Properties

Label 2100.3.j.g.601.5
Level $2100$
Weight $3$
Character 2100.601
Analytic conductor $57.221$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(601,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 56 x^{14} + 2052 x^{12} - 43310 x^{10} + 663499 x^{8} - 6680748 x^{6} + 49052709 x^{4} + \cdots + 601475625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 601.5
Root \(-4.32353 - 2.49619i\) of defining polynomial
Character \(\chi\) \(=\) 2100.601
Dual form 2100.3.j.g.601.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +(1.06651 - 6.91828i) q^{7} -3.00000 q^{9} +3.07378 q^{11} -17.8525i q^{13} -24.0048i q^{17} +32.7193i q^{19} +(-11.9828 - 1.84726i) q^{21} -24.3154 q^{23} +5.19615i q^{27} +18.6560 q^{29} -44.2221i q^{31} -5.32394i q^{33} -37.2443 q^{37} -30.9215 q^{39} -57.4609i q^{41} +59.9230 q^{43} +17.6682i q^{47} +(-46.7251 - 14.7569i) q^{49} -41.5775 q^{51} -18.8050 q^{53} +56.6714 q^{57} +85.2600i q^{59} +75.7642i q^{61} +(-3.19954 + 20.7548i) q^{63} -29.6009 q^{67} +42.1154i q^{69} +47.5533 q^{71} +11.0469i q^{73} +(3.27823 - 21.2653i) q^{77} -40.4910 q^{79} +9.00000 q^{81} -90.4984i q^{83} -32.3132i q^{87} -111.158i q^{89} +(-123.509 - 19.0400i) q^{91} -76.5950 q^{93} +26.3778i q^{97} -9.22134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 24 q^{11} - 12 q^{21} + 32 q^{29} - 72 q^{39} + 88 q^{49} + 24 q^{51} + 168 q^{71} - 16 q^{79} + 144 q^{81} - 568 q^{91} + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.06651 6.91828i 0.152359 0.988325i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.07378 0.279435 0.139717 0.990191i \(-0.455381\pi\)
0.139717 + 0.990191i \(0.455381\pi\)
\(12\) 0 0
\(13\) 17.8525i 1.37327i −0.727001 0.686636i \(-0.759087\pi\)
0.727001 0.686636i \(-0.240913\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 24.0048i 1.41205i −0.708188 0.706024i \(-0.750487\pi\)
0.708188 0.706024i \(-0.249513\pi\)
\(18\) 0 0
\(19\) 32.7193i 1.72207i 0.508548 + 0.861033i \(0.330182\pi\)
−0.508548 + 0.861033i \(0.669818\pi\)
\(20\) 0 0
\(21\) −11.9828 1.84726i −0.570610 0.0879647i
\(22\) 0 0
\(23\) −24.3154 −1.05719 −0.528595 0.848874i \(-0.677281\pi\)
−0.528595 + 0.848874i \(0.677281\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 18.6560 0.643312 0.321656 0.946857i \(-0.395761\pi\)
0.321656 + 0.946857i \(0.395761\pi\)
\(30\) 0 0
\(31\) 44.2221i 1.42652i −0.700899 0.713260i \(-0.747218\pi\)
0.700899 0.713260i \(-0.252782\pi\)
\(32\) 0 0
\(33\) 5.32394i 0.161332i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −37.2443 −1.00660 −0.503301 0.864111i \(-0.667881\pi\)
−0.503301 + 0.864111i \(0.667881\pi\)
\(38\) 0 0
\(39\) −30.9215 −0.792859
\(40\) 0 0
\(41\) 57.4609i 1.40149i −0.713414 0.700743i \(-0.752852\pi\)
0.713414 0.700743i \(-0.247148\pi\)
\(42\) 0 0
\(43\) 59.9230 1.39356 0.696780 0.717285i \(-0.254616\pi\)
0.696780 + 0.717285i \(0.254616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 17.6682i 0.375919i 0.982177 + 0.187959i \(0.0601873\pi\)
−0.982177 + 0.187959i \(0.939813\pi\)
\(48\) 0 0
\(49\) −46.7251 14.7569i −0.953573 0.301161i
\(50\) 0 0
\(51\) −41.5775 −0.815246
\(52\) 0 0
\(53\) −18.8050 −0.354811 −0.177405 0.984138i \(-0.556770\pi\)
−0.177405 + 0.984138i \(0.556770\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 56.6714 0.994236
\(58\) 0 0
\(59\) 85.2600i 1.44508i 0.691327 + 0.722542i \(0.257026\pi\)
−0.691327 + 0.722542i \(0.742974\pi\)
\(60\) 0 0
\(61\) 75.7642i 1.24204i 0.783796 + 0.621018i \(0.213281\pi\)
−0.783796 + 0.621018i \(0.786719\pi\)
\(62\) 0 0
\(63\) −3.19954 + 20.7548i −0.0507864 + 0.329442i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −29.6009 −0.441804 −0.220902 0.975296i \(-0.570900\pi\)
−0.220902 + 0.975296i \(0.570900\pi\)
\(68\) 0 0
\(69\) 42.1154i 0.610369i
\(70\) 0 0
\(71\) 47.5533 0.669765 0.334883 0.942260i \(-0.391303\pi\)
0.334883 + 0.942260i \(0.391303\pi\)
\(72\) 0 0
\(73\) 11.0469i 0.151328i 0.997133 + 0.0756640i \(0.0241076\pi\)
−0.997133 + 0.0756640i \(0.975892\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.27823 21.2653i 0.0425744 0.276172i
\(78\) 0 0
\(79\) −40.4910 −0.512545 −0.256272 0.966605i \(-0.582494\pi\)
−0.256272 + 0.966605i \(0.582494\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 90.4984i 1.09034i −0.838325 0.545171i \(-0.816465\pi\)
0.838325 0.545171i \(-0.183535\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 32.3132i 0.371416i
\(88\) 0 0
\(89\) 111.158i 1.24896i −0.781040 0.624481i \(-0.785311\pi\)
0.781040 0.624481i \(-0.214689\pi\)
\(90\) 0 0
\(91\) −123.509 19.0400i −1.35724 0.209231i
\(92\) 0 0
\(93\) −76.5950 −0.823602
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 26.3778i 0.271936i 0.990713 + 0.135968i \(0.0434145\pi\)
−0.990713 + 0.135968i \(0.956586\pi\)
\(98\) 0 0
\(99\) −9.22134 −0.0931448
\(100\) 0 0
\(101\) 111.348i 1.10246i 0.834355 + 0.551228i \(0.185841\pi\)
−0.834355 + 0.551228i \(0.814159\pi\)
\(102\) 0 0
\(103\) 64.0140i 0.621495i −0.950493 0.310747i \(-0.899421\pi\)
0.950493 0.310747i \(-0.100579\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 111.016 1.03753 0.518765 0.854917i \(-0.326392\pi\)
0.518765 + 0.854917i \(0.326392\pi\)
\(108\) 0 0
\(109\) −146.751 −1.34634 −0.673171 0.739487i \(-0.735068\pi\)
−0.673171 + 0.739487i \(0.735068\pi\)
\(110\) 0 0
\(111\) 64.5090i 0.581162i
\(112\) 0 0
\(113\) −0.298184 −0.00263880 −0.00131940 0.999999i \(-0.500420\pi\)
−0.00131940 + 0.999999i \(0.500420\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 53.5576i 0.457757i
\(118\) 0 0
\(119\) −166.072 25.6015i −1.39556 0.215138i
\(120\) 0 0
\(121\) −111.552 −0.921916
\(122\) 0 0
\(123\) −99.5252 −0.809148
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −175.074 −1.37854 −0.689268 0.724506i \(-0.742068\pi\)
−0.689268 + 0.724506i \(0.742068\pi\)
\(128\) 0 0
\(129\) 103.790i 0.804572i
\(130\) 0 0
\(131\) 67.4457i 0.514853i −0.966298 0.257426i \(-0.917126\pi\)
0.966298 0.257426i \(-0.0828744\pi\)
\(132\) 0 0
\(133\) 226.361 + 34.8956i 1.70196 + 0.262373i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 90.0204 0.657083 0.328541 0.944490i \(-0.393443\pi\)
0.328541 + 0.944490i \(0.393443\pi\)
\(138\) 0 0
\(139\) 81.8640i 0.588950i −0.955659 0.294475i \(-0.904855\pi\)
0.955659 0.294475i \(-0.0951448\pi\)
\(140\) 0 0
\(141\) 30.6022 0.217037
\(142\) 0 0
\(143\) 54.8748i 0.383740i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −25.5597 + 80.9302i −0.173875 + 0.550546i
\(148\) 0 0
\(149\) −250.370 −1.68034 −0.840168 0.542327i \(-0.817544\pi\)
−0.840168 + 0.542327i \(0.817544\pi\)
\(150\) 0 0
\(151\) 93.3221 0.618027 0.309014 0.951058i \(-0.400001\pi\)
0.309014 + 0.951058i \(0.400001\pi\)
\(152\) 0 0
\(153\) 72.0144i 0.470682i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 282.120i 1.79694i 0.439033 + 0.898471i \(0.355321\pi\)
−0.439033 + 0.898471i \(0.644679\pi\)
\(158\) 0 0
\(159\) 32.5712i 0.204850i
\(160\) 0 0
\(161\) −25.9327 + 168.220i −0.161073 + 1.04485i
\(162\) 0 0
\(163\) −168.152 −1.03161 −0.515804 0.856707i \(-0.672507\pi\)
−0.515804 + 0.856707i \(0.672507\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 293.030i 1.75467i −0.479880 0.877334i \(-0.659320\pi\)
0.479880 0.877334i \(-0.340680\pi\)
\(168\) 0 0
\(169\) −149.713 −0.885875
\(170\) 0 0
\(171\) 98.1578i 0.574022i
\(172\) 0 0
\(173\) 291.545i 1.68523i 0.538514 + 0.842617i \(0.318986\pi\)
−0.538514 + 0.842617i \(0.681014\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 147.675 0.834320
\(178\) 0 0
\(179\) −38.6361 −0.215844 −0.107922 0.994159i \(-0.534420\pi\)
−0.107922 + 0.994159i \(0.534420\pi\)
\(180\) 0 0
\(181\) 272.762i 1.50697i 0.657465 + 0.753485i \(0.271629\pi\)
−0.657465 + 0.753485i \(0.728371\pi\)
\(182\) 0 0
\(183\) 131.228 0.717090
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 73.7855i 0.394575i
\(188\) 0 0
\(189\) 35.9484 + 5.54177i 0.190203 + 0.0293216i
\(190\) 0 0
\(191\) −18.6600 −0.0976966 −0.0488483 0.998806i \(-0.515555\pi\)
−0.0488483 + 0.998806i \(0.515555\pi\)
\(192\) 0 0
\(193\) 208.116 1.07832 0.539160 0.842203i \(-0.318742\pi\)
0.539160 + 0.842203i \(0.318742\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −249.955 −1.26881 −0.634404 0.773002i \(-0.718754\pi\)
−0.634404 + 0.773002i \(0.718754\pi\)
\(198\) 0 0
\(199\) 85.1816i 0.428048i 0.976828 + 0.214024i \(0.0686571\pi\)
−0.976828 + 0.214024i \(0.931343\pi\)
\(200\) 0 0
\(201\) 51.2702i 0.255076i
\(202\) 0 0
\(203\) 19.8969 129.068i 0.0980145 0.635801i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 72.9461 0.352397
\(208\) 0 0
\(209\) 100.572i 0.481205i
\(210\) 0 0
\(211\) 64.2866 0.304676 0.152338 0.988328i \(-0.451320\pi\)
0.152338 + 0.988328i \(0.451320\pi\)
\(212\) 0 0
\(213\) 82.3648i 0.386689i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −305.941 47.1636i −1.40987 0.217344i
\(218\) 0 0
\(219\) 19.1339 0.0873692
\(220\) 0 0
\(221\) −428.546 −1.93912
\(222\) 0 0
\(223\) 234.568i 1.05187i 0.850524 + 0.525937i \(0.176285\pi\)
−0.850524 + 0.525937i \(0.823715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 318.302i 1.40221i −0.713057 0.701106i \(-0.752690\pi\)
0.713057 0.701106i \(-0.247310\pi\)
\(228\) 0 0
\(229\) 2.89432i 0.0126389i −0.999980 0.00631947i \(-0.997988\pi\)
0.999980 0.00631947i \(-0.00201156\pi\)
\(230\) 0 0
\(231\) −36.8325 5.67806i −0.159448 0.0245804i
\(232\) 0 0
\(233\) −328.322 −1.40911 −0.704553 0.709652i \(-0.748852\pi\)
−0.704553 + 0.709652i \(0.748852\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 70.1326i 0.295918i
\(238\) 0 0
\(239\) −356.042 −1.48972 −0.744858 0.667223i \(-0.767483\pi\)
−0.744858 + 0.667223i \(0.767483\pi\)
\(240\) 0 0
\(241\) 190.743i 0.791466i −0.918366 0.395733i \(-0.870491\pi\)
0.918366 0.395733i \(-0.129509\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 584.122 2.36487
\(248\) 0 0
\(249\) −156.748 −0.629509
\(250\) 0 0
\(251\) 371.197i 1.47887i −0.673226 0.739436i \(-0.735092\pi\)
0.673226 0.739436i \(-0.264908\pi\)
\(252\) 0 0
\(253\) −74.7401 −0.295415
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 79.6126i 0.309777i 0.987932 + 0.154888i \(0.0495018\pi\)
−0.987932 + 0.154888i \(0.950498\pi\)
\(258\) 0 0
\(259\) −39.7216 + 257.666i −0.153365 + 0.994851i
\(260\) 0 0
\(261\) −55.9681 −0.214437
\(262\) 0 0
\(263\) −197.790 −0.752052 −0.376026 0.926609i \(-0.622710\pi\)
−0.376026 + 0.926609i \(0.622710\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −192.531 −0.721089
\(268\) 0 0
\(269\) 38.5253i 0.143217i −0.997433 0.0716084i \(-0.977187\pi\)
0.997433 0.0716084i \(-0.0228132\pi\)
\(270\) 0 0
\(271\) 187.184i 0.690717i −0.938471 0.345359i \(-0.887757\pi\)
0.938471 0.345359i \(-0.112243\pi\)
\(272\) 0 0
\(273\) −32.9782 + 213.923i −0.120799 + 0.783602i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 204.467 0.738147 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(278\) 0 0
\(279\) 132.666i 0.475507i
\(280\) 0 0
\(281\) −180.683 −0.643000 −0.321500 0.946910i \(-0.604187\pi\)
−0.321500 + 0.946910i \(0.604187\pi\)
\(282\) 0 0
\(283\) 47.9753i 0.169524i −0.996401 0.0847619i \(-0.972987\pi\)
0.996401 0.0847619i \(-0.0270130\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −397.531 61.2829i −1.38512 0.213529i
\(288\) 0 0
\(289\) −287.230 −0.993877
\(290\) 0 0
\(291\) 45.6877 0.157002
\(292\) 0 0
\(293\) 339.798i 1.15972i −0.814717 0.579859i \(-0.803107\pi\)
0.814717 0.579859i \(-0.196893\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.9718i 0.0537772i
\(298\) 0 0
\(299\) 434.091i 1.45181i
\(300\) 0 0
\(301\) 63.9088 414.564i 0.212322 1.37729i
\(302\) 0 0
\(303\) 192.860 0.636503
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 394.637i 1.28546i 0.766092 + 0.642731i \(0.222199\pi\)
−0.766092 + 0.642731i \(0.777801\pi\)
\(308\) 0 0
\(309\) −110.875 −0.358820
\(310\) 0 0
\(311\) 341.095i 1.09677i 0.836227 + 0.548384i \(0.184757\pi\)
−0.836227 + 0.548384i \(0.815243\pi\)
\(312\) 0 0
\(313\) 101.725i 0.325000i 0.986709 + 0.162500i \(0.0519557\pi\)
−0.986709 + 0.162500i \(0.948044\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 475.720 1.50069 0.750346 0.661045i \(-0.229887\pi\)
0.750346 + 0.661045i \(0.229887\pi\)
\(318\) 0 0
\(319\) 57.3446 0.179763
\(320\) 0 0
\(321\) 192.285i 0.599019i
\(322\) 0 0
\(323\) 785.419 2.43164
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 254.181i 0.777311i
\(328\) 0 0
\(329\) 122.233 + 18.8434i 0.371530 + 0.0572747i
\(330\) 0 0
\(331\) 281.896 0.851651 0.425825 0.904805i \(-0.359984\pi\)
0.425825 + 0.904805i \(0.359984\pi\)
\(332\) 0 0
\(333\) 111.733 0.335534
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −80.4587 −0.238750 −0.119375 0.992849i \(-0.538089\pi\)
−0.119375 + 0.992849i \(0.538089\pi\)
\(338\) 0 0
\(339\) 0.516470i 0.00152351i
\(340\) 0 0
\(341\) 135.929i 0.398619i
\(342\) 0 0
\(343\) −151.925 + 307.519i −0.442931 + 0.896556i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −197.979 −0.570546 −0.285273 0.958446i \(-0.592084\pi\)
−0.285273 + 0.958446i \(0.592084\pi\)
\(348\) 0 0
\(349\) 116.788i 0.334637i −0.985903 0.167318i \(-0.946489\pi\)
0.985903 0.167318i \(-0.0535108\pi\)
\(350\) 0 0
\(351\) 92.7645 0.264286
\(352\) 0 0
\(353\) 439.644i 1.24545i −0.782441 0.622725i \(-0.786026\pi\)
0.782441 0.622725i \(-0.213974\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −44.3431 + 287.645i −0.124210 + 0.805728i
\(358\) 0 0
\(359\) 456.067 1.27038 0.635191 0.772355i \(-0.280922\pi\)
0.635191 + 0.772355i \(0.280922\pi\)
\(360\) 0 0
\(361\) −709.551 −1.96551
\(362\) 0 0
\(363\) 193.214i 0.532269i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 14.4035i 0.0392465i −0.999807 0.0196233i \(-0.993753\pi\)
0.999807 0.0196233i \(-0.00624668\pi\)
\(368\) 0 0
\(369\) 172.383i 0.467162i
\(370\) 0 0
\(371\) −20.0558 + 130.098i −0.0540587 + 0.350669i
\(372\) 0 0
\(373\) −357.070 −0.957293 −0.478647 0.878008i \(-0.658873\pi\)
−0.478647 + 0.878008i \(0.658873\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 333.058i 0.883442i
\(378\) 0 0
\(379\) −5.90977 −0.0155931 −0.00779653 0.999970i \(-0.502482\pi\)
−0.00779653 + 0.999970i \(0.502482\pi\)
\(380\) 0 0
\(381\) 303.237i 0.795898i
\(382\) 0 0
\(383\) 334.550i 0.873500i 0.899583 + 0.436750i \(0.143870\pi\)
−0.899583 + 0.436750i \(0.856130\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −179.769 −0.464520
\(388\) 0 0
\(389\) −297.061 −0.763653 −0.381826 0.924234i \(-0.624705\pi\)
−0.381826 + 0.924234i \(0.624705\pi\)
\(390\) 0 0
\(391\) 583.685i 1.49280i
\(392\) 0 0
\(393\) −116.819 −0.297250
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 189.999i 0.478586i 0.970947 + 0.239293i \(0.0769156\pi\)
−0.970947 + 0.239293i \(0.923084\pi\)
\(398\) 0 0
\(399\) 60.4409 392.069i 0.151481 0.982628i
\(400\) 0 0
\(401\) 224.908 0.560869 0.280434 0.959873i \(-0.409522\pi\)
0.280434 + 0.959873i \(0.409522\pi\)
\(402\) 0 0
\(403\) −789.477 −1.95900
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −114.481 −0.281280
\(408\) 0 0
\(409\) 229.455i 0.561015i 0.959852 + 0.280508i \(0.0905028\pi\)
−0.959852 + 0.280508i \(0.909497\pi\)
\(410\) 0 0
\(411\) 155.920i 0.379367i
\(412\) 0 0
\(413\) 589.852 + 90.9310i 1.42821 + 0.220172i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −141.793 −0.340030
\(418\) 0 0
\(419\) 171.731i 0.409859i −0.978777 0.204929i \(-0.934304\pi\)
0.978777 0.204929i \(-0.0656965\pi\)
\(420\) 0 0
\(421\) 253.361 0.601809 0.300904 0.953654i \(-0.402712\pi\)
0.300904 + 0.953654i \(0.402712\pi\)
\(422\) 0 0
\(423\) 53.0046i 0.125306i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 524.158 + 80.8037i 1.22754 + 0.189236i
\(428\) 0 0
\(429\) −95.0459 −0.221552
\(430\) 0 0
\(431\) 66.9553 0.155349 0.0776743 0.996979i \(-0.475251\pi\)
0.0776743 + 0.996979i \(0.475251\pi\)
\(432\) 0 0
\(433\) 255.445i 0.589941i −0.955506 0.294971i \(-0.904690\pi\)
0.955506 0.294971i \(-0.0953099\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 795.581i 1.82055i
\(438\) 0 0
\(439\) 570.966i 1.30061i −0.759675 0.650303i \(-0.774642\pi\)
0.759675 0.650303i \(-0.225358\pi\)
\(440\) 0 0
\(441\) 140.175 + 44.2707i 0.317858 + 0.100387i
\(442\) 0 0
\(443\) −234.490 −0.529323 −0.264661 0.964341i \(-0.585260\pi\)
−0.264661 + 0.964341i \(0.585260\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 433.654i 0.970142i
\(448\) 0 0
\(449\) 327.098 0.728503 0.364251 0.931301i \(-0.381325\pi\)
0.364251 + 0.931301i \(0.381325\pi\)
\(450\) 0 0
\(451\) 176.622i 0.391624i
\(452\) 0 0
\(453\) 161.639i 0.356818i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −57.4776 −0.125772 −0.0628858 0.998021i \(-0.520030\pi\)
−0.0628858 + 0.998021i \(0.520030\pi\)
\(458\) 0 0
\(459\) 124.733 0.271749
\(460\) 0 0
\(461\) 202.731i 0.439764i −0.975526 0.219882i \(-0.929433\pi\)
0.975526 0.219882i \(-0.0705673\pi\)
\(462\) 0 0
\(463\) 235.364 0.508345 0.254172 0.967159i \(-0.418197\pi\)
0.254172 + 0.967159i \(0.418197\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 551.433i 1.18080i −0.807111 0.590399i \(-0.798970\pi\)
0.807111 0.590399i \(-0.201030\pi\)
\(468\) 0 0
\(469\) −31.5698 + 204.787i −0.0673130 + 0.436646i
\(470\) 0 0
\(471\) 488.646 1.03746
\(472\) 0 0
\(473\) 184.190 0.389409
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 56.4149 0.118270
\(478\) 0 0
\(479\) 863.232i 1.80215i −0.433659 0.901077i \(-0.642778\pi\)
0.433659 0.901077i \(-0.357222\pi\)
\(480\) 0 0
\(481\) 664.905i 1.38234i
\(482\) 0 0
\(483\) 291.366 + 44.9167i 0.603243 + 0.0929953i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 588.387 1.20819 0.604094 0.796913i \(-0.293535\pi\)
0.604094 + 0.796913i \(0.293535\pi\)
\(488\) 0 0
\(489\) 291.248i 0.595599i
\(490\) 0 0
\(491\) 765.548 1.55916 0.779580 0.626303i \(-0.215433\pi\)
0.779580 + 0.626303i \(0.215433\pi\)
\(492\) 0 0
\(493\) 447.834i 0.908386i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 50.7164 328.987i 0.102045 0.661946i
\(498\) 0 0
\(499\) 499.204 1.00041 0.500204 0.865908i \(-0.333258\pi\)
0.500204 + 0.865908i \(0.333258\pi\)
\(500\) 0 0
\(501\) −507.542 −1.01306
\(502\) 0 0
\(503\) 809.915i 1.61017i −0.593160 0.805085i \(-0.702120\pi\)
0.593160 0.805085i \(-0.297880\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 259.310i 0.511460i
\(508\) 0 0
\(509\) 172.031i 0.337978i −0.985618 0.168989i \(-0.945950\pi\)
0.985618 0.168989i \(-0.0540502\pi\)
\(510\) 0 0
\(511\) 76.4258 + 11.7817i 0.149561 + 0.0230562i
\(512\) 0 0
\(513\) −170.014 −0.331412
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 54.3081i 0.105045i
\(518\) 0 0
\(519\) 504.971 0.972970
\(520\) 0 0
\(521\) 18.5895i 0.0356804i 0.999841 + 0.0178402i \(0.00567901\pi\)
−0.999841 + 0.0178402i \(0.994321\pi\)
\(522\) 0 0
\(523\) 111.743i 0.213657i 0.994277 + 0.106828i \(0.0340696\pi\)
−0.994277 + 0.106828i \(0.965930\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1061.54 −2.01431
\(528\) 0 0
\(529\) 62.2368 0.117650
\(530\) 0 0
\(531\) 255.780i 0.481695i
\(532\) 0 0
\(533\) −1025.82 −1.92462
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 66.9197i 0.124618i
\(538\) 0 0
\(539\) −143.623 45.3594i −0.266461 0.0841548i
\(540\) 0 0
\(541\) −401.344 −0.741855 −0.370928 0.928662i \(-0.620960\pi\)
−0.370928 + 0.928662i \(0.620960\pi\)
\(542\) 0 0
\(543\) 472.437 0.870050
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 241.126 0.440816 0.220408 0.975408i \(-0.429261\pi\)
0.220408 + 0.975408i \(0.429261\pi\)
\(548\) 0 0
\(549\) 227.293i 0.414012i
\(550\) 0 0
\(551\) 610.412i 1.10783i
\(552\) 0 0
\(553\) −43.1843 + 280.128i −0.0780910 + 0.506561i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −533.112 −0.957114 −0.478557 0.878056i \(-0.658840\pi\)
−0.478557 + 0.878056i \(0.658840\pi\)
\(558\) 0 0
\(559\) 1069.78i 1.91374i
\(560\) 0 0
\(561\) −127.800 −0.227808
\(562\) 0 0
\(563\) 965.363i 1.71468i −0.514754 0.857338i \(-0.672117\pi\)
0.514754 0.857338i \(-0.327883\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.59863 62.2645i 0.0169288 0.109814i
\(568\) 0 0
\(569\) 599.641 1.05385 0.526926 0.849911i \(-0.323345\pi\)
0.526926 + 0.849911i \(0.323345\pi\)
\(570\) 0 0
\(571\) 287.986 0.504353 0.252177 0.967681i \(-0.418854\pi\)
0.252177 + 0.967681i \(0.418854\pi\)
\(572\) 0 0
\(573\) 32.3201i 0.0564051i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 268.952i 0.466122i −0.972462 0.233061i \(-0.925126\pi\)
0.972462 0.233061i \(-0.0748741\pi\)
\(578\) 0 0
\(579\) 360.467i 0.622568i
\(580\) 0 0
\(581\) −626.093 96.5179i −1.07761 0.166124i
\(582\) 0 0
\(583\) −57.8024 −0.0991464
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 784.787i 1.33695i −0.743736 0.668473i \(-0.766948\pi\)
0.743736 0.668473i \(-0.233052\pi\)
\(588\) 0 0
\(589\) 1446.92 2.45656
\(590\) 0 0
\(591\) 432.935i 0.732546i
\(592\) 0 0
\(593\) 45.1151i 0.0760794i 0.999276 + 0.0380397i \(0.0121113\pi\)
−0.999276 + 0.0380397i \(0.987889\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 147.539 0.247134
\(598\) 0 0
\(599\) −75.0608 −0.125310 −0.0626551 0.998035i \(-0.519957\pi\)
−0.0626551 + 0.998035i \(0.519957\pi\)
\(600\) 0 0
\(601\) 149.958i 0.249514i 0.992187 + 0.124757i \(0.0398151\pi\)
−0.992187 + 0.124757i \(0.960185\pi\)
\(602\) 0 0
\(603\) 88.8027 0.147268
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 244.933i 0.403515i 0.979436 + 0.201757i \(0.0646652\pi\)
−0.979436 + 0.201757i \(0.935335\pi\)
\(608\) 0 0
\(609\) −223.552 34.4625i −0.367080 0.0565887i
\(610\) 0 0
\(611\) 315.422 0.516239
\(612\) 0 0
\(613\) 448.080 0.730963 0.365481 0.930819i \(-0.380904\pi\)
0.365481 + 0.930819i \(0.380904\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 617.239 1.00039 0.500194 0.865913i \(-0.333262\pi\)
0.500194 + 0.865913i \(0.333262\pi\)
\(618\) 0 0
\(619\) 960.005i 1.55090i 0.631411 + 0.775449i \(0.282476\pi\)
−0.631411 + 0.775449i \(0.717524\pi\)
\(620\) 0 0
\(621\) 126.346i 0.203456i
\(622\) 0 0
\(623\) −769.019 118.551i −1.23438 0.190291i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 174.196 0.277824
\(628\) 0 0
\(629\) 894.042i 1.42137i
\(630\) 0 0
\(631\) 898.089 1.42328 0.711639 0.702545i \(-0.247953\pi\)
0.711639 + 0.702545i \(0.247953\pi\)
\(632\) 0 0
\(633\) 111.348i 0.175905i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −263.448 + 834.161i −0.413576 + 1.30952i
\(638\) 0 0
\(639\) −142.660 −0.223255
\(640\) 0 0
\(641\) 724.165 1.12974 0.564871 0.825179i \(-0.308926\pi\)
0.564871 + 0.825179i \(0.308926\pi\)
\(642\) 0 0
\(643\) 624.036i 0.970507i 0.874373 + 0.485254i \(0.161273\pi\)
−0.874373 + 0.485254i \(0.838727\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 157.813i 0.243914i −0.992535 0.121957i \(-0.961083\pi\)
0.992535 0.121957i \(-0.0389170\pi\)
\(648\) 0 0
\(649\) 262.070i 0.403806i
\(650\) 0 0
\(651\) −81.6897 + 529.905i −0.125483 + 0.813987i
\(652\) 0 0
\(653\) 671.329 1.02807 0.514034 0.857770i \(-0.328150\pi\)
0.514034 + 0.857770i \(0.328150\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 33.1408i 0.0504426i
\(658\) 0 0
\(659\) 499.820 0.758452 0.379226 0.925304i \(-0.376190\pi\)
0.379226 + 0.925304i \(0.376190\pi\)
\(660\) 0 0
\(661\) 1061.68i 1.60617i −0.595866 0.803084i \(-0.703191\pi\)
0.595866 0.803084i \(-0.296809\pi\)
\(662\) 0 0
\(663\) 742.264i 1.11955i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −453.628 −0.680102
\(668\) 0 0
\(669\) 406.283 0.607299
\(670\) 0 0
\(671\) 232.883i 0.347068i
\(672\) 0 0
\(673\) 420.271 0.624474 0.312237 0.950004i \(-0.398922\pi\)
0.312237 + 0.950004i \(0.398922\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 471.364i 0.696254i −0.937447 0.348127i \(-0.886818\pi\)
0.937447 0.348127i \(-0.113182\pi\)
\(678\) 0 0
\(679\) 182.489 + 28.1323i 0.268761 + 0.0414320i
\(680\) 0 0
\(681\) −551.316 −0.809568
\(682\) 0 0
\(683\) 390.212 0.571320 0.285660 0.958331i \(-0.407787\pi\)
0.285660 + 0.958331i \(0.407787\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −5.01311 −0.00729710
\(688\) 0 0
\(689\) 335.717i 0.487252i
\(690\) 0 0
\(691\) 453.717i 0.656609i −0.944572 0.328305i \(-0.893523\pi\)
0.944572 0.328305i \(-0.106477\pi\)
\(692\) 0 0
\(693\) −9.83470 + 63.7958i −0.0141915 + 0.0920574i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1379.34 −1.97896
\(698\) 0 0
\(699\) 568.670i 0.813547i
\(700\) 0 0
\(701\) 242.952 0.346579 0.173290 0.984871i \(-0.444560\pi\)
0.173290 + 0.984871i \(0.444560\pi\)
\(702\) 0 0
\(703\) 1218.61i 1.73344i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 770.337 + 118.754i 1.08959 + 0.167969i
\(708\) 0 0
\(709\) −485.352 −0.684559 −0.342279 0.939598i \(-0.611199\pi\)
−0.342279 + 0.939598i \(0.611199\pi\)
\(710\) 0 0
\(711\) 121.473 0.170848
\(712\) 0 0
\(713\) 1075.28i 1.50810i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 616.683i 0.860088i
\(718\) 0 0
\(719\) 25.1312i 0.0349529i 0.999847 + 0.0174765i \(0.00556322\pi\)
−0.999847 + 0.0174765i \(0.994437\pi\)
\(720\) 0 0
\(721\) −442.866 68.2718i −0.614239 0.0946905i
\(722\) 0 0
\(723\) −330.377 −0.456953
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 332.426i 0.457258i 0.973514 + 0.228629i \(0.0734242\pi\)
−0.973514 + 0.228629i \(0.926576\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 1438.44i 1.96777i
\(732\) 0 0
\(733\) 1410.78i 1.92467i 0.271870 + 0.962334i \(0.412358\pi\)
−0.271870 + 0.962334i \(0.587642\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −90.9866 −0.123455
\(738\) 0 0
\(739\) 928.931 1.25701 0.628505 0.777805i \(-0.283667\pi\)
0.628505 + 0.777805i \(0.283667\pi\)
\(740\) 0 0
\(741\) 1011.73i 1.36536i
\(742\) 0 0
\(743\) −451.882 −0.608186 −0.304093 0.952642i \(-0.598353\pi\)
−0.304093 + 0.952642i \(0.598353\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 271.495i 0.363447i
\(748\) 0 0
\(749\) 118.400 768.038i 0.158077 1.02542i
\(750\) 0 0
\(751\) 650.483 0.866156 0.433078 0.901356i \(-0.357427\pi\)
0.433078 + 0.901356i \(0.357427\pi\)
\(752\) 0 0
\(753\) −642.932 −0.853828
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1119.68 1.47910 0.739548 0.673104i \(-0.235039\pi\)
0.739548 + 0.673104i \(0.235039\pi\)
\(758\) 0 0
\(759\) 129.454i 0.170558i
\(760\) 0 0
\(761\) 1165.04i 1.53093i −0.643479 0.765463i \(-0.722510\pi\)
0.643479 0.765463i \(-0.277490\pi\)
\(762\) 0 0
\(763\) −156.512 + 1015.27i −0.205128 + 1.33062i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1522.11 1.98449
\(768\) 0 0
\(769\) 1347.17i 1.75185i −0.482446 0.875926i \(-0.660251\pi\)
0.482446 0.875926i \(-0.339749\pi\)
\(770\) 0 0
\(771\) 137.893 0.178850
\(772\) 0 0
\(773\) 508.563i 0.657908i −0.944346 0.328954i \(-0.893304\pi\)
0.944346 0.328954i \(-0.106696\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 446.291 + 68.7998i 0.574377 + 0.0885455i
\(778\) 0 0
\(779\) 1880.08 2.41345
\(780\) 0 0
\(781\) 146.169 0.187156
\(782\) 0 0
\(783\) 96.9396i 0.123805i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 275.176i 0.349652i −0.984599 0.174826i \(-0.944064\pi\)
0.984599 0.174826i \(-0.0559364\pi\)
\(788\) 0 0
\(789\) 342.582i 0.434197i
\(790\) 0 0
\(791\) −0.318018 + 2.06292i −0.000402045 + 0.00260799i
\(792\) 0 0
\(793\) 1352.58 1.70565
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.56622i 0.00321985i −0.999999 0.00160992i \(-0.999488\pi\)
0.999999 0.00160992i \(-0.000512455\pi\)
\(798\) 0 0
\(799\) 424.121 0.530815
\(800\) 0 0
\(801\) 333.473i 0.416321i
\(802\) 0 0
\(803\) 33.9559i 0.0422862i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −66.7278 −0.0826863
\(808\) 0 0
\(809\) 1019.40 1.26007 0.630036 0.776566i \(-0.283040\pi\)
0.630036 + 0.776566i \(0.283040\pi\)
\(810\) 0 0
\(811\) 461.638i 0.569221i 0.958643 + 0.284610i \(0.0918642\pi\)
−0.958643 + 0.284610i \(0.908136\pi\)
\(812\) 0 0
\(813\) −324.213 −0.398786
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1960.64i 2.39980i
\(818\) 0 0
\(819\) 370.526 + 57.1200i 0.452413 + 0.0697436i
\(820\) 0 0
\(821\) −336.204 −0.409505 −0.204752 0.978814i \(-0.565639\pi\)
−0.204752 + 0.978814i \(0.565639\pi\)
\(822\) 0 0
\(823\) 64.0535 0.0778293 0.0389147 0.999243i \(-0.487610\pi\)
0.0389147 + 0.999243i \(0.487610\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1423.82 −1.72167 −0.860833 0.508888i \(-0.830057\pi\)
−0.860833 + 0.508888i \(0.830057\pi\)
\(828\) 0 0
\(829\) 871.031i 1.05070i 0.850886 + 0.525350i \(0.176066\pi\)
−0.850886 + 0.525350i \(0.823934\pi\)
\(830\) 0 0
\(831\) 354.147i 0.426169i
\(832\) 0 0
\(833\) −354.236 + 1121.63i −0.425254 + 1.34649i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 229.785 0.274534
\(838\) 0 0
\(839\) 1346.65i 1.60506i 0.596611 + 0.802530i \(0.296513\pi\)
−0.596611 + 0.802530i \(0.703487\pi\)
\(840\) 0 0
\(841\) −492.952 −0.586150
\(842\) 0 0
\(843\) 312.952i 0.371236i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −118.972 + 771.747i −0.140463 + 0.911153i
\(848\) 0 0
\(849\) −83.0956 −0.0978747
\(850\) 0 0
\(851\) 905.608 1.06417
\(852\) 0 0
\(853\) 1553.19i 1.82086i −0.413666 0.910429i \(-0.635752\pi\)
0.413666 0.910429i \(-0.364248\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 916.383i 1.06929i −0.845076 0.534646i \(-0.820445\pi\)
0.845076 0.534646i \(-0.179555\pi\)
\(858\) 0 0
\(859\) 220.008i 0.256121i 0.991766 + 0.128061i \(0.0408752\pi\)
−0.991766 + 0.128061i \(0.959125\pi\)
\(860\) 0 0
\(861\) −106.145 + 688.543i −0.123281 + 0.799702i
\(862\) 0 0
\(863\) 1143.68 1.32523 0.662616 0.748959i \(-0.269446\pi\)
0.662616 + 0.748959i \(0.269446\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 497.498i 0.573815i
\(868\) 0 0
\(869\) −124.461 −0.143223
\(870\) 0 0
\(871\) 528.451i 0.606717i
\(872\) 0 0
\(873\) 79.1335i 0.0906454i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −711.003 −0.810722 −0.405361 0.914157i \(-0.632854\pi\)
−0.405361 + 0.914157i \(0.632854\pi\)
\(878\) 0 0
\(879\) −588.547 −0.669564
\(880\) 0 0
\(881\) 804.482i 0.913146i 0.889686 + 0.456573i \(0.150923\pi\)
−0.889686 + 0.456573i \(0.849077\pi\)
\(882\) 0 0
\(883\) −203.330 −0.230271 −0.115136 0.993350i \(-0.536730\pi\)
−0.115136 + 0.993350i \(0.536730\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 840.574i 0.947659i −0.880617 0.473830i \(-0.842871\pi\)
0.880617 0.473830i \(-0.157129\pi\)
\(888\) 0 0
\(889\) −186.719 + 1211.21i −0.210033 + 1.36244i
\(890\) 0 0
\(891\) 27.6640 0.0310483
\(892\) 0 0
\(893\) −578.090 −0.647357
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 751.867 0.838202
\(898\) 0 0
\(899\) 825.010i 0.917697i
\(900\) 0 0
\(901\) 451.410i 0.501010i
\(902\) 0 0
\(903\) −718.046 110.693i −0.795179 0.122584i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −611.612 −0.674324 −0.337162 0.941447i \(-0.609467\pi\)
−0.337162 + 0.941447i \(0.609467\pi\)
\(908\) 0 0
\(909\) 334.044i 0.367485i
\(910\) 0 0
\(911\) 169.118 0.185640 0.0928198 0.995683i \(-0.470412\pi\)
0.0928198 + 0.995683i \(0.470412\pi\)
\(912\) 0 0
\(913\) 278.172i 0.304679i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −466.608 71.9318i −0.508842 0.0784426i
\(918\) 0 0
\(919\) −204.249 −0.222251 −0.111126 0.993806i \(-0.535446\pi\)
−0.111126 + 0.993806i \(0.535446\pi\)
\(920\) 0 0
\(921\) 683.531 0.742162
\(922\) 0 0
\(923\) 848.948i 0.919770i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 192.042i 0.207165i
\(928\) 0 0
\(929\) 607.668i 0.654110i −0.945005 0.327055i \(-0.893944\pi\)
0.945005 0.327055i \(-0.106056\pi\)
\(930\) 0 0
\(931\) 482.835 1528.81i 0.518619 1.64212i
\(932\) 0 0
\(933\) 590.793 0.633219
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1226.32i 1.30878i −0.756158 0.654389i \(-0.772926\pi\)
0.756158 0.654389i \(-0.227074\pi\)
\(938\) 0 0
\(939\) 176.193 0.187639
\(940\) 0 0
\(941\) 1570.92i 1.66942i 0.550693 + 0.834708i \(0.314363\pi\)
−0.550693 + 0.834708i \(0.685637\pi\)
\(942\) 0 0
\(943\) 1397.18i 1.48164i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 845.061 0.892356 0.446178 0.894944i \(-0.352785\pi\)
0.446178 + 0.894944i \(0.352785\pi\)
\(948\) 0 0
\(949\) 197.216 0.207814
\(950\) 0 0
\(951\) 823.970i 0.866425i
\(952\) 0 0
\(953\) −367.141 −0.385248 −0.192624 0.981273i \(-0.561700\pi\)
−0.192624 + 0.981273i \(0.561700\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 99.3237i 0.103786i
\(958\) 0 0
\(959\) 96.0080 622.786i 0.100113 0.649412i
\(960\) 0 0
\(961\) −994.598 −1.03496
\(962\) 0 0
\(963\) −333.047 −0.345844
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1013.20 −1.04777 −0.523886 0.851789i \(-0.675518\pi\)
−0.523886 + 0.851789i \(0.675518\pi\)
\(968\) 0 0
\(969\) 1360.39i 1.40391i
\(970\) 0 0
\(971\) 659.717i 0.679420i 0.940530 + 0.339710i \(0.110329\pi\)
−0.940530 + 0.339710i \(0.889671\pi\)
\(972\) 0 0
\(973\) −566.358 87.3092i −0.582074 0.0897320i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −867.534 −0.887957 −0.443978 0.896037i \(-0.646433\pi\)
−0.443978 + 0.896037i \(0.646433\pi\)
\(978\) 0 0
\(979\) 341.674i 0.349003i
\(980\) 0 0
\(981\) 440.254 0.448781
\(982\) 0 0
\(983\) 1757.82i 1.78822i −0.447849 0.894109i \(-0.647810\pi\)
0.447849 0.894109i \(-0.352190\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 32.6377 211.714i 0.0330676 0.214503i
\(988\) 0 0
\(989\) −1457.05 −1.47326
\(990\) 0 0
\(991\) 395.645 0.399238 0.199619 0.979874i \(-0.436030\pi\)
0.199619 + 0.979874i \(0.436030\pi\)
\(992\) 0 0
\(993\) 488.259i 0.491701i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1605.98i 1.61081i −0.592724 0.805406i \(-0.701947\pi\)
0.592724 0.805406i \(-0.298053\pi\)
\(998\) 0 0
\(999\) 193.527i 0.193721i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.j.g.601.5 16
5.2 odd 4 420.3.p.a.349.3 16
5.3 odd 4 420.3.p.a.349.13 yes 16
5.4 even 2 inner 2100.3.j.g.601.12 16
7.6 odd 2 inner 2100.3.j.g.601.13 16
15.2 even 4 1260.3.p.e.1189.10 16
15.8 even 4 1260.3.p.e.1189.8 16
20.3 even 4 1680.3.bd.b.769.5 16
20.7 even 4 1680.3.bd.b.769.11 16
35.13 even 4 420.3.p.a.349.4 yes 16
35.27 even 4 420.3.p.a.349.14 yes 16
35.34 odd 2 inner 2100.3.j.g.601.4 16
105.62 odd 4 1260.3.p.e.1189.7 16
105.83 odd 4 1260.3.p.e.1189.9 16
140.27 odd 4 1680.3.bd.b.769.6 16
140.83 odd 4 1680.3.bd.b.769.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.3 16 5.2 odd 4
420.3.p.a.349.4 yes 16 35.13 even 4
420.3.p.a.349.13 yes 16 5.3 odd 4
420.3.p.a.349.14 yes 16 35.27 even 4
1260.3.p.e.1189.7 16 105.62 odd 4
1260.3.p.e.1189.8 16 15.8 even 4
1260.3.p.e.1189.9 16 105.83 odd 4
1260.3.p.e.1189.10 16 15.2 even 4
1680.3.bd.b.769.5 16 20.3 even 4
1680.3.bd.b.769.6 16 140.27 odd 4
1680.3.bd.b.769.11 16 20.7 even 4
1680.3.bd.b.769.12 16 140.83 odd 4
2100.3.j.g.601.4 16 35.34 odd 2 inner
2100.3.j.g.601.5 16 1.1 even 1 trivial
2100.3.j.g.601.12 16 5.4 even 2 inner
2100.3.j.g.601.13 16 7.6 odd 2 inner