Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(23,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.l (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.41049 | − | 0.102586i | 2.05029 | − | 2.05029i | 1.97895 | + | 0.289393i | −2.23513 | + | 0.0646962i | −3.10225 | + | 2.68158i | −3.00953 | − | 3.00953i | −2.76160 | − | 0.611199i | − | 5.40741i | 3.15926 | + | 0.138041i | |
23.2 | −1.32532 | − | 0.493487i | −0.130983 | + | 0.130983i | 1.51294 | + | 1.30805i | 2.21938 | + | 0.272654i | 0.238233 | − | 0.108956i | −0.450097 | − | 0.450097i | −1.35962 | − | 2.48021i | 2.96569i | −2.80684 | − | 1.45659i | ||
23.3 | −1.09671 | + | 0.892874i | −1.63523 | + | 1.63523i | 0.405551 | − | 1.95845i | 2.22762 | + | 0.194242i | 0.333320 | − | 3.25343i | 2.27323 | + | 2.27323i | 1.30388 | + | 2.50996i | − | 2.34794i | −2.61648 | + | 1.77595i | |
23.4 | −0.738695 | − | 1.20596i | 2.25953 | − | 2.25953i | −0.908659 | + | 1.78167i | 1.86216 | + | 1.23788i | −4.39400 | − | 1.05579i | 0.985925 | + | 0.985925i | 2.81983 | − | 0.220306i | − | 7.21094i | 0.117261 | − | 3.16010i | |
23.5 | −0.354689 | − | 1.36901i | −1.16576 | + | 1.16576i | −1.74839 | + | 0.971149i | −1.42385 | − | 1.72413i | 2.00942 | + | 1.18246i | 1.60129 | + | 1.60129i | 1.94965 | + | 2.04911i | 0.282018i | −1.85534 | + | 2.56081i | ||
23.6 | −0.296256 | + | 1.38283i | 0.668480 | − | 0.668480i | −1.82447 | − | 0.819345i | −0.500108 | + | 2.17942i | 0.726357 | + | 1.12244i | 1.29641 | + | 1.29641i | 1.67353 | − | 2.28020i | 2.10627i | −2.86562 | − | 1.33723i | ||
23.7 | −0.171537 | + | 1.40377i | −1.44333 | + | 1.44333i | −1.94115 | − | 0.481597i | 0.849085 | − | 2.06859i | −1.77852 | − | 2.27368i | −3.60557 | − | 3.60557i | 1.00903 | − | 2.64232i | − | 1.16638i | 2.75818 | + | 1.54676i | |
23.8 | 0.0339977 | + | 1.41380i | 2.01721 | − | 2.01721i | −1.99769 | + | 0.0961322i | −0.571381 | − | 2.16183i | 2.92052 | + | 2.78336i | 0.577795 | + | 0.577795i | −0.203829 | − | 2.82107i | − | 5.13826i | 3.03699 | − | 0.881318i | |
23.9 | 0.513913 | − | 1.31753i | 0.912547 | − | 0.912547i | −1.47179 | − | 1.35419i | 1.46492 | − | 1.68939i | −0.733342 | − | 1.67128i | 0.0653068 | + | 0.0653068i | −2.54057 | + | 1.24319i | 1.33451i | −1.47298 | − | 2.79827i | ||
23.10 | 0.857036 | + | 1.12494i | −0.635010 | + | 0.635010i | −0.530980 | + | 1.92823i | −1.96236 | + | 1.07199i | −1.25857 | − | 0.170122i | −2.25370 | − | 2.25370i | −2.62421 | + | 1.05524i | 2.19352i | −2.88773 | − | 1.28880i | ||
23.11 | 1.15410 | − | 0.817343i | −1.62701 | + | 1.62701i | 0.663900 | − | 1.88659i | −0.0183109 | + | 2.23599i | −0.547909 | + | 3.20756i | 1.77258 | + | 1.77258i | −0.775788 | − | 2.71995i | − | 2.29432i | 1.80644 | + | 2.59553i | |
23.12 | 1.18156 | + | 0.777125i | −0.810938 | + | 0.810938i | 0.792153 | + | 1.83644i | 0.127766 | − | 2.23241i | −1.58837 | + | 0.327969i | 2.32765 | + | 2.32765i | −0.491167 | + | 2.78545i | 1.68476i | 1.88583 | − | 2.53843i | ||
23.13 | 1.23890 | − | 0.682007i | 1.16674 | − | 1.16674i | 1.06973 | − | 1.68987i | −2.21837 | − | 0.280768i | 0.649749 | − | 2.24120i | 2.18012 | + | 2.18012i | 0.172785 | − | 2.82314i | 0.277416i | −2.93982 | + | 1.16510i | ||
23.14 | 1.41419 | − | 0.00742634i | 0.373449 | − | 0.373449i | 1.99989 | − | 0.0210046i | 1.17859 | + | 1.90025i | 0.525356 | − | 0.530903i | −2.76139 | − | 2.76139i | 2.82808 | − | 0.0445564i | 2.72107i | 1.68086 | + | 2.67856i | ||
67.1 | −1.41049 | + | 0.102586i | 2.05029 | + | 2.05029i | 1.97895 | − | 0.289393i | −2.23513 | − | 0.0646962i | −3.10225 | − | 2.68158i | −3.00953 | + | 3.00953i | −2.76160 | + | 0.611199i | 5.40741i | 3.15926 | − | 0.138041i | ||
67.2 | −1.32532 | + | 0.493487i | −0.130983 | − | 0.130983i | 1.51294 | − | 1.30805i | 2.21938 | − | 0.272654i | 0.238233 | + | 0.108956i | −0.450097 | + | 0.450097i | −1.35962 | + | 2.48021i | − | 2.96569i | −2.80684 | + | 1.45659i | |
67.3 | −1.09671 | − | 0.892874i | −1.63523 | − | 1.63523i | 0.405551 | + | 1.95845i | 2.22762 | − | 0.194242i | 0.333320 | + | 3.25343i | 2.27323 | − | 2.27323i | 1.30388 | − | 2.50996i | 2.34794i | −2.61648 | − | 1.77595i | ||
67.4 | −0.738695 | + | 1.20596i | 2.25953 | + | 2.25953i | −0.908659 | − | 1.78167i | 1.86216 | − | 1.23788i | −4.39400 | + | 1.05579i | 0.985925 | − | 0.985925i | 2.81983 | + | 0.220306i | 7.21094i | 0.117261 | + | 3.16010i | ||
67.5 | −0.354689 | + | 1.36901i | −1.16576 | − | 1.16576i | −1.74839 | − | 0.971149i | −1.42385 | + | 1.72413i | 2.00942 | − | 1.18246i | 1.60129 | − | 1.60129i | 1.94965 | − | 2.04911i | − | 0.282018i | −1.85534 | − | 2.56081i | |
67.6 | −0.296256 | − | 1.38283i | 0.668480 | + | 0.668480i | −1.82447 | + | 0.819345i | −0.500108 | − | 2.17942i | 0.726357 | − | 1.12244i | 1.29641 | − | 1.29641i | 1.67353 | + | 2.28020i | − | 2.10627i | −2.86562 | + | 1.33723i | |
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.2.l.d | yes | 28 |
4.b | odd | 2 | 1 | 220.2.l.c | ✓ | 28 | |
5.c | odd | 4 | 1 | 220.2.l.c | ✓ | 28 | |
20.e | even | 4 | 1 | inner | 220.2.l.d | yes | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.2.l.c | ✓ | 28 | 4.b | odd | 2 | 1 | |
220.2.l.c | ✓ | 28 | 5.c | odd | 4 | 1 | |
220.2.l.d | yes | 28 | 1.a | even | 1 | 1 | trivial |
220.2.l.d | yes | 28 | 20.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{28} - 4 T_{3}^{27} + 8 T_{3}^{26} + 12 T_{3}^{25} + 88 T_{3}^{24} - 340 T_{3}^{23} + 728 T_{3}^{22} + \cdots + 9216 \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\).