L(s) = 1 | + (−1.41 − 0.102i)2-s + (2.05 − 2.05i)3-s + (1.97 + 0.289i)4-s + (−2.23 + 0.0646i)5-s + (−3.10 + 2.68i)6-s + (−3.00 − 3.00i)7-s + (−2.76 − 0.611i)8-s − 5.40i·9-s + (3.15 + 0.138i)10-s + i·11-s + (4.65 − 3.46i)12-s + (−0.709 − 0.709i)13-s + (3.93 + 4.55i)14-s + (−4.45 + 4.71i)15-s + (3.83 + 1.14i)16-s + (−1.02 + 1.02i)17-s + ⋯ |
L(s) = 1 | + (−0.997 − 0.0725i)2-s + (1.18 − 1.18i)3-s + (0.989 + 0.144i)4-s + (−0.999 + 0.0289i)5-s + (−1.26 + 1.09i)6-s + (−1.13 − 1.13i)7-s + (−0.976 − 0.216i)8-s − 1.80i·9-s + (0.999 + 0.0436i)10-s + 0.301i·11-s + (1.34 − 0.999i)12-s + (−0.196 − 0.196i)13-s + (1.05 + 1.21i)14-s + (−1.14 + 1.21i)15-s + (0.958 + 0.286i)16-s + (−0.249 + 0.249i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.620 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.620 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.352386 - 0.728608i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.352386 - 0.728608i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.102i)T \) |
| 5 | \( 1 + (2.23 - 0.0646i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (-2.05 + 2.05i)T - 3iT^{2} \) |
| 7 | \( 1 + (3.00 + 3.00i)T + 7iT^{2} \) |
| 13 | \( 1 + (0.709 + 0.709i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.02 - 1.02i)T - 17iT^{2} \) |
| 19 | \( 1 - 5.70T + 19T^{2} \) |
| 23 | \( 1 + (-3.28 + 3.28i)T - 23iT^{2} \) |
| 29 | \( 1 - 0.344iT - 29T^{2} \) |
| 31 | \( 1 + 5.97iT - 31T^{2} \) |
| 37 | \( 1 + (-1.57 + 1.57i)T - 37iT^{2} \) |
| 41 | \( 1 + 6.42T + 41T^{2} \) |
| 43 | \( 1 + (-3.02 + 3.02i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.62 - 6.62i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.92 - 1.92i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.69T + 59T^{2} \) |
| 61 | \( 1 - 2.56T + 61T^{2} \) |
| 67 | \( 1 + (7.39 + 7.39i)T + 67iT^{2} \) |
| 71 | \( 1 - 4.24iT - 71T^{2} \) |
| 73 | \( 1 + (-11.1 - 11.1i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.182T + 79T^{2} \) |
| 83 | \( 1 + (-10.3 + 10.3i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.52iT - 89T^{2} \) |
| 97 | \( 1 + (12.5 - 12.5i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10079403137539487118232985640, −10.85852198181053378217115226538, −9.740853130552430530646884909319, −8.852446690246175177725226805483, −7.73888329944640377411117637950, −7.32107843769141394554869773564, −6.54527904030648922201817437469, −3.72150194684757832624412693329, −2.75711923188480933810815012183, −0.821591325168649710468636173725,
2.81115472296367001496559421709, 3.47296389896765139012614688578, 5.27522983433469860471268931310, 6.92607924721172206211989401623, 8.060400769657386415295319361124, 8.983124638889303783626531154981, 9.360169832523437352903694066470, 10.33037277044914046707075342142, 11.47344530612160800433812426829, 12.32493971681040434983847790571