Properties

Label 220.2
Level 220
Weight 2
Dimension 704
Nonzero newspaces 12
Newform subspaces 26
Sturm bound 5760
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 26 \)
Sturm bound: \(5760\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(220))\).

Total New Old
Modular forms 1640 808 832
Cusp forms 1241 704 537
Eisenstein series 399 104 295

Trace form

\( 704 q - 6 q^{2} + 4 q^{3} - 10 q^{4} - 20 q^{5} - 30 q^{6} + 6 q^{7} - 18 q^{8} - 2 q^{9} - 32 q^{10} + 10 q^{11} - 20 q^{12} - 10 q^{13} - 20 q^{14} - 4 q^{15} - 54 q^{16} - 30 q^{17} - 48 q^{18} - 22 q^{19}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(220))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
220.2.a \(\chi_{220}(1, \cdot)\) 220.2.a.a 1 1
220.2.a.b 1
220.2.b \(\chi_{220}(89, \cdot)\) 220.2.b.a 2 1
220.2.b.b 4
220.2.d \(\chi_{220}(131, \cdot)\) 220.2.d.a 2 1
220.2.d.b 2
220.2.d.c 8
220.2.d.d 12
220.2.g \(\chi_{220}(219, \cdot)\) 220.2.g.a 8 1
220.2.g.b 24
220.2.k \(\chi_{220}(153, \cdot)\) 220.2.k.a 4 2
220.2.k.b 8
220.2.l \(\chi_{220}(23, \cdot)\) 220.2.l.a 2 2
220.2.l.b 2
220.2.l.c 28
220.2.l.d 28
220.2.m \(\chi_{220}(81, \cdot)\) 220.2.m.a 8 4
220.2.m.b 8
220.2.o \(\chi_{220}(19, \cdot)\) 220.2.o.a 128 4
220.2.r \(\chi_{220}(51, \cdot)\) 220.2.r.a 8 4
220.2.r.b 8
220.2.r.c 32
220.2.r.d 48
220.2.t \(\chi_{220}(9, \cdot)\) 220.2.t.a 24 4
220.2.u \(\chi_{220}(13, \cdot)\) 220.2.u.a 48 8
220.2.v \(\chi_{220}(3, \cdot)\) 220.2.v.a 256 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(220))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(220)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 1}\)