L(s) = 1 | + (1.23 − 0.682i)2-s + (1.16 − 1.16i)3-s + (1.06 − 1.68i)4-s + (−2.21 − 0.280i)5-s + (0.649 − 2.24i)6-s + (2.18 + 2.18i)7-s + (0.172 − 2.82i)8-s + 0.277i·9-s + (−2.93 + 1.16i)10-s + i·11-s + (−0.723 − 3.21i)12-s + (−2.68 − 2.68i)13-s + (4.18 + 1.21i)14-s + (−2.91 + 2.26i)15-s + (−1.71 − 3.61i)16-s + (−1.20 + 1.20i)17-s + ⋯ |
L(s) = 1 | + (0.876 − 0.482i)2-s + (0.673 − 0.673i)3-s + (0.534 − 0.844i)4-s + (−0.992 − 0.125i)5-s + (0.265 − 0.914i)6-s + (0.824 + 0.824i)7-s + (0.0610 − 0.998i)8-s + 0.0924i·9-s + (−0.929 + 0.368i)10-s + 0.301i·11-s + (−0.208 − 0.929i)12-s + (−0.745 − 0.745i)13-s + (1.11 + 0.324i)14-s + (−0.752 + 0.583i)15-s + (−0.427 − 0.903i)16-s + (−0.292 + 0.292i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.321 + 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.321 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72547 - 1.23681i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72547 - 1.23681i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.23 + 0.682i)T \) |
| 5 | \( 1 + (2.21 + 0.280i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (-1.16 + 1.16i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.18 - 2.18i)T + 7iT^{2} \) |
| 13 | \( 1 + (2.68 + 2.68i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.20 - 1.20i)T - 17iT^{2} \) |
| 19 | \( 1 - 0.758T + 19T^{2} \) |
| 23 | \( 1 + (4.06 - 4.06i)T - 23iT^{2} \) |
| 29 | \( 1 - 3.39iT - 29T^{2} \) |
| 31 | \( 1 - 4.55iT - 31T^{2} \) |
| 37 | \( 1 + (-4.42 + 4.42i)T - 37iT^{2} \) |
| 41 | \( 1 - 1.63T + 41T^{2} \) |
| 43 | \( 1 + (-7.31 + 7.31i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.24 + 1.24i)T + 47iT^{2} \) |
| 53 | \( 1 + (4.89 + 4.89i)T + 53iT^{2} \) |
| 59 | \( 1 + 8.66T + 59T^{2} \) |
| 61 | \( 1 + 13.4T + 61T^{2} \) |
| 67 | \( 1 + (-10.3 - 10.3i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.631iT - 71T^{2} \) |
| 73 | \( 1 + (11.0 + 11.0i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.62T + 79T^{2} \) |
| 83 | \( 1 + (-4.44 + 4.44i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.02iT - 89T^{2} \) |
| 97 | \( 1 + (1.24 - 1.24i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31405577996967752973389479414, −11.44598149318954798607452722178, −10.49338528944013501659930069706, −9.011149713307147463122804768737, −7.913699485798925077394548497853, −7.22916211218784803523804399086, −5.56214843689261253523277643300, −4.55917655560923689657806459914, −3.08362205554137600776640548247, −1.86347670643013342259963302416,
2.84349855274072701476169157303, 4.27939123671738021527583071921, 4.44637461820754411506830024386, 6.38520159324684617276495880516, 7.58768300052529649837752582690, 8.166073742704267102526673186592, 9.416253796777751984029712880556, 10.82783327272404292809593572631, 11.60142811270599466463207280708, 12.45597682988815867395551828428