212\) 1.22847 0.709256i 0.0843715 0.0487119i
\(213\) 3.26533 + 1.88524i 0.223737 + 0.129175i
\(214\) −0.741573 + 1.28444i −0.0506929 + 0.0878026i
\(215\) 6.20450 2.10313i 0.423143 0.143432i
\(216\) 1.12562 0.0765888
\(217\) 0 0
\(218\) 0.931218i 0.0630700i
\(219\) −1.17757 2.03961i −0.0795728 0.137824i
\(220\) 9.41956 10.7315i 0.635067 0.723519i
\(221\) 12.6138 21.8478i 0.848498 1.46964i
\(222\) 1.92993 1.11425i 0.129529 0.0747835i
\(223\) 7.86673i 0.526795i −0.964687 0.263398i \(-0.915157\pi\)
0.964687 0.263398i \(-0.0848431\pi\)
\(224\) 0 0
\(225\) −4.61773 1.91744i −0.307849 0.127829i
\(226\) 1.81895 + 3.15051i 0.120995 + 0.209569i
\(227\) −7.77575 4.48933i −0.516095 0.297967i 0.219241 0.975671i \(-0.429642\pi\)
−0.735335 + 0.677703i \(0.762975\pi\)
\(228\) 2.75192 + 1.58882i 0.182250 + 0.105222i
\(229\) 2.54306 + 4.40471i 0.168050 + 0.291071i 0.937734 0.347354i \(-0.112920\pi\)
−0.769684 + 0.638425i \(0.779586\pi\)
\(230\) 4.80999 + 0.958942i 0.317161 + 0.0632308i
\(231\) 0 0
\(232\) 0.133563i 0.00876883i
\(233\) 18.8952 10.9091i 1.23786 0.714681i 0.269207 0.963082i \(-0.413239\pi\)
0.968657 + 0.248401i \(0.0799052\pi\)
\(234\) −0.653336 + 1.13161i −0.0427099 + 0.0739757i
\(235\) 10.7315 + 9.41956i 0.700048 + 0.614465i
\(236\) 1.56281 + 2.70687i 0.101730 + 0.176202i
\(237\) 11.9403i 0.775608i
\(238\) 0 0
\(239\) −7.44905 −0.481839 −0.240920 0.970545i \(-0.577449\pi\)
−0.240920 + 0.970545i \(0.577449\pi\)
\(240\) 7.43623 2.52065i 0.480007 0.162707i
\(241\) −12.0879 + 20.9368i −0.778650 + 1.34866i 0.154070 + 0.988060i \(0.450762\pi\)
−0.932720 + 0.360601i \(0.882572\pi\)
\(242\) −0.0227753 0.0131493i −0.00146405 0.000845271i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 14.0319 0.898297
\(245\) 0 0
\(246\) 0.0201680 0.00128586
\(247\) −6.52666 + 3.76817i −0.415281 + 0.239763i
\(248\) −6.10255 3.52331i −0.387512 0.223730i
\(249\) −0.612055 + 1.06011i −0.0387874 + 0.0671817i
\(250\) 3.20536 + 0.214294i 0.202725 + 0.0135532i
\(251\) −6.00200 −0.378843 −0.189421 0.981896i \(-0.560661\pi\)
−0.189421 + 0.981896i \(0.560661\pi\)
\(252\) 0 0
\(253\) 25.4231i 1.59834i
\(254\) −2.37735 4.11769i −0.149168 0.258367i
\(255\) 8.18303 9.32277i 0.512441 0.583814i
\(256\) −4.89810 + 8.48376i −0.306131 + 0.530235i
\(257\) 6.35139 3.66697i 0.396189 0.228740i −0.288650 0.957435i \(-0.593206\pi\)
0.684838 + 0.728695i \(0.259873\pi\)
\(258\) 0.841839i 0.0524106i
\(259\) 0 0
\(260\) −3.81213 + 19.1214i −0.236418 + 1.18586i
\(261\) 0.0593285 + 0.102760i 0.00367234 + 0.00636069i
\(262\) −1.31832 0.761132i −0.0814460 0.0470229i
\(263\) −8.21661 4.74386i −0.506658 0.292519i 0.224801 0.974405i \(-0.427827\pi\)
−0.731459 + 0.681886i \(0.761160\pi\)
\(264\) −1.87438 3.24652i −0.115360 0.199810i
\(265\) −0.323431 + 1.62231i −0.0198682 + 0.0996575i
\(266\) 0 0
\(267\) 13.0001i 0.795596i
\(268\) −5.04159 + 2.91076i −0.307964 + 0.177803i
\(269\) −8.02423 + 13.8984i −0.489246 + 0.847399i −0.999923 0.0123733i \(-0.996061\pi\)
0.510677 + 0.859772i \(0.329395\pi\)
\(270\) −0.423842 + 0.482874i −0.0257942 + 0.0293868i
\(271\) 12.0845 + 20.9309i 0.734080 + 1.27146i 0.955126 + 0.296201i \(0.0957198\pi\)
−0.221045 + 0.975264i \(0.570947\pi\)
\(272\) 19.4799i 1.18114i
\(273\) 0 0
\(274\) 4.27272 0.258125
\(275\) 2.15914 + 16.5114i 0.130201 + 0.995675i
\(276\) −7.31853 + 12.6761i −0.440524 + 0.763010i
\(277\) 20.1071 + 11.6088i 1.20812 + 0.697508i 0.962348 0.271820i \(-0.0876257\pi\)
0.245771 + 0.969328i \(0.420959\pi\)
\(278\) −2.36818 + 1.36727i −0.142034 + 0.0820032i
\(279\) −6.26020 −0.374789
\(280\) 0 0
\(281\) 12.4472 0.742538 0.371269 0.928525i \(-0.378923\pi\)
0.371269 + 0.928525i \(0.378923\pi\)
\(282\) 1.58905 0.917438i 0.0946265 0.0546326i
\(283\) −7.50649 4.33388i −0.446215 0.257622i 0.260016 0.965604i \(-0.416272\pi\)
−0.706230 + 0.707982i \(0.749606\pi\)
\(284\) 3.61483 6.26107i 0.214501 0.371526i
\(285\) −3.50954 + 1.18963i −0.207887 + 0.0704674i
\(286\) 4.35173 0.257323
\(287\) 0 0
\(288\) 3.26020i 0.192109i
\(289\) 6.88760 + 11.9297i 0.405153 + 0.701746i
\(290\) −0.0572965 0.0502918i −0.00336456 0.00295324i
\(291\) −1.52153 + 2.63537i −0.0891936 + 0.154488i
\(292\) −3.91083 + 2.25792i −0.228864 + 0.132135i
\(293\) 27.0063i 1.57772i 0.614571 + 0.788862i \(0.289329\pi\)
−0.614571 + 0.788862i \(0.710671\pi\)
\(294\) 0 0
\(295\) −3.57467 0.712664i −0.208125 0.0414929i
\(296\) −4.36500 7.56040i −0.253710 0.439439i
\(297\) −2.88421 1.66520i −0.167359 0.0966245i
\(298\) 2.82932 + 1.63351i 0.163898 + 0.0946267i
\(299\) −17.3572 30.0635i −1.00379 1.73862i
\(300\) −3.67657 + 8.85421i −0.212267 + 0.511198i
\(301\) 0 0
\(302\) 2.56888i 0.147822i
\(303\) −13.8907 + 8.01983i −0.798002 + 0.460727i
\(304\) 2.90964 5.03965i 0.166879 0.289044i
\(305\) −10.7946 + 12.2981i −0.618098 + 0.704187i
\(306\) −0.797004 1.38045i −0.0455617 0.0789151i
\(307\) 2.24681i 0.128232i 0.997942 + 0.0641161i \(0.0204228\pi\)
−0.997942 + 0.0641161i \(0.979577\pi\)
\(308\) 0 0
\(309\) 5.29191 0.301046
\(310\) 3.80930 1.29123i 0.216354 0.0733372i
\(311\) 14.2994 24.7672i 0.810843 1.40442i −0.101432 0.994842i \(-0.532343\pi\)
0.912275 0.409578i \(-0.134324\pi\)
\(312\) 4.43301 + 2.55940i 0.250970 + 0.144898i
\(313\) 11.5429 6.66427i 0.652441 0.376687i −0.136950 0.990578i \(-0.543730\pi\)
0.789391 + 0.613891i \(0.210397\pi\)
\(314\) 0.961518 0.0542616
\(315\) 0 0
\(316\) 22.8948 1.28794
\(317\) −25.2815 + 14.5963i −1.41995 + 0.819808i −0.996294 0.0860147i \(-0.972587\pi\)
−0.423656 + 0.905823i \(0.639253\pi\)
\(318\) 0.184091 + 0.106285i 0.0103233 + 0.00596016i
\(319\) 0.197587 0.342231i 0.0110628 0.0191613i
\(320\) −4.36885 12.8886i −0.244226 0.720497i
\(321\) 5.16172 0.288099
\(322\) 0 0
\(323\) 9.19357i 0.511544i
\(324\) −0.958719 1.66055i −0.0532622 0.0922528i
\(325\) −13.8261 18.0511i −0.766935 1.00129i
\(326\) 2.26361 3.92069i 0.125370 0.217147i
\(327\) −2.80668 + 1.62043i −0.155209 + 0.0896102i
\(328\) 0.0790069i 0.00436243i
\(329\) 0 0
\(330\) 2.09849 + 0.418365i 0.115518 + 0.0230302i
\(331\) 12.4457 + 21.5566i 0.684080 + 1.18486i 0.973725 + 0.227727i \(0.0731293\pi\)
−0.289646 + 0.957134i \(0.593537\pi\)
\(332\) 2.03270 + 1.17358i 0.111559 + 0.0644084i
\(333\) −6.71665 3.87786i −0.368070 0.212505i
\(334\) −3.24605 5.62233i −0.177616 0.307640i
\(335\) 1.32735 6.65789i 0.0725209 0.363759i
\(336\) 0 0
\(337\) 4.72659i 0.257474i −0.991679 0.128737i \(-0.958908\pi\)
0.991679 0.128737i \(-0.0410923\pi\)
\(338\) −1.91112 + 1.10339i −0.103951 + 0.0600164i
\(339\) 6.33039 10.9646i 0.343820 0.595513i
\(340\) −17.8758 15.6905i −0.969453 0.850934i
\(341\) 10.4245 + 18.0557i 0.564517 + 0.977772i
\(342\) 0.476183i 0.0257490i
\(343\) 0 0
\(344\) −3.29785 −0.177808
\(345\) −5.47973 16.1659i −0.295019 0.870342i
\(346\) −1.22494 + 2.12166i −0.0658533 + 0.114061i
\(347\) −12.2615 7.07915i −0.658229 0.380029i 0.133373 0.991066i \(-0.457419\pi\)
−0.791602 + 0.611037i \(0.790753\pi\)
\(348\) 0.197036 0.113759i 0.0105622 0.00609811i
\(349\) 5.04930 0.270283 0.135141 0.990826i \(-0.456851\pi\)
0.135141 + 0.990826i \(0.456851\pi\)
\(350\) 0 0
\(351\) 4.54754 0.242730
\(352\) −9.40310 + 5.42888i −0.501187 + 0.289360i
\(353\) −13.9417 8.04924i −0.742042 0.428418i 0.0807694 0.996733i \(-0.474262\pi\)
−0.822811 + 0.568315i \(0.807596\pi\)
\(354\) −0.234193 + 0.405635i −0.0124472 + 0.0215592i
\(355\) 2.70660 + 7.98480i 0.143651 + 0.423789i
\(356\) −24.9270 −1.32113
\(357\) 0 0
\(358\) 3.38499i 0.178902i
\(359\) 0.153241 + 0.265421i 0.00808776 + 0.0140084i 0.870041 0.492979i \(-0.164092\pi\)
−0.861953 + 0.506988i \(0.830759\pi\)
\(360\) 1.89163 + 1.66037i 0.0996977 + 0.0875093i
\(361\) 8.12679 14.0760i 0.427726 0.740843i
\(362\) −2.26188 + 1.30589i −0.118882 + 0.0686363i
\(363\) 0.0915259i 0.00480386i
\(364\) 0 0
\(365\) 1.02964 5.16461i 0.0538940 0.270328i
\(366\) 1.05136 + 1.82102i 0.0549557 + 0.0951861i
\(367\) −20.4813 11.8249i −1.06911 0.617253i −0.141174 0.989985i \(-0.545088\pi\)
−0.927939 + 0.372732i \(0.878421\pi\)
\(368\) 23.2140 + 13.4026i 1.21011 + 0.698658i
\(369\) −0.0350948 0.0607860i −0.00182696 0.00316439i
\(370\) 4.88690 + 0.974276i 0.254058 + 0.0506502i
\(371\) 0 0
\(372\) 12.0036i 0.622355i
\(373\) −16.3140 + 9.41887i −0.844705 + 0.487691i −0.858861 0.512209i \(-0.828827\pi\)
0.0141557 + 0.999900i \(0.495494\pi\)
\(374\) −2.65434 + 4.59744i −0.137252 + 0.237728i
\(375\) −4.93184 10.0338i −0.254679 0.518143i
\(376\) −3.59401 6.22500i −0.185347 0.321030i
\(377\) 0.539598i 0.0277907i
\(378\) 0 0
\(379\) −14.2534 −0.732147 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(380\) 2.28103 + 6.72933i 0.117015 + 0.345208i
\(381\) −8.27377 + 14.3306i −0.423878 + 0.734178i
\(382\) −5.10014 2.94457i −0.260946 0.150657i
\(383\) −21.6995 + 12.5282i −1.10879 + 0.640161i −0.938516 0.345235i \(-0.887799\pi\)
−0.170276 + 0.985396i \(0.554466\pi\)
\(384\) −8.26917 −0.421984
\(385\) 0 0
\(386\) −2.45470 −0.124941
\(387\) −2.53729 + 1.46491i −0.128978 + 0.0744653i
\(388\) 5.05315 + 2.91744i 0.256535 + 0.148110i
\(389\) −6.73590 + 11.6669i −0.341524 + 0.591536i −0.984716 0.174169i \(-0.944276\pi\)
0.643192 + 0.765705i \(0.277610\pi\)
\(390\) −2.76715 + 0.937979i −0.140120 + 0.0474964i
\(391\) 42.3480 2.14163
\(392\) 0 0
\(393\) 5.29785i 0.267241i
\(394\) −1.98385 3.43613i −0.0999449 0.173110i
\(395\) −17.6129 + 20.0660i −0.886199 + 1.00963i
\(396\) −3.19291 + 5.53029i −0.160450 + 0.277907i
\(397\) 15.9768 9.22418i 0.801850 0.462948i −0.0422675 0.999106i \(-0.513458\pi\)
0.844118 + 0.536158i \(0.180125\pi\)
\(398\) 1.08929i 0.0546010i
\(399\) 0 0
\(400\) 16.2149 + 6.73298i 0.810745 + 0.336649i
\(401\) −12.7093 22.0131i −0.634670 1.09928i −0.986585 0.163249i \(-0.947803\pi\)
0.351915 0.936032i \(-0.385531\pi\)
\(402\) −0.755502 0.436189i −0.0376810 0.0217552i
\(403\) −24.6545 14.2343i −1.22813 0.709059i
\(404\) 15.3775 + 26.6346i 0.765060 + 1.32512i
\(405\) 2.19291 + 0.437190i 0.108967 + 0.0217241i
\(406\) 0 0
\(407\) 25.8296i 1.28033i
\(408\) −5.40783 + 3.12221i −0.267727 + 0.154573i
\(409\) 9.36556 16.2216i 0.463097 0.802108i −0.536016 0.844208i \(-0.680071\pi\)
0.999113 + 0.0420997i \(0.0134047\pi\)
\(410\) 0.0338928 + 0.0297493i 0.00167385 + 0.00146921i
\(411\) −7.43507 12.8779i −0.366745 0.635221i
\(412\) 10.1469i 0.499903i
\(413\) 0 0
\(414\) −2.19342 −0.107801
\(415\) −2.59231 + 0.878713i −0.127252 + 0.0431343i
\(416\) 7.41296 12.8396i 0.363450 0.629514i
\(417\) 8.24184 + 4.75843i 0.403605 + 0.233021i
\(418\) 1.37341 0.792938i 0.0671756 0.0387839i
\(419\) 2.04745 0.100024 0.0500121 0.998749i \(-0.484074\pi\)
0.0500121 + 0.998749i \(0.484074\pi\)
\(420\) 0 0
\(421\) −16.0512 −0.782287 −0.391144 0.920330i \(-0.627920\pi\)
−0.391144 + 0.920330i \(0.627920\pi\)
\(422\) −0.0284714 + 0.0164380i −0.00138596 + 0.000800187i
\(423\) −5.53029 3.19291i −0.268892 0.155245i
\(424\) 0.416364 0.721164i 0.0202204 0.0350228i
\(425\) 27.5035 3.59655i 1.33412 0.174458i
\(426\) 1.08339 0.0524906
\(427\) 0 0
\(428\) 9.89727i 0.478403i
\(429\) −7.57255 13.1160i −0.365606 0.633249i
\(430\) 1.24178 1.41473i 0.0598837 0.0682244i
\(431\) −18.3063 + 31.7075i −0.881784 + 1.52729i −0.0324277 + 0.999474i \(0.510324\pi\)
−0.849356 + 0.527820i \(0.823009\pi\)
\(432\) −3.04100 + 1.75572i −0.146310 + 0.0844722i
\(433\) 18.0047i 0.865252i 0.901574 + 0.432626i \(0.142413\pi\)
−0.901574 + 0.432626i \(0.857587\pi\)
\(434\) 0 0
\(435\) −0.0518757 + 0.260205i −0.00248725 + 0.0124759i
\(436\) 3.10708 + 5.38163i 0.148802 + 0.257733i
\(437\) −10.9559 6.32538i −0.524090 0.302584i
\(438\) −0.586053 0.338358i −0.0280027 0.0161674i
\(439\) 9.68731 + 16.7789i 0.462350 + 0.800814i 0.999078 0.0429418i \(-0.0136730\pi\)
−0.536727 + 0.843756i \(0.680340\pi\)
\(440\) 1.63892 8.22070i 0.0781324 0.391907i
\(441\) 0 0
\(442\) 7.24881i 0.344791i
\(443\) −14.2396 + 8.22121i −0.676542 + 0.390602i −0.798551 0.601927i \(-0.794400\pi\)
0.122009 + 0.992529i \(0.461066\pi\)
\(444\) −7.43556 + 12.8788i −0.352876 + 0.611199i
\(445\) 19.1762 21.8470i 0.909038 1.03565i
\(446\) −1.13020 1.95756i −0.0535164 0.0926931i
\(447\) 11.3700i 0.537785i
\(448\) 0 0
\(449\) 32.7245 1.54436 0.772182 0.635401i \(-0.219165\pi\)
0.772182 + 0.635401i \(0.219165\pi\)
\(450\) −1.42455 + 0.186284i −0.0671540 + 0.00878152i
\(451\) −0.116880 + 0.202441i −0.00550365 + 0.00953259i
\(452\) −21.0239 12.1381i −0.988880 0.570930i
\(453\) 7.74255 4.47016i 0.363777 0.210027i
\(454\) −2.57989 −0.121080
\(455\) 0 0
\(456\) 1.86542 0.0873561
\(457\) 32.4156 18.7152i 1.51634 0.875459i 0.516523 0.856273i \(-0.327226\pi\)
0.999816 0.0191857i \(-0.00610737\pi\)
\(458\) 1.26563 + 0.730712i 0.0591390 + 0.0341439i
\(459\) −2.77377 + 4.80431i −0.129469 + 0.224246i
\(460\) −30.9971 + 10.5071i −1.44525 + 0.489894i
\(461\) −28.3604 −1.32088 −0.660438 0.750881i \(-0.729629\pi\)
−0.660438 + 0.750881i \(0.729629\pi\)
\(462\) 0 0
\(463\) 7.20833i 0.334999i −0.985872 0.167500i \(-0.946431\pi\)
0.985872 0.167500i \(-0.0535693\pi\)
\(464\) −0.208329 0.360836i −0.00967143 0.0167514i
\(465\) −10.5204 9.23426i −0.487873 0.428229i
\(466\) 3.13458 5.42926i 0.145207 0.251506i
\(467\) 10.4607 6.03950i 0.484065 0.279475i −0.238044 0.971254i \(-0.576506\pi\)
0.722109 + 0.691779i \(0.243173\pi\)
\(468\) 8.71963i 0.403065i
\(469\) 0 0
\(470\) 4.02372 + 0.802189i 0.185601 + 0.0370022i
\(471\) −1.67316 2.89800i −0.0770952 0.133533i
\(472\) 1.58905 + 0.917438i 0.0731419 + 0.0422285i
\(473\) 8.45018 + 4.87871i 0.388540 + 0.224323i
\(474\) 1.71544 + 2.97123i 0.0787929 + 0.136473i
\(475\) −7.65266 3.17764i −0.351128 0.145800i
\(476\) 0 0
\(477\) 0.739795i 0.0338729i
\(478\) −1.85362 + 1.07019i −0.0847827 + 0.0489493i
\(479\) −10.0708 + 17.4432i −0.460149 + 0.797001i −0.998968 0.0454204i \(-0.985537\pi\)
0.538819 + 0.842421i \(0.318871\pi\)
\(480\) 4.80904 5.47885i 0.219502 0.250074i
\(481\) −17.6347 30.5443i −0.804075 1.39270i
\(482\) 6.94657i 0.316408i
\(483\) 0 0
\(484\) 0.175495 0.00797705
\(485\) −6.44432 + 2.18443i −0.292622 + 0.0991896i
\(486\) 0.143668 0.248840i 0.00651691 0.0112876i
\(487\) −34.5887 19.9698i −1.56737 0.904919i −0.996475 0.0838930i \(-0.973265\pi\)
−0.570891 0.821026i \(-0.693402\pi\)
\(488\) 7.13372 4.11866i 0.322928 0.186443i
\(489\) −15.7559 −0.712505
\(490\) 0 0
\(491\) −31.5989 −1.42604 −0.713019 0.701145i \(-0.752673\pi\)
−0.713019 + 0.701145i \(0.752673\pi\)
\(492\) −0.116553 + 0.0672922i −0.00525463 + 0.00303376i
\(493\) −0.570066 0.329127i −0.0256745 0.0148232i
\(494\) −1.08273 + 1.87534i −0.0487143 + 0.0843757i
\(495\) −2.39069 7.05282i −0.107453 0.317001i
\(496\) 21.9824 0.987037
\(497\) 0 0
\(498\) 0.351730i 0.0157614i
\(499\) 19.8929 + 34.4556i 0.890530 + 1.54244i 0.839241 + 0.543759i \(0.183000\pi\)
0.0512890 + 0.998684i \(0.483667\pi\)
\(500\) −19.2392 + 9.45650i −0.860402 + 0.422907i
\(501\) −11.2971 + 19.5671i −0.504716 + 0.874194i
\(502\) −1.49354 + 0.862295i −0.0666599 + 0.0384861i
\(503\) 12.8734i 0.573995i 0.957931 + 0.286997i \(0.0926571\pi\)
−0.957931 + 0.286997i \(0.907343\pi\)
\(504\) 0 0
\(505\) −35.1735 7.01237i −1.56520 0.312046i
\(506\) 3.65248 + 6.32628i 0.162373 + 0.281238i
\(507\) 6.65118 + 3.84006i 0.295389 + 0.170543i
\(508\) 27.4780 + 15.8644i 1.21914 + 0.703871i
\(509\) −16.6981 28.9219i −0.740128 1.28194i −0.952437 0.304737i \(-0.901431\pi\)
0.212308 0.977203i \(-0.431902\pi\)
\(510\) 0.696884 3.49552i 0.0308585 0.154784i
\(511\) 0 0
\(512\) 19.3531i 0.855296i
\(513\) 1.43521 0.828617i 0.0633659 0.0365843i
\(514\) 1.05365 1.82498i 0.0464746 0.0804965i
\(515\) 8.89318 + 7.80596i 0.391880 + 0.343972i
\(516\) 2.80887 + 4.86510i 0.123653 + 0.214174i
\(517\) 21.2673i 0.935335i
\(518\) 0 0
\(519\) 8.52620 0.374259
\(520\) 3.67448 + 10.8402i 0.161136 + 0.475372i
\(521\) 6.77589 11.7362i 0.296857 0.514172i −0.678558 0.734547i \(-0.737395\pi\)
0.975415 + 0.220375i \(0.0707281\pi\)
\(522\) 0.0295266 + 0.0170472i 0.00129235 + 0.000746136i
\(523\) −17.5052 + 10.1066i −0.765450 + 0.441933i −0.831249 0.555900i \(-0.812374\pi\)
0.0657991 + 0.997833i \(0.479040\pi\)
\(524\) 10.1583 0.443768
\(525\) 0 0
\(526\) −2.72616 −0.118866
\(527\) 30.0760 17.3644i 1.31013 0.756404i
\(528\) 10.1277 + 5.84725i 0.440753 + 0.254469i
\(529\) 17.6364 30.5471i 0.766798 1.32813i
\(530\) 0.152591 + 0.450162i 0.00662812 + 0.0195538i
\(531\) 1.63010 0.0707404
\(532\) 0 0
\(533\) 0.319190i 0.0138257i
\(534\) −1.86770 3.23496i −0.0808235 0.139990i
\(535\) 8.67438 + 7.61391i 0.375026 + 0.329178i
\(536\) −1.70875 + 2.95963i −0.0738066 + 0.127837i
\(537\) 10.2023 5.89031i 0.440262 0.254186i
\(538\) 4.61130i 0.198807i
\(539\) 0 0
\(540\) 0.838284 4.20477i 0.0360740 0.180945i
\(541\) 16.4854 + 28.5535i 0.708762 + 1.22761i 0.965317 + 0.261082i \(0.0840794\pi\)
−0.256554 + 0.966530i \(0.582587\pi\)
\(542\) 6.01421 + 3.47231i 0.258332 + 0.149148i
\(543\) 7.87189 + 4.54484i 0.337815 + 0.195038i
\(544\) 9.04306 + 15.6630i 0.387718 + 0.671547i
\(545\) −7.10694 1.41688i −0.304428 0.0606923i
\(546\) 0 0
\(547\) 24.6221i 1.05277i 0.850248 + 0.526383i \(0.176452\pi\)
−0.850248 + 0.526383i \(0.823548\pi\)
\(548\) −24.6926 + 14.2563i −1.05482 + 0.608998i
\(549\) 3.65901 6.33759i 0.156163 0.270482i
\(550\) 2.90944 + 3.79850i 0.124059 + 0.161969i
\(551\) 0.0983213 + 0.170297i 0.00418863 + 0.00725491i
\(552\) 8.59260i 0.365725i
\(553\) 0 0
\(554\) 6.67127 0.283435
\(555\) −5.56736 16.4244i −0.236321 0.697177i
\(556\) 9.12399 15.8032i 0.386943 0.670206i
\(557\) 20.7796 + 11.9971i 0.880460 + 0.508334i 0.870810 0.491620i \(-0.163595\pi\)
0.00964963 + 0.999953i \(0.496928\pi\)
\(558\) −1.55779 + 0.899391i −0.0659465 + 0.0380742i
\(559\) −13.3234 −0.563521
\(560\) 0 0
\(561\) 18.4755 0.780036
\(562\) 3.09736 1.78826i 0.130654 0.0754333i
\(563\) 0.196151 + 0.113248i 0.00826680 + 0.00477284i 0.504128 0.863629i \(-0.331814\pi\)
−0.495861 + 0.868402i \(0.665147\pi\)
\(564\) −6.12221 + 10.6040i −0.257792 + 0.446508i
\(565\) 26.8119 9.08840i 1.12799 0.382352i
\(566\) −2.49056 −0.104686
\(567\) 0 0
\(568\) 4.24413i 0.178080i
\(569\) −6.40275 11.0899i −0.268417 0.464912i 0.700036 0.714108i \(-0.253167\pi\)
−0.968453 + 0.249195i \(0.919834\pi\)
\(570\) −0.702404 + 0.800236i −0.0294205 + 0.0335182i
\(571\) 0.780149 1.35126i 0.0326482 0.0565484i −0.849240 0.528008i \(-0.822939\pi\)
0.881888 + 0.471459i \(0.156273\pi\)
\(572\) −25.1492 + 14.5199i −1.05154 + 0.607107i
\(573\) 20.4957i 0.856219i
\(574\) 0 0
\(575\) 14.6371 35.2502i 0.610408 1.47003i
\(576\) 3.04306 + 5.27073i 0.126794 + 0.219614i
\(577\) 37.8018 + 21.8249i 1.57371 + 0.908581i 0.995709 + 0.0925443i \(0.0295000\pi\)
0.578000 + 0.816037i \(0.303833\pi\)
\(578\) 3.42782 + 1.97905i 0.142579 + 0.0823178i
\(579\) 4.27148 + 7.39842i 0.177517 + 0.307468i
\(580\) 0.498926 + 0.0994684i 0.0207168 + 0.00413020i
\(581\) 0 0
\(582\) 0.874380i 0.0362442i
\(583\) −2.13372 + 1.23191i −0.0883697 + 0.0510203i
\(584\) −1.32550 + 2.29583i −0.0548494 + 0.0950020i
\(585\) 7.64225 + 6.70796i 0.315968 + 0.277340i
\(586\) 3.87994 + 6.72025i 0.160279 + 0.277611i
\(587\) 13.6961i 0.565297i −0.959224 0.282648i \(-0.908787\pi\)
0.959224 0.282648i \(-0.0912129\pi\)
\(588\) 0 0
\(589\) −10.3746 −0.427479
\(590\) −0.991909 + 0.336226i −0.0408362 + 0.0138422i
\(591\) −6.90429 + 11.9586i −0.284004 + 0.491910i
\(592\) 23.5852 + 13.6169i 0.969344 + 0.559651i
\(593\) 7.92838 4.57745i 0.325579 0.187973i −0.328297 0.944574i \(-0.606475\pi\)
0.653877 + 0.756601i \(0.273141\pi\)
\(594\) −0.956942 −0.0392638
\(595\) 0 0
\(596\) −21.8014 −0.893018
\(597\) 3.28309 1.89549i 0.134368 0.0775773i
\(598\) −8.63833 4.98734i −0.353247 0.203948i
\(599\) 20.1368 34.8780i 0.822767 1.42507i −0.0808467 0.996727i \(-0.525762\pi\)
0.903614 0.428348i \(-0.140904\pi\)
\(600\) 0.729756 + 5.58059i 0.0297922 + 0.227827i
\(601\) 8.82450 0.359959 0.179980 0.983670i \(-0.442397\pi\)
0.179980 + 0.983670i \(0.442397\pi\)
\(602\) 0 0
\(603\) 3.03610i 0.123639i
\(604\) −8.57126 14.8459i −0.348760 0.604070i
\(605\) −0.135007 + 0.153811i −0.00548883 + 0.00625332i
\(606\) −2.30438 + 3.99131i −0.0936092 + 0.162136i
\(607\) 24.3409 14.0532i 0.987966 0.570402i 0.0833003 0.996524i \(-0.473454\pi\)
0.904666 + 0.426122i \(0.140121\pi\)
\(608\) 5.40292i 0.219117i
\(609\) 0 0
\(610\) −0.919292 + 4.61110i −0.0372211 + 0.186698i
\(611\) −14.5199 25.1492i −0.587412 1.01743i
\(612\) 9.21197 + 5.31853i 0.372372 + 0.214989i
\(613\) 1.83025 + 1.05670i 0.0739232 + 0.0426796i 0.536506 0.843896i \(-0.319744\pi\)
−0.462583 + 0.886576i \(0.653077\pi\)
\(614\) 0.322795 + 0.559097i 0.0130269 + 0.0225633i
\(615\) 0.0306862 0.153920i 0.00123739 0.00620664i
\(616\) 0 0
\(617\) 18.0390i 0.726221i −0.931746 0.363111i \(-0.881715\pi\)
0.931746 0.363111i \(-0.118285\pi\)
\(618\) 1.31684 0.760278i 0.0529711 0.0305829i
\(619\) 7.31895 12.6768i 0.294173 0.509523i −0.680619 0.732638i \(-0.738289\pi\)
0.974792 + 0.223114i \(0.0716223\pi\)
\(620\) −17.7061 + 20.1722i −0.711095 + 0.810137i
\(621\) 3.81683 + 6.61094i 0.153164 + 0.265288i
\(622\) 8.21744i 0.329489i
\(623\) 0 0
\(624\) −15.9684 −0.639249
\(625\) 6.51251 24.1368i 0.260501 0.965474i
\(626\) 1.91488 3.31668i 0.0765341 0.132561i
\(627\) −4.77980 2.75962i −0.190887 0.110209i
\(628\) −5.55673 + 3.20818i −0.221738 + 0.128020i
\(629\) 43.0252 1.71553
\(630\) 0 0
\(631\) 12.1251 0.482692 0.241346 0.970439i \(-0.422411\pi\)
0.241346 + 0.970439i \(0.422411\pi\)
\(632\) 11.6396 6.72014i 0.462999 0.267313i
\(633\) 0.0990874 + 0.0572082i 0.00393837 + 0.00227382i
\(634\) −4.19403 + 7.26428i −0.166566 + 0.288501i
\(635\) −35.0429 + 11.8785i −1.39064 + 0.471383i
\(636\) −1.41851 −0.0562477
\(637\) 0 0
\(638\) 0.113548i 0.00449540i
\(639\) −1.88524 3.26533i −0.0745790 0.129175i
\(640\) −13.8965 12.1976i −0.549308 0.482154i
\(641\) 6.52024 11.2934i 0.257534 0.446062i −0.708047 0.706166i \(-0.750423\pi\)
0.965581 + 0.260104i \(0.0837567\pi\)
\(642\) 1.28444 0.741573i 0.0506929 0.0292675i
\(643\) 27.0185i 1.06550i −0.846271 0.532752i \(-0.821158\pi\)
0.846271 0.532752i \(-0.178842\pi\)
\(644\) 0 0
\(645\) −6.42482 1.28088i −0.252977 0.0504347i
\(646\) −1.32082 2.28773i −0.0519670 0.0900095i
\(647\) 30.2927 + 17.4895i 1.19093 + 0.687582i 0.958517 0.285035i \(-0.0920054\pi\)
0.232411 + 0.972618i \(0.425339\pi\)
\(648\) −0.974816 0.562810i −0.0382944 0.0221093i
\(649\) −2.71444 4.70155i −0.106551 0.184552i
\(650\) −6.03386 2.50546i −0.236667 0.0982723i
\(651\) 0 0
\(652\) 30.2109i 1.18315i
\(653\) 28.0168 16.1755i 1.09638 0.632997i 0.161114 0.986936i \(-0.448491\pi\)
0.935269 + 0.353939i \(0.115158\pi\)
\(654\) −0.465609 + 0.806458i −0.0182067 + 0.0315350i
\(655\) −7.81473 + 8.90317i −0.305347 + 0.347875i
\(656\) 0.123234 + 0.213447i 0.00481146 + 0.00833370i
\(657\) 2.35514i 0.0918827i
\(658\) 0 0
\(659\) −8.54282 −0.332781 −0.166390 0.986060i \(-0.553211\pi\)
−0.166390 + 0.986060i \(0.553211\pi\)
\(660\) −13.5233 + 4.58399i −0.526395 + 0.178432i
\(661\) −15.1715 + 26.2779i −0.590104 + 1.02209i 0.404114 + 0.914709i \(0.367580\pi\)
−0.994218 + 0.107382i \(0.965753\pi\)
\(662\) 6.19400 + 3.57611i 0.240737 + 0.138989i
\(663\) −21.8478 + 12.6138i −0.848498 + 0.489881i
\(664\) 1.37788 0.0534722
\(665\) 0 0
\(666\) −2.22850 −0.0863525
\(667\) −0.784435 + 0.452894i −0.0303734 + 0.0175361i
\(668\) 37.5187 + 21.6614i 1.45164 + 0.838107i
\(669\) −3.93337 + 6.81279i −0.152073 + 0.263398i
\(670\) −0.626227 1.84745i −0.0241933 0.0713731i
\(671\) −24.3719 −0.940867
\(672\) 0 0
\(673\) 40.5075i 1.56145i −0.624875 0.780725i \(-0.714850\pi\)
0.624875 0.780725i \(-0.285150\pi\)
\(674\) −0.679059 1.17617i −0.0261564 0.0453042i
\(675\) 3.04035 + 3.96942i 0.117023 + 0.152783i
\(676\) 7.36308 12.7532i 0.283195 0.490509i
\(677\) 20.2833 11.7105i 0.779549 0.450073i −0.0567215 0.998390i \(-0.518065\pi\)
0.836270 + 0.548317i \(0.184731\pi\)
\(678\) 3.63790i 0.139713i
\(679\) 0 0
\(680\) −13.6935 2.73000i −0.525121 0.104691i
\(681\) 4.48933 + 7.77575i 0.172032 + 0.297967i
\(682\) 5.18806 + 2.99533i 0.198661 + 0.114697i
\(683\) −44.1887 25.5124i −1.69083 0.976204i −0.953845 0.300299i \(-0.902913\pi\)
−0.736989 0.675904i \(-0.763753\pi\)
\(684\) −1.58882 2.75192i −0.0607501 0.105222i
\(685\) 6.50107 32.6089i 0.248393 1.24592i
\(686\) 0 0
\(687\) 5.08612i 0.194047i
\(688\) 8.90956 5.14393i 0.339674 0.196111i
\(689\) 1.68212 2.91353i 0.0640838 0.110996i
\(690\) −3.68610 3.23546i −0.140327 0.123172i
\(691\) 12.3057 + 21.3142i 0.468133 + 0.810829i 0.999337 0.0364144i \(-0.0115936\pi\)
−0.531204 + 0.847244i \(0.678260\pi\)
\(692\) 16.3485i 0.621476i
\(693\) 0 0
\(694\) −4.06819 −0.154426
\(695\) 6.83157 + 20.1540i 0.259136 + 0.764483i
\(696\) 0.0667814 0.115669i 0.00253134 0.00438441i
\(697\) 0.337213 + 0.194690i 0.0127728 + 0.00737441i
\(698\) 1.25647 0.725422i 0.0475580 0.0274576i
\(699\) −21.8183 −0.825243
\(700\) 0 0
\(701\) 25.7244 0.971595 0.485798 0.874071i \(-0.338529\pi\)
0.485798 + 0.874071i \(0.338529\pi\)
\(702\) 1.13161 0.653336i 0.0427099 0.0246586i
\(703\) −11.1311 6.42652i −0.419816 0.242381i
\(704\) 10.1346 17.5536i 0.381962 0.661577i
\(705\) −4.58399 13.5233i −0.172643 0.509319i
\(706\) −4.62567 −0.174089
\(707\) 0 0
\(708\) 3.12562i 0.117468i
\(709\) 5.85482 + 10.1408i 0.219882 + 0.380848i 0.954772 0.297339i \(-0.0960993\pi\)
−0.734889 + 0.678187i \(0.762766\pi\)
\(710\) 1.82067 + 1.59809i 0.0683285 + 0.0599751i
\(711\) 5.97016 10.3406i 0.223899 0.387804i
\(712\) −12.6727 + 7.31661i −0.474931 + 0.274202i
\(713\) 47.7883i 1.78968i
\(714\) 0 0
\(715\) 6.62129 33.2119i 0.247622 1.24205i
\(716\) −11.2943 19.5623i −0.422088 0.731077i
\(717\) 6.45107 + 3.72453i 0.240920 + 0.139095i
\(718\) 0.0762651 + 0.0440317i 0.00284619 + 0.00164325i
\(719\) 6.16037 + 10.6701i 0.229743 + 0.397927i 0.957732 0.287662i \(-0.0928781\pi\)
−0.727989 + 0.685589i \(0.759545\pi\)
\(720\) −7.70029 1.53517i −0.286973 0.0572123i
\(721\) 0 0
\(722\) 4.67023i 0.173808i
\(723\) 20.9368 12.0879i 0.778650 0.449554i
\(724\) 8.71444 15.0939i 0.323870 0.560959i
\(725\) −0.470999 + 0.360759i −0.0174925 + 0.0133983i
\(726\) 0.0131493 + 0.0227753i 0.000488017 + 0.000845271i
\(727\) 17.6540i 0.654751i −0.944894 0.327376i \(-0.893836\pi\)
0.944894 0.327376i \(-0.106164\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) −0.485773 1.43309i −0.0179793 0.0530410i
\(731\) 8.12662 14.0757i 0.300574 0.520609i
\(732\) −12.1519 7.01593i −0.449149 0.259316i
\(733\) −8.69135 + 5.01795i −0.321022 + 0.185342i −0.651848 0.758349i \(-0.726006\pi\)
0.330826 + 0.943692i \(0.392673\pi\)
\(734\) −6.79541 −0.250823
\(735\) 0 0
\(736\) 24.8873 0.917357
\(737\) 8.75672 5.05570i 0.322558 0.186229i
\(738\) −0.0174660 0.0100840i −0.000642932 0.000371197i
\(739\) −15.5360 + 26.9092i −0.571502 + 0.989870i 0.424910 + 0.905235i \(0.360306\pi\)
−0.996412 + 0.0846345i \(0.973028\pi\)
\(740\) −31.4928 + 10.6751i −1.15770 + 0.392423i
\(741\) 7.53634 0.276854
\(742\) 0 0
\(743\) 4.04189i 0.148283i −0.997248 0.0741413i \(-0.976378\pi\)
0.997248 0.0741413i \(-0.0236216\pi\)
\(744\) 3.52331 + 6.10255i 0.129171 + 0.223730i
\(745\) 16.7717 19.1076i 0.614466 0.700049i
\(746\) −2.70638 + 4.68759i −0.0990876 + 0.171625i
\(747\) 1.06011 0.612055i 0.0387874 0.0223939i
\(748\) 35.4256i 1.29529i
\(749\) 0 0
\(750\) −2.66877 1.78826i −0.0974498 0.0652981i
\(751\) −7.34725 12.7258i −0.268105 0.464371i 0.700268 0.713881i \(-0.253064\pi\)
−0.968372 + 0.249509i \(0.919731\pi\)
\(752\) 19.4193 + 11.2117i 0.708149 + 0.408850i
\(753\) 5.19789 + 3.00100i 0.189421 + 0.109363i
\(754\) 0.0775229 + 0.134274i 0.00282322 + 0.00488996i
\(755\) 19.6054 + 3.90862i 0.713512 + 0.142249i
\(756\) 0 0
\(757\) 29.6087i 1.07615i 0.842898 + 0.538073i \(0.180847\pi\)
−0.842898 + 0.538073i \(0.819153\pi\)
\(758\) −3.54681 + 2.04775i −0.128826 + 0.0743778i
\(759\) 12.7115 22.0170i 0.461400 0.799168i
\(760\) 3.13487 + 2.75163i 0.113714 + 0.0998120i
\(761\) −7.12611 12.3428i −0.258321 0.447426i 0.707471 0.706742i \(-0.249836\pi\)
−0.965792 + 0.259317i \(0.916503\pi\)
\(762\) 4.75470i 0.172245i
\(763\) 0 0
\(764\) 39.2992 1.42179
\(765\) −11.7481 + 3.98224i −0.424753 + 0.143978i
\(766\) −3.59980 + 6.23504i −0.130066 + 0.225281i
\(767\) 6.41981 + 3.70648i 0.231806 + 0.133833i
\(768\) 8.48376 4.89810i 0.306131 0.176745i
\(769\) −20.6367 −0.744178 −0.372089 0.928197i \(-0.621358\pi\)
−0.372089 + 0.928197i \(0.621358\pi\)
\(770\) 0 0
\(771\) −7.33395 −0.264126
\(772\) 14.1860 8.19030i 0.510566 0.294775i
\(773\) −36.8580 21.2800i −1.32569 0.765387i −0.341059 0.940042i \(-0.610786\pi\)
−0.984630 + 0.174655i \(0.944119\pi\)
\(774\) −0.420920 + 0.729054i −0.0151296 + 0.0262053i
\(775\) −4.05858 31.0368i −0.145789 1.11487i
\(776\) 3.42533 0.122962
\(777\) 0 0
\(778\) 3.87093i 0.138780i
\(779\) −0.0581603 0.100737i −0.00208381 0.00360926i
\(780\) 12.8621 14.6535i 0.460537 0.524681i
\(781\) −6.27860 + 10.8748i −0.224666 + 0.389133i
\(782\) 10.5379 6.08405i 0.376834 0.217565i
\(783\) 0.118657i 0.00424046i
\(784\) 0 0
\(785\) 1.46298 7.33819i 0.0522159 0.261911i
\(786\) 0.761132 + 1.31832i 0.0271487 + 0.0470229i
\(787\) 21.8231 + 12.5996i 0.777909 + 0.449126i 0.835689 0.549203i \(-0.185069\pi\)
−0.0577798 + 0.998329i \(0.518402\pi\)
\(788\) 22.9298 + 13.2385i 0.816842 + 0.471604i
\(789\) 4.74386 + 8.21661i 0.168886 + 0.292519i
\(790\) −1.49995 + 7.52363i −0.0533657 + 0.267679i
\(791\) 0 0
\(792\) 3.74876i 0.133206i
\(793\) 28.8205 16.6395i 1.02344 0.590886i
\(794\) 2.65044 4.59069i 0.0940605 0.162918i
\(795\) 1.09125 1.24324i 0.0387027 0.0440933i
\(796\) −3.63449 6.29512i −0.128821 0.223125i
\(797\) 51.7211i 1.83205i 0.401116 + 0.916027i \(0.368623\pi\)
−0.401116 + 0.916027i \(0.631377\pi\)
\(798\) 0 0
\(799\) 35.4256 1.25327
\(800\) 16.1634 2.11364i 0.571463 0.0747284i
\(801\) −6.50007 + 11.2585i −0.229669 + 0.397798i
\(802\) −6.32515 3.65182i −0.223349 0.128950i
\(803\) 6.79271 3.92177i 0.239709 0.138396i
\(804\) 5.82152 0.205309
\(805\) 0 0
\(806\) −8.18003 −0.288129
\(807\) 13.8984 8.02423i 0.489246 0.282466i
\(808\) 15.6357 + 9.02728i 0.550062 + 0.317579i
\(809\) −25.8890 + 44.8410i −0.910207 + 1.57653i −0.0964371 + 0.995339i \(0.530745\pi\)
−0.813770 + 0.581187i \(0.802589\pi\)
\(810\) 0.608495 0.206261i 0.0213803 0.00724726i
\(811\) −12.0263 −0.422299 −0.211149 0.977454i \(-0.567721\pi\)
−0.211149 + 0.977454i \(0.567721\pi\)
\(812\) 0 0
\(813\) 24.1690i 0.847643i
\(814\) 3.71089 + 6.42744i 0.130067 + 0.225282i
\(815\) −26.4781 23.2411i −0.927487 0.814099i
\(816\) 9.73994 16.8701i 0.340966 0.590571i
\(817\) −4.20488 + 2.42769i −0.147110 + 0.0849341i
\(818\) 5.38212i 0.188182i
\(819\) 0 0
\(820\) −0.295132 0.0588389i −0.0103064 0.00205474i
\(821\) −4.03967 6.99692i −0.140985 0.244194i 0.786882 0.617103i \(-0.211694\pi\)
−0.927868 + 0.372909i \(0.878360\pi\)
\(822\) −3.70029 2.13636i −0.129062 0.0745142i
\(823\) 4.42994 + 2.55762i 0.154418 + 0.0891532i 0.575218 0.818000i \(-0.304917\pi\)
−0.420800 + 0.907153i \(0.638251\pi\)
\(824\) −2.97834 5.15864i −0.103755 0.179710i
\(825\) 6.38582 15.3789i 0.222326 0.535423i
\(826\) 0 0
\(827\) 0.705254i 0.0245241i −0.999925 0.0122620i \(-0.996097\pi\)
0.999925 0.0122620i \(-0.00390323\pi\)
\(828\) 12.6761 7.31853i 0.440524 0.254337i
\(829\) −12.4790 + 21.6143i −0.433415 + 0.750696i −0.997165 0.0752491i \(-0.976025\pi\)
0.563750 + 0.825945i \(0.309358\pi\)
\(830\) −0.518828 + 0.591091i −0.0180088 + 0.0205171i
\(831\) −11.6088 20.1071i −0.402706 0.697508i
\(832\) 27.6769i 0.959523i
\(833\) 0 0
\(834\) 2.73453 0.0946891
\(835\) −47.8479 + 16.2190i −1.65585 + 0.561280i
\(836\) −5.29140 + 9.16498i −0.183007 + 0.316977i
\(837\) 5.42150 + 3.13010i 0.187394 + 0.108192i
\(838\) 0.509487 0.294152i 0.0175999 0.0101613i
\(839\) −11.6389 −0.401819 −0.200909 0.979610i \(-0.564390\pi\)
−0.200909 + 0.979610i \(0.564390\pi\)
\(840\) 0 0
\(841\) −28.9859 −0.999514
\(842\) −3.99418 + 2.30604i −0.137649 + 0.0794714i
\(843\) −10.7796 6.22360i −0.371269 0.214352i
\(844\) 0.109693 0.189994i 0.00377579 0.00653986i
\(845\) 5.51309 + 16.2643i 0.189656 + 0.559509i
\(846\) −1.83488 −0.0630843
\(847\) 0 0
\(848\) 2.59775i 0.0892071i
\(849\) 4.33388 + 7.50649i 0.148738 + 0.257622i
\(850\) 6.32728 4.84634i 0.217024 0.166228i
\(851\) 29.6023 51.2726i 1.01475 1.75760i
\(852\) −6.26107 + 3.61483i −0.214501 + 0.123842i
\(853\) 32.5996i 1.11619i 0.829778 + 0.558094i \(0.188467\pi\)
−0.829778 + 0.558094i \(0.811533\pi\)
\(854\) 0 0
\(855\) 3.63417 + 0.724526i 0.124286 + 0.0247783i
\(856\) −2.90507 5.03172i −0.0992931 0.171981i
\(857\) 27.4455 + 15.8456i 0.937519 + 0.541277i 0.889182 0.457554i \(-0.151274\pi\)
0.0483371 + 0.998831i \(0.484608\pi\)
\(858\) −3.76871 2.17587i −0.128662 0.0742828i
\(859\) 21.8456 + 37.8377i 0.745363 + 1.29101i 0.950025 + 0.312174i \(0.101057\pi\)
−0.204662 + 0.978833i \(0.565610\pi\)
\(860\) −2.45601 + 12.3192i −0.0837494 + 0.420081i
\(861\) 0 0
\(862\) 10.5201i 0.358317i
\(863\) −33.6005 + 19.3992i −1.14377 + 0.660358i −0.947362 0.320164i \(-0.896262\pi\)
−0.196411 + 0.980522i \(0.562929\pi\)
\(864\) −1.63010 + 2.82342i −0.0554572 + 0.0960547i
\(865\) 14.3285 + 12.5768i 0.487183 + 0.427623i
\(866\) 2.58670 + 4.48030i 0.0878997 + 0.152247i
\(867\) 13.7752i 0.467830i
\(868\) 0 0
\(869\) −39.7660 −1.34897
\(870\) 0.0244743 + 0.0722022i 0.000829757 + 0.00244788i
\(871\) −6.90338 + 11.9570i −0.233912 + 0.405148i
\(872\) 3.15925 + 1.82399i 0.106986 + 0.0617682i
\(873\) 2.63537 1.52153i 0.0891936 0.0514960i
\(874\) −3.63501 −0.122956
\(875\) 0 0
\(876\) 4.51583 0.152576
\(877\) −3.72454 + 2.15036i −0.125769 + 0.0726127i −0.561565 0.827433i \(-0.689800\pi\)
0.435796 + 0.900046i \(0.356467\pi\)
\(878\) 4.82118 + 2.78351i 0.162707 + 0.0939390i
\(879\) 13.5031 23.3881i 0.455450 0.788862i
\(880\) 8.39476 + 24.7656i 0.282987 + 0.834848i
\(881\) 1.29308 0.0435650 0.0217825 0.999763i \(-0.493066\pi\)
0.0217825 + 0.999763i \(0.493066\pi\)
\(882\) 0 0
\(883\) 1.49533i 0.0503218i 0.999683 + 0.0251609i \(0.00800981\pi\)
−0.999683 + 0.0251609i \(0.991990\pi\)
\(884\) 24.1862 + 41.8918i 0.813471 + 1.40897i
\(885\) 2.73942 + 2.40452i 0.0920847 + 0.0808271i
\(886\) −2.36225 + 4.09153i −0.0793613 + 0.137458i
\(887\) 8.73964 5.04584i 0.293449 0.169423i −0.346047 0.938217i \(-0.612476\pi\)
0.639496 + 0.768794i \(0.279143\pi\)
\(888\) 8.73000i 0.292960i
\(889\) 0 0
\(890\) 1.63308 8.19142i 0.0547410 0.274577i
\(891\) 1.66520 + 2.88421i 0.0557862 + 0.0966245i
\(892\) 13.0631 + 7.54198i 0.437385 + 0.252524i
\(893\) −9.16498 5.29140i −0.306694 0.177070i
\(894\) −1.63351 2.82932i −0.0546328 0.0946267i
\(895\) 25.8339 + 5.15036i 0.863531 + 0.172158i
\(896\) 0 0
\(897\) 34.7144i 1.15908i
\(898\) 8.14317 4.70146i 0.271741 0.156890i
\(899\) −0.371409 + 0.643299i −0.0123872 + 0.0214552i
\(900\) 7.61111 5.82969i 0.253704 0.194323i
\(901\) 2.05202 + 3.55421i 0.0683628 + 0.118408i
\(902\) 0.0671674i 0.00223643i
\(903\) 0 0
\(904\) −14.2512 −0.473989
\(905\) 6.52492 + 19.2493i 0.216896 + 0.639869i
\(906\) 1.28444 2.22471i 0.0426726 0.0739111i
\(907\) 3.69531 + 2.13349i 0.122701 + 0.0708414i 0.560094 0.828429i \(-0.310765\pi\)
−0.437393 + 0.899270i \(0.644098\pi\)
\(908\) 14.9095 8.60802i 0.494790 0.285667i
\(909\) 16.0397 0.532002
\(910\) 0 0
\(911\) −28.5451 −0.945742 −0.472871 0.881132i \(-0.656782\pi\)
−0.472871 + 0.881132i \(0.656782\pi\)
\(912\) −5.03965 + 2.90964i −0.166879 + 0.0963479i
\(913\) −3.53058 2.03838i −0.116845 0.0674606i
\(914\) 5.37754 9.31417i 0.177873 0.308085i
\(915\) 15.4975 5.25316i 0.512331 0.173664i
\(916\) −9.75231 −0.322226
\(917\) 0 0
\(918\) 1.59401i 0.0526101i
\(919\) −23.2822 40.3259i −0.768008 1.33023i −0.938642 0.344894i \(-0.887915\pi\)
0.170634 0.985335i \(-0.445419\pi\)
\(920\) −12.6747 + 14.4401i −0.417873 + 0.476075i
\(921\) 1.12341 1.94580i 0.0370175 0.0641161i
\(922\) −7.05720 + 4.07448i −0.232417 + 0.134186i
\(923\) 17.1464i 0.564381i
\(924\) 0 0
\(925\) 14.8711 35.8138i 0.488959 1.17755i
\(926\) −1.03561 1.79372i −0.0340321 0.0589453i
\(927\) −4.58293 2.64596i −0.150523 0.0869046i
\(928\) −0.335019 0.193423i −0.0109975 0.00634943i
\(929\) −3.69774 6.40467i −0.121319 0.210130i 0.798969 0.601372i \(-0.205379\pi\)
−0.920288 + 0.391242i \(0.872046\pi\)
\(930\) −3.94457 0.786409i −0.129348 0.0257874i
\(931\) 0 0
\(932\) 41.8352i 1.37036i
\(933\) −24.7672 + 14.2994i −0.810843 + 0.468140i
\(934\) 1.73537 3.00574i 0.0567829 0.0983509i
\(935\) 31.0485 + 27.2527i 1.01539 + 0.891259i
\(936\) −2.55940 4.43301i −0.0836567 0.144898i
\(937\) 44.1988i 1.44391i 0.691939 + 0.721956i \(0.256757\pi\)
−0.691939 + 0.721956i \(0.743243\pi\)
\(938\) 0 0
\(939\) −13.3285 −0.434960
\(940\) −25.9302 + 8.78952i −0.845749 + 0.286683i
\(941\) 18.0180 31.2080i 0.587369 1.01735i −0.407206 0.913336i \(-0.633497\pi\)
0.994576 0.104017i \(-0.0331696\pi\)
\(942\) −0.832699 0.480759i −0.0271308 0.0156640i
\(943\) 0.464020 0.267902i 0.0151106 0.00872408i
\(944\) −5.72401 −0.186301
\(945\) 0 0
\(946\) 2.80366 0.0911548
\(947\) 29.6476 17.1170i 0.963417 0.556229i 0.0661943 0.997807i \(-0.478914\pi\)
0.897223 + 0.441577i \(0.145581\pi\)
\(948\) −19.8275 11.4474i −0.643968 0.371795i
\(949\) −5.35504 + 9.27521i −0.173832 + 0.301086i
\(950\) −2.36081 + 0.308716i −0.0765949 + 0.0100161i
\(951\) 29.1925 0.946633
\(952\) 0 0
\(953\) 30.9689i 1.00318i 0.865105 + 0.501591i \(0.167252\pi\)
−0.865105 + 0.501591i \(0.832748\pi\)
\(954\) −0.106285 0.184091i −0.00344110 0.00596016i
\(955\) −30.2326 + 34.4434i −0.978305 + 1.11456i
\(956\) 7.14155 12.3695i 0.230974 0.400059i
\(957\) −0.342231 + 0.197587i −0.0110628 + 0.00638709i
\(958\) 5.78743i 0.186983i
\(959\) 0 0
\(960\) −2.66079 + 13.3463i −0.0858766 + 0.430751i
\(961\) −4.09508 7.09289i −0.132099 0.228803i
\(962\) −8.77646 5.06709i −0.282964 0.163370i
\(963\) −4.47018 2.58086i −0.144049 0.0831670i
\(964\) −23.1778 40.1451i −0.746506 1.29299i
\(965\) −3.73490 + 18.7340i −0.120231 + 0.603068i
\(966\) 0 0
\(967\) 21.0270i 0.676184i −0.941113 0.338092i \(-0.890218\pi\)
0.941113 0.338092i \(-0.109782\pi\)
\(968\) 0.0892209 0.0515117i 0.00286767 0.00165565i
\(969\) −4.59678 + 7.96187i −0.147670 + 0.255772i
\(970\) −1.28977 + 1.46942i −0.0414122 + 0.0471801i
\(971\) 22.3468 + 38.7058i 0.717144 + 1.24213i 0.962127 + 0.272602i \(0.0878843\pi\)
−0.244983 + 0.969527i \(0.578782\pi\)
\(972\) 1.91744i 0.0615019i
\(973\) 0 0
\(974\) −11.4761 −0.367718
\(975\) 2.94824 + 22.5458i 0.0944192 + 0.722042i
\(976\) −12.8484 + 22.2541i −0.411268 + 0.712337i
\(977\) −12.5029 7.21858i −0.400005 0.230943i 0.286481 0.958086i \(-0.407514\pi\)
−0.686486 + 0.727143i \(0.740848\pi\)
\(978\) −3.92069 + 2.26361i −0.125370 + 0.0723824i
\(979\) 43.2956 1.38373
\(980\) 0 0
\(981\) 3.24087 0.103473
\(982\) −7.86307 + 4.53974i −0.250921 + 0.144869i
\(983\) −14.5389 8.39401i −0.463717 0.267727i 0.249889 0.968275i \(-0.419606\pi\)
−0.713606 + 0.700547i \(0.752939\pi\)
\(984\) −0.0395034 + 0.0684220i −0.00125932 + 0.00218121i
\(985\) −29.2426 + 9.91233i −0.931747 + 0.315833i
\(986\) −0.189140 −0.00602345
\(987\) 0 0
\(988\) 14.4505i 0.459730i
\(989\) −11.1826 19.3688i −0.355585 0.615892i
\(990\) −1.60816 1.41156i −0.0511108 0.0448623i
\(991\) −20.0539 + 34.7344i −0.637033 + 1.10337i 0.349048 + 0.937105i \(0.386505\pi\)
−0.986081 + 0.166268i \(0.946828\pi\)
\(992\) 17.6752 10.2048i 0.561188 0.324002i
\(993\) 24.8915i 0.789907i
\(994\) 0 0
\(995\) 8.31330 + 1.65738i 0.263549 + 0.0525425i
\(996\) −1.17358 2.03270i −0.0371862 0.0644084i
\(997\) −44.4447 25.6602i −1.40758 0.812666i −0.412424 0.910992i \(-0.635318\pi\)
−0.995154 + 0.0983259i \(0.968651\pi\)
\(998\) 9.90032 + 5.71595i 0.313389 + 0.180935i
\(999\) 3.87786 + 6.71665i 0.122690 + 0.212505i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.g.214.5 16
5.4 even 2 inner 735.2.q.g.214.4 16
7.2 even 3 inner 735.2.q.g.79.4 16
7.3 odd 6 735.2.d.d.589.5 8
7.4 even 3 735.2.d.e.589.5 8
7.5 odd 6 105.2.q.a.79.4 yes 16
7.6 odd 2 105.2.q.a.4.5 yes 16
21.5 even 6 315.2.bf.b.289.5 16
21.11 odd 6 2205.2.d.o.1324.4 8
21.17 even 6 2205.2.d.s.1324.4 8
21.20 even 2 315.2.bf.b.109.4 16
28.19 even 6 1680.2.di.d.289.7 16
28.27 even 2 1680.2.di.d.529.3 16
35.3 even 12 3675.2.a.bp.1.3 4
35.4 even 6 735.2.d.e.589.4 8
35.9 even 6 inner 735.2.q.g.79.5 16
35.12 even 12 525.2.i.h.226.3 8
35.13 even 4 525.2.i.k.151.2 8
35.17 even 12 3675.2.a.bz.1.2 4
35.18 odd 12 3675.2.a.bn.1.3 4
35.19 odd 6 105.2.q.a.79.5 yes 16
35.24 odd 6 735.2.d.d.589.4 8
35.27 even 4 525.2.i.h.151.3 8
35.32 odd 12 3675.2.a.cb.1.2 4
35.33 even 12 525.2.i.k.226.2 8
35.34 odd 2 105.2.q.a.4.4 16
105.59 even 6 2205.2.d.s.1324.5 8
105.74 odd 6 2205.2.d.o.1324.5 8
105.89 even 6 315.2.bf.b.289.4 16
105.104 even 2 315.2.bf.b.109.5 16
140.19 even 6 1680.2.di.d.289.3 16
140.139 even 2 1680.2.di.d.529.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.q.a.4.4 16 35.34 odd 2
105.2.q.a.4.5 yes 16 7.6 odd 2
105.2.q.a.79.4 yes 16 7.5 odd 6
105.2.q.a.79.5 yes 16 35.19 odd 6
315.2.bf.b.109.4 16 21.20 even 2
315.2.bf.b.109.5 16 105.104 even 2
315.2.bf.b.289.4 16 105.89 even 6
315.2.bf.b.289.5 16 21.5 even 6
525.2.i.h.151.3 8 35.27 even 4
525.2.i.h.226.3 8 35.12 even 12
525.2.i.k.151.2 8 35.13 even 4
525.2.i.k.226.2 8 35.33 even 12
735.2.d.d.589.4 8 35.24 odd 6
735.2.d.d.589.5 8 7.3 odd 6
735.2.d.e.589.4 8 35.4 even 6
735.2.d.e.589.5 8 7.4 even 3
735.2.q.g.79.4 16 7.2 even 3 inner
735.2.q.g.79.5 16 35.9 even 6 inner
735.2.q.g.214.4 16 5.4 even 2 inner
735.2.q.g.214.5 16 1.1 even 1 trivial
1680.2.di.d.289.3 16 140.19 even 6
1680.2.di.d.289.7 16 28.19 even 6
1680.2.di.d.529.3 16 28.27 even 2
1680.2.di.d.529.7 16 140.139 even 2
2205.2.d.o.1324.4 8 21.11 odd 6
2205.2.d.o.1324.5 8 105.74 odd 6
2205.2.d.s.1324.4 8 21.17 even 6
2205.2.d.s.1324.5 8 105.59 even 6
3675.2.a.bn.1.3 4 35.18 odd 12
3675.2.a.bp.1.3 4 35.3 even 12
3675.2.a.bz.1.2 4 35.17 even 12
3675.2.a.cb.1.2 4 35.32 odd 12