Properties

Label 420.3.p.a.349.3
Level $420$
Weight $3$
Character 420.349
Analytic conductor $11.444$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,3,Mod(349,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.349"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 420.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4441711031\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3876 x^{12} + 102922 x^{10} + 1866070 x^{8} + 23190492 x^{6} + 203608845 x^{4} + \cdots + 3839661225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.3
Root \(-1.73205 + 4.99238i\) of defining polynomial
Character \(\chi\) \(=\) 420.349
Dual form 420.3.p.a.349.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +(-0.275940 - 4.99238i) q^{5} +(6.91828 + 1.06651i) q^{7} +3.00000 q^{9} +3.07378 q^{11} -17.8525 q^{13} +(0.477941 + 8.64706i) q^{15} +24.0048 q^{17} -32.7193i q^{19} +(-11.9828 - 1.84726i) q^{21} +24.3154i q^{23} +(-24.8477 + 2.75519i) q^{25} -5.19615 q^{27} -18.6560 q^{29} -44.2221i q^{31} -5.32394 q^{33} +(3.41542 - 34.8330i) q^{35} -37.2443i q^{37} +30.9215 q^{39} -57.4609i q^{41} -59.9230i q^{43} +(-0.827819 - 14.9771i) q^{45} -17.6682 q^{47} +(46.7251 + 14.7569i) q^{49} -41.5775 q^{51} +18.8050i q^{53} +(-0.848177 - 15.3455i) q^{55} +56.6714i q^{57} -85.2600i q^{59} +75.7642i q^{61} +(20.7548 + 3.19954i) q^{63} +(4.92622 + 89.1266i) q^{65} -29.6009i q^{67} -42.1154i q^{69} +47.5533 q^{71} +11.0469 q^{73} +(43.0375 - 4.77213i) q^{75} +(21.2653 + 3.27823i) q^{77} +40.4910 q^{79} +9.00000 q^{81} -90.4984 q^{83} +(-6.62387 - 119.841i) q^{85} +32.3132 q^{87} +111.158i q^{89} +(-123.509 - 19.0400i) q^{91} +76.5950i q^{93} +(-163.347 + 9.02854i) q^{95} -26.3778 q^{97} +9.22134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} - 24 q^{11} - 24 q^{15} - 12 q^{21} - 48 q^{25} - 32 q^{29} + 76 q^{35} + 72 q^{39} - 88 q^{49} + 24 q^{51} + 152 q^{65} + 168 q^{71} + 16 q^{79} + 144 q^{81} - 416 q^{85} - 568 q^{91} + 136 q^{95}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) −0.275940 4.99238i −0.0551879 0.998476i
\(6\) 0 0
\(7\) 6.91828 + 1.06651i 0.988325 + 0.152359i
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 3.07378 0.279435 0.139717 0.990191i \(-0.455381\pi\)
0.139717 + 0.990191i \(0.455381\pi\)
\(12\) 0 0
\(13\) −17.8525 −1.37327 −0.686636 0.727001i \(-0.740913\pi\)
−0.686636 + 0.727001i \(0.740913\pi\)
\(14\) 0 0
\(15\) 0.477941 + 8.64706i 0.0318628 + 0.576470i
\(16\) 0 0
\(17\) 24.0048 1.41205 0.706024 0.708188i \(-0.250487\pi\)
0.706024 + 0.708188i \(0.250487\pi\)
\(18\) 0 0
\(19\) 32.7193i 1.72207i −0.508548 0.861033i \(-0.669818\pi\)
0.508548 0.861033i \(-0.330182\pi\)
\(20\) 0 0
\(21\) −11.9828 1.84726i −0.570610 0.0879647i
\(22\) 0 0
\(23\) 24.3154i 1.05719i 0.848874 + 0.528595i \(0.177281\pi\)
−0.848874 + 0.528595i \(0.822719\pi\)
\(24\) 0 0
\(25\) −24.8477 + 2.75519i −0.993909 + 0.110208i
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) −18.6560 −0.643312 −0.321656 0.946857i \(-0.604239\pi\)
−0.321656 + 0.946857i \(0.604239\pi\)
\(30\) 0 0
\(31\) 44.2221i 1.42652i −0.700899 0.713260i \(-0.747218\pi\)
0.700899 0.713260i \(-0.252782\pi\)
\(32\) 0 0
\(33\) −5.32394 −0.161332
\(34\) 0 0
\(35\) 3.41542 34.8330i 0.0975835 0.995227i
\(36\) 0 0
\(37\) 37.2443i 1.00660i −0.864111 0.503301i \(-0.832119\pi\)
0.864111 0.503301i \(-0.167881\pi\)
\(38\) 0 0
\(39\) 30.9215 0.792859
\(40\) 0 0
\(41\) 57.4609i 1.40149i −0.713414 0.700743i \(-0.752852\pi\)
0.713414 0.700743i \(-0.247148\pi\)
\(42\) 0 0
\(43\) 59.9230i 1.39356i −0.717285 0.696780i \(-0.754616\pi\)
0.717285 0.696780i \(-0.245384\pi\)
\(44\) 0 0
\(45\) −0.827819 14.9771i −0.0183960 0.332825i
\(46\) 0 0
\(47\) −17.6682 −0.375919 −0.187959 0.982177i \(-0.560187\pi\)
−0.187959 + 0.982177i \(0.560187\pi\)
\(48\) 0 0
\(49\) 46.7251 + 14.7569i 0.953573 + 0.301161i
\(50\) 0 0
\(51\) −41.5775 −0.815246
\(52\) 0 0
\(53\) 18.8050i 0.354811i 0.984138 + 0.177405i \(0.0567704\pi\)
−0.984138 + 0.177405i \(0.943230\pi\)
\(54\) 0 0
\(55\) −0.848177 15.3455i −0.0154214 0.279009i
\(56\) 0 0
\(57\) 56.6714i 0.994236i
\(58\) 0 0
\(59\) 85.2600i 1.44508i −0.691327 0.722542i \(-0.742974\pi\)
0.691327 0.722542i \(-0.257026\pi\)
\(60\) 0 0
\(61\) 75.7642i 1.24204i 0.783796 + 0.621018i \(0.213281\pi\)
−0.783796 + 0.621018i \(0.786719\pi\)
\(62\) 0 0
\(63\) 20.7548 + 3.19954i 0.329442 + 0.0507864i
\(64\) 0 0
\(65\) 4.92622 + 89.1266i 0.0757880 + 1.37118i
\(66\) 0 0
\(67\) 29.6009i 0.441804i −0.975296 0.220902i \(-0.929100\pi\)
0.975296 0.220902i \(-0.0709001\pi\)
\(68\) 0 0
\(69\) 42.1154i 0.610369i
\(70\) 0 0
\(71\) 47.5533 0.669765 0.334883 0.942260i \(-0.391303\pi\)
0.334883 + 0.942260i \(0.391303\pi\)
\(72\) 0 0
\(73\) 11.0469 0.151328 0.0756640 0.997133i \(-0.475892\pi\)
0.0756640 + 0.997133i \(0.475892\pi\)
\(74\) 0 0
\(75\) 43.0375 4.77213i 0.573833 0.0636284i
\(76\) 0 0
\(77\) 21.2653 + 3.27823i 0.276172 + 0.0425744i
\(78\) 0 0
\(79\) 40.4910 0.512545 0.256272 0.966605i \(-0.417506\pi\)
0.256272 + 0.966605i \(0.417506\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −90.4984 −1.09034 −0.545171 0.838325i \(-0.683535\pi\)
−0.545171 + 0.838325i \(0.683535\pi\)
\(84\) 0 0
\(85\) −6.62387 119.841i −0.0779279 1.40990i
\(86\) 0 0
\(87\) 32.3132 0.371416
\(88\) 0 0
\(89\) 111.158i 1.24896i 0.781040 + 0.624481i \(0.214689\pi\)
−0.781040 + 0.624481i \(0.785311\pi\)
\(90\) 0 0
\(91\) −123.509 19.0400i −1.35724 0.209231i
\(92\) 0 0
\(93\) 76.5950i 0.823602i
\(94\) 0 0
\(95\) −163.347 + 9.02854i −1.71944 + 0.0950373i
\(96\) 0 0
\(97\) −26.3778 −0.271936 −0.135968 0.990713i \(-0.543414\pi\)
−0.135968 + 0.990713i \(0.543414\pi\)
\(98\) 0 0
\(99\) 9.22134 0.0931448
\(100\) 0 0
\(101\) 111.348i 1.10246i 0.834355 + 0.551228i \(0.185841\pi\)
−0.834355 + 0.551228i \(0.814159\pi\)
\(102\) 0 0
\(103\) −64.0140 −0.621495 −0.310747 0.950493i \(-0.600579\pi\)
−0.310747 + 0.950493i \(0.600579\pi\)
\(104\) 0 0
\(105\) −5.91568 + 60.3325i −0.0563398 + 0.574595i
\(106\) 0 0
\(107\) 111.016i 1.03753i 0.854917 + 0.518765i \(0.173608\pi\)
−0.854917 + 0.518765i \(0.826392\pi\)
\(108\) 0 0
\(109\) 146.751 1.34634 0.673171 0.739487i \(-0.264932\pi\)
0.673171 + 0.739487i \(0.264932\pi\)
\(110\) 0 0
\(111\) 64.5090i 0.581162i
\(112\) 0 0
\(113\) 0.298184i 0.00263880i 0.999999 + 0.00131940i \(0.000419978\pi\)
−0.999999 + 0.00131940i \(0.999580\pi\)
\(114\) 0 0
\(115\) 121.392 6.70957i 1.05558 0.0583441i
\(116\) 0 0
\(117\) −53.5576 −0.457757
\(118\) 0 0
\(119\) 166.072 + 25.6015i 1.39556 + 0.215138i
\(120\) 0 0
\(121\) −111.552 −0.921916
\(122\) 0 0
\(123\) 99.5252i 0.809148i
\(124\) 0 0
\(125\) 20.6114 + 123.289i 0.164891 + 0.986312i
\(126\) 0 0
\(127\) 175.074i 1.37854i −0.724506 0.689268i \(-0.757932\pi\)
0.724506 0.689268i \(-0.242068\pi\)
\(128\) 0 0
\(129\) 103.790i 0.804572i
\(130\) 0 0
\(131\) 67.4457i 0.514853i −0.966298 0.257426i \(-0.917126\pi\)
0.966298 0.257426i \(-0.0828744\pi\)
\(132\) 0 0
\(133\) 34.8956 226.361i 0.262373 1.70196i
\(134\) 0 0
\(135\) 1.43382 + 25.9412i 0.0106209 + 0.192157i
\(136\) 0 0
\(137\) 90.0204i 0.657083i 0.944490 + 0.328541i \(0.106557\pi\)
−0.944490 + 0.328541i \(0.893443\pi\)
\(138\) 0 0
\(139\) 81.8640i 0.588950i 0.955659 + 0.294475i \(0.0951448\pi\)
−0.955659 + 0.294475i \(0.904855\pi\)
\(140\) 0 0
\(141\) 30.6022 0.217037
\(142\) 0 0
\(143\) −54.8748 −0.383740
\(144\) 0 0
\(145\) 5.14794 + 93.1380i 0.0355030 + 0.642331i
\(146\) 0 0
\(147\) −80.9302 25.5597i −0.550546 0.173875i
\(148\) 0 0
\(149\) 250.370 1.68034 0.840168 0.542327i \(-0.182456\pi\)
0.840168 + 0.542327i \(0.182456\pi\)
\(150\) 0 0
\(151\) 93.3221 0.618027 0.309014 0.951058i \(-0.400001\pi\)
0.309014 + 0.951058i \(0.400001\pi\)
\(152\) 0 0
\(153\) 72.0144 0.470682
\(154\) 0 0
\(155\) −220.774 + 12.2026i −1.42435 + 0.0787267i
\(156\) 0 0
\(157\) −282.120 −1.79694 −0.898471 0.439033i \(-0.855321\pi\)
−0.898471 + 0.439033i \(0.855321\pi\)
\(158\) 0 0
\(159\) 32.5712i 0.204850i
\(160\) 0 0
\(161\) −25.9327 + 168.220i −0.161073 + 1.04485i
\(162\) 0 0
\(163\) 168.152i 1.03161i 0.856707 + 0.515804i \(0.172507\pi\)
−0.856707 + 0.515804i \(0.827493\pi\)
\(164\) 0 0
\(165\) 1.46909 + 26.5791i 0.00890355 + 0.161086i
\(166\) 0 0
\(167\) 293.030 1.75467 0.877334 0.479880i \(-0.159320\pi\)
0.877334 + 0.479880i \(0.159320\pi\)
\(168\) 0 0
\(169\) 149.713 0.885875
\(170\) 0 0
\(171\) 98.1578i 0.574022i
\(172\) 0 0
\(173\) 291.545 1.68523 0.842617 0.538514i \(-0.181014\pi\)
0.842617 + 0.538514i \(0.181014\pi\)
\(174\) 0 0
\(175\) −174.842 7.43929i −0.999096 0.0425102i
\(176\) 0 0
\(177\) 147.675i 0.834320i
\(178\) 0 0
\(179\) 38.6361 0.215844 0.107922 0.994159i \(-0.465580\pi\)
0.107922 + 0.994159i \(0.465580\pi\)
\(180\) 0 0
\(181\) 272.762i 1.50697i 0.657465 + 0.753485i \(0.271629\pi\)
−0.657465 + 0.753485i \(0.728371\pi\)
\(182\) 0 0
\(183\) 131.228i 0.717090i
\(184\) 0 0
\(185\) −185.938 + 10.2772i −1.00507 + 0.0555523i
\(186\) 0 0
\(187\) 73.7855 0.394575
\(188\) 0 0
\(189\) −35.9484 5.54177i −0.190203 0.0293216i
\(190\) 0 0
\(191\) −18.6600 −0.0976966 −0.0488483 0.998806i \(-0.515555\pi\)
−0.0488483 + 0.998806i \(0.515555\pi\)
\(192\) 0 0
\(193\) 208.116i 1.07832i −0.842203 0.539160i \(-0.818742\pi\)
0.842203 0.539160i \(-0.181258\pi\)
\(194\) 0 0
\(195\) −8.53246 154.372i −0.0437562 0.791651i
\(196\) 0 0
\(197\) 249.955i 1.26881i −0.773002 0.634404i \(-0.781246\pi\)
0.773002 0.634404i \(-0.218754\pi\)
\(198\) 0 0
\(199\) 85.1816i 0.428048i −0.976828 0.214024i \(-0.931343\pi\)
0.976828 0.214024i \(-0.0686571\pi\)
\(200\) 0 0
\(201\) 51.2702i 0.255076i
\(202\) 0 0
\(203\) −129.068 19.8969i −0.635801 0.0980145i
\(204\) 0 0
\(205\) −286.867 + 15.8557i −1.39935 + 0.0773451i
\(206\) 0 0
\(207\) 72.9461i 0.352397i
\(208\) 0 0
\(209\) 100.572i 0.481205i
\(210\) 0 0
\(211\) 64.2866 0.304676 0.152338 0.988328i \(-0.451320\pi\)
0.152338 + 0.988328i \(0.451320\pi\)
\(212\) 0 0
\(213\) −82.3648 −0.386689
\(214\) 0 0
\(215\) −299.159 + 16.5351i −1.39144 + 0.0769076i
\(216\) 0 0
\(217\) 47.1636 305.941i 0.217344 1.40987i
\(218\) 0 0
\(219\) −19.1339 −0.0873692
\(220\) 0 0
\(221\) −428.546 −1.93912
\(222\) 0 0
\(223\) 234.568 1.05187 0.525937 0.850524i \(-0.323715\pi\)
0.525937 + 0.850524i \(0.323715\pi\)
\(224\) 0 0
\(225\) −74.5431 + 8.26557i −0.331303 + 0.0367359i
\(226\) 0 0
\(227\) 318.302 1.40221 0.701106 0.713057i \(-0.252690\pi\)
0.701106 + 0.713057i \(0.252690\pi\)
\(228\) 0 0
\(229\) 2.89432i 0.0126389i 0.999980 + 0.00631947i \(0.00201156\pi\)
−0.999980 + 0.00631947i \(0.997988\pi\)
\(230\) 0 0
\(231\) −36.8325 5.67806i −0.159448 0.0245804i
\(232\) 0 0
\(233\) 328.322i 1.40911i 0.709652 + 0.704553i \(0.248852\pi\)
−0.709652 + 0.704553i \(0.751148\pi\)
\(234\) 0 0
\(235\) 4.87535 + 88.2063i 0.0207462 + 0.375346i
\(236\) 0 0
\(237\) −70.1326 −0.295918
\(238\) 0 0
\(239\) 356.042 1.48972 0.744858 0.667223i \(-0.232517\pi\)
0.744858 + 0.667223i \(0.232517\pi\)
\(240\) 0 0
\(241\) 190.743i 0.791466i −0.918366 0.395733i \(-0.870491\pi\)
0.918366 0.395733i \(-0.129509\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) 60.7787 237.341i 0.248076 0.968740i
\(246\) 0 0
\(247\) 584.122i 2.36487i
\(248\) 0 0
\(249\) 156.748 0.629509
\(250\) 0 0
\(251\) 371.197i 1.47887i −0.673226 0.739436i \(-0.735092\pi\)
0.673226 0.739436i \(-0.264908\pi\)
\(252\) 0 0
\(253\) 74.7401i 0.295415i
\(254\) 0 0
\(255\) 11.4729 + 207.571i 0.0449917 + 0.814003i
\(256\) 0 0
\(257\) −79.6126 −0.309777 −0.154888 0.987932i \(-0.549502\pi\)
−0.154888 + 0.987932i \(0.549502\pi\)
\(258\) 0 0
\(259\) 39.7216 257.666i 0.153365 0.994851i
\(260\) 0 0
\(261\) −55.9681 −0.214437
\(262\) 0 0
\(263\) 197.790i 0.752052i 0.926609 + 0.376026i \(0.122710\pi\)
−0.926609 + 0.376026i \(0.877290\pi\)
\(264\) 0 0
\(265\) 93.8816 5.18904i 0.354270 0.0195813i
\(266\) 0 0
\(267\) 192.531i 0.721089i
\(268\) 0 0
\(269\) 38.5253i 0.143217i 0.997433 + 0.0716084i \(0.0228132\pi\)
−0.997433 + 0.0716084i \(0.977187\pi\)
\(270\) 0 0
\(271\) 187.184i 0.690717i −0.938471 0.345359i \(-0.887757\pi\)
0.938471 0.345359i \(-0.112243\pi\)
\(272\) 0 0
\(273\) 213.923 + 32.9782i 0.783602 + 0.120799i
\(274\) 0 0
\(275\) −76.3764 + 8.46885i −0.277732 + 0.0307958i
\(276\) 0 0
\(277\) 204.467i 0.738147i 0.929400 + 0.369074i \(0.120325\pi\)
−0.929400 + 0.369074i \(0.879675\pi\)
\(278\) 0 0
\(279\) 132.666i 0.475507i
\(280\) 0 0
\(281\) −180.683 −0.643000 −0.321500 0.946910i \(-0.604187\pi\)
−0.321500 + 0.946910i \(0.604187\pi\)
\(282\) 0 0
\(283\) −47.9753 −0.169524 −0.0847619 0.996401i \(-0.527013\pi\)
−0.0847619 + 0.996401i \(0.527013\pi\)
\(284\) 0 0
\(285\) 282.925 15.6379i 0.992720 0.0548698i
\(286\) 0 0
\(287\) 61.2829 397.531i 0.213529 1.38512i
\(288\) 0 0
\(289\) 287.230 0.993877
\(290\) 0 0
\(291\) 45.6877 0.157002
\(292\) 0 0
\(293\) −339.798 −1.15972 −0.579859 0.814717i \(-0.696893\pi\)
−0.579859 + 0.814717i \(0.696893\pi\)
\(294\) 0 0
\(295\) −425.650 + 23.5266i −1.44288 + 0.0797512i
\(296\) 0 0
\(297\) −15.9718 −0.0537772
\(298\) 0 0
\(299\) 434.091i 1.45181i
\(300\) 0 0
\(301\) 63.9088 414.564i 0.212322 1.37729i
\(302\) 0 0
\(303\) 192.860i 0.636503i
\(304\) 0 0
\(305\) 378.244 20.9064i 1.24014 0.0685454i
\(306\) 0 0
\(307\) −394.637 −1.28546 −0.642731 0.766092i \(-0.722199\pi\)
−0.642731 + 0.766092i \(0.722199\pi\)
\(308\) 0 0
\(309\) 110.875 0.358820
\(310\) 0 0
\(311\) 341.095i 1.09677i 0.836227 + 0.548384i \(0.184757\pi\)
−0.836227 + 0.548384i \(0.815243\pi\)
\(312\) 0 0
\(313\) 101.725 0.325000 0.162500 0.986709i \(-0.448044\pi\)
0.162500 + 0.986709i \(0.448044\pi\)
\(314\) 0 0
\(315\) 10.2463 104.499i 0.0325278 0.331742i
\(316\) 0 0
\(317\) 475.720i 1.50069i 0.661045 + 0.750346i \(0.270113\pi\)
−0.661045 + 0.750346i \(0.729887\pi\)
\(318\) 0 0
\(319\) −57.3446 −0.179763
\(320\) 0 0
\(321\) 192.285i 0.599019i
\(322\) 0 0
\(323\) 785.419i 2.43164i
\(324\) 0 0
\(325\) 443.595 49.1871i 1.36491 0.151345i
\(326\) 0 0
\(327\) −254.181 −0.777311
\(328\) 0 0
\(329\) −122.233 18.8434i −0.371530 0.0572747i
\(330\) 0 0
\(331\) 281.896 0.851651 0.425825 0.904805i \(-0.359984\pi\)
0.425825 + 0.904805i \(0.359984\pi\)
\(332\) 0 0
\(333\) 111.733i 0.335534i
\(334\) 0 0
\(335\) −147.779 + 8.16805i −0.441131 + 0.0243823i
\(336\) 0 0
\(337\) 80.4587i 0.238750i −0.992849 0.119375i \(-0.961911\pi\)
0.992849 0.119375i \(-0.0380891\pi\)
\(338\) 0 0
\(339\) 0.516470i 0.00152351i
\(340\) 0 0
\(341\) 135.929i 0.398619i
\(342\) 0 0
\(343\) 307.519 + 151.925i 0.896556 + 0.442931i
\(344\) 0 0
\(345\) −210.256 + 11.6213i −0.609439 + 0.0336850i
\(346\) 0 0
\(347\) 197.979i 0.570546i −0.958446 0.285273i \(-0.907916\pi\)
0.958446 0.285273i \(-0.0920843\pi\)
\(348\) 0 0
\(349\) 116.788i 0.334637i 0.985903 + 0.167318i \(0.0535108\pi\)
−0.985903 + 0.167318i \(0.946489\pi\)
\(350\) 0 0
\(351\) 92.7645 0.264286
\(352\) 0 0
\(353\) −439.644 −1.24545 −0.622725 0.782441i \(-0.713974\pi\)
−0.622725 + 0.782441i \(0.713974\pi\)
\(354\) 0 0
\(355\) −13.1219 237.404i −0.0369630 0.668745i
\(356\) 0 0
\(357\) −287.645 44.3431i −0.805728 0.124210i
\(358\) 0 0
\(359\) −456.067 −1.27038 −0.635191 0.772355i \(-0.719078\pi\)
−0.635191 + 0.772355i \(0.719078\pi\)
\(360\) 0 0
\(361\) −709.551 −1.96551
\(362\) 0 0
\(363\) 193.214 0.532269
\(364\) 0 0
\(365\) −3.04829 55.1505i −0.00835147 0.151097i
\(366\) 0 0
\(367\) 14.4035 0.0392465 0.0196233 0.999807i \(-0.493753\pi\)
0.0196233 + 0.999807i \(0.493753\pi\)
\(368\) 0 0
\(369\) 172.383i 0.467162i
\(370\) 0 0
\(371\) −20.0558 + 130.098i −0.0540587 + 0.350669i
\(372\) 0 0
\(373\) 357.070i 0.957293i 0.878008 + 0.478647i \(0.158873\pi\)
−0.878008 + 0.478647i \(0.841127\pi\)
\(374\) 0 0
\(375\) −35.7000 213.543i −0.0952001 0.569447i
\(376\) 0 0
\(377\) 333.058 0.883442
\(378\) 0 0
\(379\) 5.90977 0.0155931 0.00779653 0.999970i \(-0.497518\pi\)
0.00779653 + 0.999970i \(0.497518\pi\)
\(380\) 0 0
\(381\) 303.237i 0.795898i
\(382\) 0 0
\(383\) 334.550 0.873500 0.436750 0.899583i \(-0.356130\pi\)
0.436750 + 0.899583i \(0.356130\pi\)
\(384\) 0 0
\(385\) 10.4983 107.069i 0.0272682 0.278101i
\(386\) 0 0
\(387\) 179.769i 0.464520i
\(388\) 0 0
\(389\) 297.061 0.763653 0.381826 0.924234i \(-0.375295\pi\)
0.381826 + 0.924234i \(0.375295\pi\)
\(390\) 0 0
\(391\) 583.685i 1.49280i
\(392\) 0 0
\(393\) 116.819i 0.297250i
\(394\) 0 0
\(395\) −11.1731 202.147i −0.0282863 0.511764i
\(396\) 0 0
\(397\) −189.999 −0.478586 −0.239293 0.970947i \(-0.576916\pi\)
−0.239293 + 0.970947i \(0.576916\pi\)
\(398\) 0 0
\(399\) −60.4409 + 392.069i −0.151481 + 0.982628i
\(400\) 0 0
\(401\) 224.908 0.560869 0.280434 0.959873i \(-0.409522\pi\)
0.280434 + 0.959873i \(0.409522\pi\)
\(402\) 0 0
\(403\) 789.477i 1.95900i
\(404\) 0 0
\(405\) −2.48346 44.9314i −0.00613199 0.110942i
\(406\) 0 0
\(407\) 114.481i 0.281280i
\(408\) 0 0
\(409\) 229.455i 0.561015i −0.959852 0.280508i \(-0.909497\pi\)
0.959852 0.280508i \(-0.0905028\pi\)
\(410\) 0 0
\(411\) 155.920i 0.379367i
\(412\) 0 0
\(413\) 90.9310 589.852i 0.220172 1.42821i
\(414\) 0 0
\(415\) 24.9721 + 451.802i 0.0601737 + 1.08868i
\(416\) 0 0
\(417\) 141.793i 0.340030i
\(418\) 0 0
\(419\) 171.731i 0.409859i 0.978777 + 0.204929i \(0.0656965\pi\)
−0.978777 + 0.204929i \(0.934304\pi\)
\(420\) 0 0
\(421\) 253.361 0.601809 0.300904 0.953654i \(-0.402712\pi\)
0.300904 + 0.953654i \(0.402712\pi\)
\(422\) 0 0
\(423\) −53.0046 −0.125306
\(424\) 0 0
\(425\) −596.464 + 66.1378i −1.40345 + 0.155618i
\(426\) 0 0
\(427\) −80.8037 + 524.158i −0.189236 + 1.22754i
\(428\) 0 0
\(429\) 95.0459 0.221552
\(430\) 0 0
\(431\) 66.9553 0.155349 0.0776743 0.996979i \(-0.475251\pi\)
0.0776743 + 0.996979i \(0.475251\pi\)
\(432\) 0 0
\(433\) −255.445 −0.589941 −0.294971 0.955506i \(-0.595310\pi\)
−0.294971 + 0.955506i \(0.595310\pi\)
\(434\) 0 0
\(435\) −8.91649 161.320i −0.0204977 0.370850i
\(436\) 0 0
\(437\) 795.581 1.82055
\(438\) 0 0
\(439\) 570.966i 1.30061i 0.759675 + 0.650303i \(0.225358\pi\)
−0.759675 + 0.650303i \(0.774642\pi\)
\(440\) 0 0
\(441\) 140.175 + 44.2707i 0.317858 + 0.100387i
\(442\) 0 0
\(443\) 234.490i 0.529323i 0.964341 + 0.264661i \(0.0852602\pi\)
−0.964341 + 0.264661i \(0.914740\pi\)
\(444\) 0 0
\(445\) 554.941 30.6728i 1.24706 0.0689276i
\(446\) 0 0
\(447\) −433.654 −0.970142
\(448\) 0 0
\(449\) −327.098 −0.728503 −0.364251 0.931301i \(-0.618675\pi\)
−0.364251 + 0.931301i \(0.618675\pi\)
\(450\) 0 0
\(451\) 176.622i 0.391624i
\(452\) 0 0
\(453\) −161.639 −0.356818
\(454\) 0 0
\(455\) −60.9739 + 621.857i −0.134009 + 1.36672i
\(456\) 0 0
\(457\) 57.4776i 0.125772i −0.998021 0.0628858i \(-0.979970\pi\)
0.998021 0.0628858i \(-0.0200304\pi\)
\(458\) 0 0
\(459\) −124.733 −0.271749
\(460\) 0 0
\(461\) 202.731i 0.439764i −0.975526 0.219882i \(-0.929433\pi\)
0.975526 0.219882i \(-0.0705673\pi\)
\(462\) 0 0
\(463\) 235.364i 0.508345i −0.967159 0.254172i \(-0.918197\pi\)
0.967159 0.254172i \(-0.0818030\pi\)
\(464\) 0 0
\(465\) 382.391 21.1356i 0.822347 0.0454529i
\(466\) 0 0
\(467\) 551.433 1.18080 0.590399 0.807111i \(-0.298970\pi\)
0.590399 + 0.807111i \(0.298970\pi\)
\(468\) 0 0
\(469\) 31.5698 204.787i 0.0673130 0.436646i
\(470\) 0 0
\(471\) 488.646 1.03746
\(472\) 0 0
\(473\) 184.190i 0.389409i
\(474\) 0 0
\(475\) 90.1478 + 812.999i 0.189785 + 1.71158i
\(476\) 0 0
\(477\) 56.4149i 0.118270i
\(478\) 0 0
\(479\) 863.232i 1.80215i 0.433659 + 0.901077i \(0.357222\pi\)
−0.433659 + 0.901077i \(0.642778\pi\)
\(480\) 0 0
\(481\) 664.905i 1.38234i
\(482\) 0 0
\(483\) 44.9167 291.366i 0.0929953 0.603243i
\(484\) 0 0
\(485\) 7.27868 + 131.688i 0.0150076 + 0.271522i
\(486\) 0 0
\(487\) 588.387i 1.20819i 0.796913 + 0.604094i \(0.206465\pi\)
−0.796913 + 0.604094i \(0.793535\pi\)
\(488\) 0 0
\(489\) 291.248i 0.595599i
\(490\) 0 0
\(491\) 765.548 1.55916 0.779580 0.626303i \(-0.215433\pi\)
0.779580 + 0.626303i \(0.215433\pi\)
\(492\) 0 0
\(493\) −447.834 −0.908386
\(494\) 0 0
\(495\) −2.54453 46.0364i −0.00514047 0.0930029i
\(496\) 0 0
\(497\) 328.987 + 50.7164i 0.661946 + 0.102045i
\(498\) 0 0
\(499\) −499.204 −1.00041 −0.500204 0.865908i \(-0.666742\pi\)
−0.500204 + 0.865908i \(0.666742\pi\)
\(500\) 0 0
\(501\) −507.542 −1.01306
\(502\) 0 0
\(503\) −809.915 −1.61017 −0.805085 0.593160i \(-0.797880\pi\)
−0.805085 + 0.593160i \(0.797880\pi\)
\(504\) 0 0
\(505\) 555.892 30.7253i 1.10078 0.0608422i
\(506\) 0 0
\(507\) −259.310 −0.511460
\(508\) 0 0
\(509\) 172.031i 0.337978i 0.985618 + 0.168989i \(0.0540502\pi\)
−0.985618 + 0.168989i \(0.945950\pi\)
\(510\) 0 0
\(511\) 76.4258 + 11.7817i 0.149561 + 0.0230562i
\(512\) 0 0
\(513\) 170.014i 0.331412i
\(514\) 0 0
\(515\) 17.6640 + 319.582i 0.0342990 + 0.620548i
\(516\) 0 0
\(517\) −54.3081 −0.105045
\(518\) 0 0
\(519\) −504.971 −0.972970
\(520\) 0 0
\(521\) 18.5895i 0.0356804i 0.999841 + 0.0178402i \(0.00567901\pi\)
−0.999841 + 0.0178402i \(0.994321\pi\)
\(522\) 0 0
\(523\) 111.743 0.213657 0.106828 0.994277i \(-0.465930\pi\)
0.106828 + 0.994277i \(0.465930\pi\)
\(524\) 0 0
\(525\) 302.835 + 12.8852i 0.576828 + 0.0245433i
\(526\) 0 0
\(527\) 1061.54i 2.01431i
\(528\) 0 0
\(529\) −62.2368 −0.117650
\(530\) 0 0
\(531\) 255.780i 0.481695i
\(532\) 0 0
\(533\) 1025.82i 1.92462i
\(534\) 0 0
\(535\) 554.233 30.6336i 1.03595 0.0572592i
\(536\) 0 0
\(537\) −66.9197 −0.124618
\(538\) 0 0
\(539\) 143.623 + 45.3594i 0.266461 + 0.0841548i
\(540\) 0 0
\(541\) −401.344 −0.741855 −0.370928 0.928662i \(-0.620960\pi\)
−0.370928 + 0.928662i \(0.620960\pi\)
\(542\) 0 0
\(543\) 472.437i 0.870050i
\(544\) 0 0
\(545\) −40.4945 732.638i −0.0743018 1.34429i
\(546\) 0 0
\(547\) 241.126i 0.440816i 0.975408 + 0.220408i \(0.0707389\pi\)
−0.975408 + 0.220408i \(0.929261\pi\)
\(548\) 0 0
\(549\) 227.293i 0.414012i
\(550\) 0 0
\(551\) 610.412i 1.10783i
\(552\) 0 0
\(553\) 280.128 + 43.1843i 0.506561 + 0.0780910i
\(554\) 0 0
\(555\) 322.053 17.8006i 0.580277 0.0320731i
\(556\) 0 0
\(557\) 533.112i 0.957114i −0.878056 0.478557i \(-0.841160\pi\)
0.878056 0.478557i \(-0.158840\pi\)
\(558\) 0 0
\(559\) 1069.78i 1.91374i
\(560\) 0 0
\(561\) −127.800 −0.227808
\(562\) 0 0
\(563\) −965.363 −1.71468 −0.857338 0.514754i \(-0.827883\pi\)
−0.857338 + 0.514754i \(0.827883\pi\)
\(564\) 0 0
\(565\) 1.48865 0.0822807i 0.00263477 0.000145630i
\(566\) 0 0
\(567\) 62.2645 + 9.59863i 0.109814 + 0.0169288i
\(568\) 0 0
\(569\) −599.641 −1.05385 −0.526926 0.849911i \(-0.676655\pi\)
−0.526926 + 0.849911i \(0.676655\pi\)
\(570\) 0 0
\(571\) 287.986 0.504353 0.252177 0.967681i \(-0.418854\pi\)
0.252177 + 0.967681i \(0.418854\pi\)
\(572\) 0 0
\(573\) 32.3201 0.0564051
\(574\) 0 0
\(575\) −66.9934 604.181i −0.116510 1.05075i
\(576\) 0 0
\(577\) 268.952 0.466122 0.233061 0.972462i \(-0.425126\pi\)
0.233061 + 0.972462i \(0.425126\pi\)
\(578\) 0 0
\(579\) 360.467i 0.622568i
\(580\) 0 0
\(581\) −626.093 96.5179i −1.07761 0.166124i
\(582\) 0 0
\(583\) 57.8024i 0.0991464i
\(584\) 0 0
\(585\) 14.7787 + 267.380i 0.0252627 + 0.457060i
\(586\) 0 0
\(587\) 784.787 1.33695 0.668473 0.743736i \(-0.266948\pi\)
0.668473 + 0.743736i \(0.266948\pi\)
\(588\) 0 0
\(589\) −1446.92 −2.45656
\(590\) 0 0
\(591\) 432.935i 0.732546i
\(592\) 0 0
\(593\) 45.1151 0.0760794 0.0380397 0.999276i \(-0.487889\pi\)
0.0380397 + 0.999276i \(0.487889\pi\)
\(594\) 0 0
\(595\) 81.9865 836.158i 0.137792 1.40531i
\(596\) 0 0
\(597\) 147.539i 0.247134i
\(598\) 0 0
\(599\) 75.0608 0.125310 0.0626551 0.998035i \(-0.480043\pi\)
0.0626551 + 0.998035i \(0.480043\pi\)
\(600\) 0 0
\(601\) 149.958i 0.249514i 0.992187 + 0.124757i \(0.0398151\pi\)
−0.992187 + 0.124757i \(0.960185\pi\)
\(602\) 0 0
\(603\) 88.8027i 0.147268i
\(604\) 0 0
\(605\) 30.7816 + 556.909i 0.0508786 + 0.920511i
\(606\) 0 0
\(607\) −244.933 −0.403515 −0.201757 0.979436i \(-0.564665\pi\)
−0.201757 + 0.979436i \(0.564665\pi\)
\(608\) 0 0
\(609\) 223.552 + 34.4625i 0.367080 + 0.0565887i
\(610\) 0 0
\(611\) 315.422 0.516239
\(612\) 0 0
\(613\) 448.080i 0.730963i −0.930819 0.365481i \(-0.880904\pi\)
0.930819 0.365481i \(-0.119096\pi\)
\(614\) 0 0
\(615\) 496.868 27.4629i 0.807915 0.0446552i
\(616\) 0 0
\(617\) 617.239i 1.00039i 0.865913 + 0.500194i \(0.166738\pi\)
−0.865913 + 0.500194i \(0.833262\pi\)
\(618\) 0 0
\(619\) 960.005i 1.55090i −0.631411 0.775449i \(-0.717524\pi\)
0.631411 0.775449i \(-0.282476\pi\)
\(620\) 0 0
\(621\) 126.346i 0.203456i
\(622\) 0 0
\(623\) −118.551 + 769.019i −0.190291 + 1.23438i
\(624\) 0 0
\(625\) 609.818 136.920i 0.975709 0.219073i
\(626\) 0 0
\(627\) 174.196i 0.277824i
\(628\) 0 0
\(629\) 894.042i 1.42137i
\(630\) 0 0
\(631\) 898.089 1.42328 0.711639 0.702545i \(-0.247953\pi\)
0.711639 + 0.702545i \(0.247953\pi\)
\(632\) 0 0
\(633\) −111.348 −0.175905
\(634\) 0 0
\(635\) −874.037 + 48.3099i −1.37644 + 0.0760786i
\(636\) 0 0
\(637\) −834.161 263.448i −1.30952 0.413576i
\(638\) 0 0
\(639\) 142.660 0.223255
\(640\) 0 0
\(641\) 724.165 1.12974 0.564871 0.825179i \(-0.308926\pi\)
0.564871 + 0.825179i \(0.308926\pi\)
\(642\) 0 0
\(643\) 624.036 0.970507 0.485254 0.874373i \(-0.338727\pi\)
0.485254 + 0.874373i \(0.338727\pi\)
\(644\) 0 0
\(645\) 518.158 28.6397i 0.803346 0.0444026i
\(646\) 0 0
\(647\) 157.813 0.243914 0.121957 0.992535i \(-0.461083\pi\)
0.121957 + 0.992535i \(0.461083\pi\)
\(648\) 0 0
\(649\) 262.070i 0.403806i
\(650\) 0 0
\(651\) −81.6897 + 529.905i −0.125483 + 0.813987i
\(652\) 0 0
\(653\) 671.329i 1.02807i −0.857770 0.514034i \(-0.828150\pi\)
0.857770 0.514034i \(-0.171850\pi\)
\(654\) 0 0
\(655\) −336.714 + 18.6109i −0.514068 + 0.0284136i
\(656\) 0 0
\(657\) 33.1408 0.0504426
\(658\) 0 0
\(659\) −499.820 −0.758452 −0.379226 0.925304i \(-0.623810\pi\)
−0.379226 + 0.925304i \(0.623810\pi\)
\(660\) 0 0
\(661\) 1061.68i 1.60617i −0.595866 0.803084i \(-0.703191\pi\)
0.595866 0.803084i \(-0.296809\pi\)
\(662\) 0 0
\(663\) 742.264 1.11955
\(664\) 0 0
\(665\) −1139.71 111.750i −1.71385 0.168045i
\(666\) 0 0
\(667\) 453.628i 0.680102i
\(668\) 0 0
\(669\) −406.283 −0.607299
\(670\) 0 0
\(671\) 232.883i 0.347068i
\(672\) 0 0
\(673\) 420.271i 0.624474i −0.950004 0.312237i \(-0.898922\pi\)
0.950004 0.312237i \(-0.101078\pi\)
\(674\) 0 0
\(675\) 129.113 14.3164i 0.191278 0.0212095i
\(676\) 0 0
\(677\) 471.364 0.696254 0.348127 0.937447i \(-0.386818\pi\)
0.348127 + 0.937447i \(0.386818\pi\)
\(678\) 0 0
\(679\) −182.489 28.1323i −0.268761 0.0414320i
\(680\) 0 0
\(681\) −551.316 −0.809568
\(682\) 0 0
\(683\) 390.212i 0.571320i −0.958331 0.285660i \(-0.907787\pi\)
0.958331 0.285660i \(-0.0922129\pi\)
\(684\) 0 0
\(685\) 449.416 24.8402i 0.656081 0.0362630i
\(686\) 0 0
\(687\) 5.01311i 0.00729710i
\(688\) 0 0
\(689\) 335.717i 0.487252i
\(690\) 0 0
\(691\) 453.717i 0.656609i −0.944572 0.328305i \(-0.893523\pi\)
0.944572 0.328305i \(-0.106477\pi\)
\(692\) 0 0
\(693\) 63.7958 + 9.83470i 0.0920574 + 0.0141915i
\(694\) 0 0
\(695\) 408.696 22.5895i 0.588052 0.0325029i
\(696\) 0 0
\(697\) 1379.34i 1.97896i
\(698\) 0 0
\(699\) 568.670i 0.813547i
\(700\) 0 0
\(701\) 242.952 0.346579 0.173290 0.984871i \(-0.444560\pi\)
0.173290 + 0.984871i \(0.444560\pi\)
\(702\) 0 0
\(703\) −1218.61 −1.73344
\(704\) 0 0
\(705\) −8.44436 152.778i −0.0119778 0.216706i
\(706\) 0 0
\(707\) −118.754 + 770.337i −0.167969 + 1.08959i
\(708\) 0 0
\(709\) 485.352 0.684559 0.342279 0.939598i \(-0.388801\pi\)
0.342279 + 0.939598i \(0.388801\pi\)
\(710\) 0 0
\(711\) 121.473 0.170848
\(712\) 0 0
\(713\) 1075.28 1.50810
\(714\) 0 0
\(715\) 15.1421 + 273.956i 0.0211778 + 0.383155i
\(716\) 0 0
\(717\) −616.683 −0.860088
\(718\) 0 0
\(719\) 25.1312i 0.0349529i −0.999847 0.0174765i \(-0.994437\pi\)
0.999847 0.0174765i \(-0.00556322\pi\)
\(720\) 0 0
\(721\) −442.866 68.2718i −0.614239 0.0946905i
\(722\) 0 0
\(723\) 330.377i 0.456953i
\(724\) 0 0
\(725\) 463.560 51.4009i 0.639393 0.0708978i
\(726\) 0 0
\(727\) −332.426 −0.457258 −0.228629 0.973514i \(-0.573424\pi\)
−0.228629 + 0.973514i \(0.573424\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 1438.44i 1.96777i
\(732\) 0 0
\(733\) 1410.78 1.92467 0.962334 0.271870i \(-0.0876420\pi\)
0.962334 + 0.271870i \(0.0876420\pi\)
\(734\) 0 0
\(735\) −105.272 + 411.087i −0.143227 + 0.559303i
\(736\) 0 0
\(737\) 90.9866i 0.123455i
\(738\) 0 0
\(739\) −928.931 −1.25701 −0.628505 0.777805i \(-0.716333\pi\)
−0.628505 + 0.777805i \(0.716333\pi\)
\(740\) 0 0
\(741\) 1011.73i 1.36536i
\(742\) 0 0
\(743\) 451.882i 0.608186i 0.952642 + 0.304093i \(0.0983534\pi\)
−0.952642 + 0.304093i \(0.901647\pi\)
\(744\) 0 0
\(745\) −69.0870 1249.94i −0.0927342 1.67777i
\(746\) 0 0
\(747\) −271.495 −0.363447
\(748\) 0 0
\(749\) −118.400 + 768.038i −0.158077 + 1.02542i
\(750\) 0 0
\(751\) 650.483 0.866156 0.433078 0.901356i \(-0.357427\pi\)
0.433078 + 0.901356i \(0.357427\pi\)
\(752\) 0 0
\(753\) 642.932i 0.853828i
\(754\) 0 0
\(755\) −25.7513 465.899i −0.0341076 0.617085i
\(756\) 0 0
\(757\) 1119.68i 1.47910i 0.673104 + 0.739548i \(0.264961\pi\)
−0.673104 + 0.739548i \(0.735039\pi\)
\(758\) 0 0
\(759\) 129.454i 0.170558i
\(760\) 0 0
\(761\) 1165.04i 1.53093i −0.643479 0.765463i \(-0.722510\pi\)
0.643479 0.765463i \(-0.277490\pi\)
\(762\) 0 0
\(763\) 1015.27 + 156.512i 1.33062 + 0.205128i
\(764\) 0 0
\(765\) −19.8716 359.523i −0.0259760 0.469965i
\(766\) 0 0
\(767\) 1522.11i 1.98449i
\(768\) 0 0
\(769\) 1347.17i 1.75185i 0.482446 + 0.875926i \(0.339749\pi\)
−0.482446 + 0.875926i \(0.660251\pi\)
\(770\) 0 0
\(771\) 137.893 0.178850
\(772\) 0 0
\(773\) −508.563 −0.657908 −0.328954 0.944346i \(-0.606696\pi\)
−0.328954 + 0.944346i \(0.606696\pi\)
\(774\) 0 0
\(775\) 121.840 + 1098.82i 0.157213 + 1.41783i
\(776\) 0 0
\(777\) −68.7998 + 446.291i −0.0885455 + 0.574377i
\(778\) 0 0
\(779\) −1880.08 −2.41345
\(780\) 0 0
\(781\) 146.169 0.187156
\(782\) 0 0
\(783\) 96.9396 0.123805
\(784\) 0 0
\(785\) 77.8480 + 1408.45i 0.0991695 + 1.79420i
\(786\) 0 0
\(787\) 275.176 0.349652 0.174826 0.984599i \(-0.444064\pi\)
0.174826 + 0.984599i \(0.444064\pi\)
\(788\) 0 0
\(789\) 342.582i 0.434197i
\(790\) 0 0
\(791\) −0.318018 + 2.06292i −0.000402045 + 0.00260799i
\(792\) 0 0
\(793\) 1352.58i 1.70565i
\(794\) 0 0
\(795\) −162.608 + 8.98768i −0.204538 + 0.0113053i
\(796\) 0 0
\(797\) 2.56622 0.00321985 0.00160992 0.999999i \(-0.499488\pi\)
0.00160992 + 0.999999i \(0.499488\pi\)
\(798\) 0 0
\(799\) −424.121 −0.530815
\(800\) 0 0
\(801\) 333.473i 0.416321i
\(802\) 0 0
\(803\) 33.9559 0.0422862
\(804\) 0 0
\(805\) 846.976 + 83.0472i 1.05214 + 0.103164i
\(806\) 0 0
\(807\) 66.7278i 0.0826863i
\(808\) 0 0
\(809\) −1019.40 −1.26007 −0.630036 0.776566i \(-0.716960\pi\)
−0.630036 + 0.776566i \(0.716960\pi\)
\(810\) 0 0
\(811\) 461.638i 0.569221i 0.958643 + 0.284610i \(0.0918642\pi\)
−0.958643 + 0.284610i \(0.908136\pi\)
\(812\) 0 0
\(813\) 324.213i 0.398786i
\(814\) 0 0
\(815\) 839.479 46.3998i 1.03004 0.0569323i
\(816\) 0 0
\(817\) −1960.64 −2.39980
\(818\) 0 0
\(819\) −370.526 57.1200i −0.452413 0.0697436i
\(820\) 0 0
\(821\) −336.204 −0.409505 −0.204752 0.978814i \(-0.565639\pi\)
−0.204752 + 0.978814i \(0.565639\pi\)
\(822\) 0 0
\(823\) 64.0535i 0.0778293i −0.999243 0.0389147i \(-0.987610\pi\)
0.999243 0.0389147i \(-0.0123900\pi\)
\(824\) 0 0
\(825\) 132.288 14.6685i 0.160349 0.0177800i
\(826\) 0 0
\(827\) 1423.82i 1.72167i −0.508888 0.860833i \(-0.669943\pi\)
0.508888 0.860833i \(-0.330057\pi\)
\(828\) 0 0
\(829\) 871.031i 1.05070i −0.850886 0.525350i \(-0.823934\pi\)
0.850886 0.525350i \(-0.176066\pi\)
\(830\) 0 0
\(831\) 354.147i 0.426169i
\(832\) 0 0
\(833\) 1121.63 + 354.236i 1.34649 + 0.425254i
\(834\) 0 0
\(835\) −80.8584 1462.91i −0.0968365 1.75199i
\(836\) 0 0
\(837\) 229.785i 0.274534i
\(838\) 0 0
\(839\) 1346.65i 1.60506i −0.596611 0.802530i \(-0.703487\pi\)
0.596611 0.802530i \(-0.296513\pi\)
\(840\) 0 0
\(841\) −492.952 −0.586150
\(842\) 0 0
\(843\) 312.952 0.371236
\(844\) 0 0
\(845\) −41.3117 747.424i −0.0488896 0.884525i
\(846\) 0 0
\(847\) −771.747 118.972i −0.911153 0.140463i
\(848\) 0 0
\(849\) 83.0956 0.0978747
\(850\) 0 0
\(851\) 905.608 1.06417
\(852\) 0 0
\(853\) −1553.19 −1.82086 −0.910429 0.413666i \(-0.864248\pi\)
−0.910429 + 0.413666i \(0.864248\pi\)
\(854\) 0 0
\(855\) −490.041 + 27.0856i −0.573147 + 0.0316791i
\(856\) 0 0
\(857\) 916.383 1.06929 0.534646 0.845076i \(-0.320445\pi\)
0.534646 + 0.845076i \(0.320445\pi\)
\(858\) 0 0
\(859\) 220.008i 0.256121i −0.991766 0.128061i \(-0.959125\pi\)
0.991766 0.128061i \(-0.0408752\pi\)
\(860\) 0 0
\(861\) −106.145 + 688.543i −0.123281 + 0.799702i
\(862\) 0 0
\(863\) 1143.68i 1.32523i −0.748959 0.662616i \(-0.769446\pi\)
0.748959 0.662616i \(-0.230554\pi\)
\(864\) 0 0
\(865\) −80.4489 1455.51i −0.0930045 1.68267i
\(866\) 0 0
\(867\) −497.498 −0.573815
\(868\) 0 0
\(869\) 124.461 0.143223
\(870\) 0 0
\(871\) 528.451i 0.606717i
\(872\) 0 0
\(873\) −79.1335 −0.0906454
\(874\) 0 0
\(875\) 11.1060 + 874.930i 0.0126926 + 0.999919i
\(876\) 0 0
\(877\) 711.003i 0.810722i −0.914157 0.405361i \(-0.867146\pi\)
0.914157 0.405361i \(-0.132854\pi\)
\(878\) 0 0
\(879\) 588.547 0.669564
\(880\) 0 0
\(881\) 804.482i 0.913146i 0.889686 + 0.456573i \(0.150923\pi\)
−0.889686 + 0.456573i \(0.849077\pi\)
\(882\) 0 0
\(883\) 203.330i 0.230271i 0.993350 + 0.115136i \(0.0367303\pi\)
−0.993350 + 0.115136i \(0.963270\pi\)
\(884\) 0 0
\(885\) 737.248 40.7493i 0.833048 0.0460444i
\(886\) 0 0
\(887\) 840.574 0.947659 0.473830 0.880617i \(-0.342871\pi\)
0.473830 + 0.880617i \(0.342871\pi\)
\(888\) 0 0
\(889\) 186.719 1211.21i 0.210033 1.36244i
\(890\) 0 0
\(891\) 27.6640 0.0310483
\(892\) 0 0
\(893\) 578.090i 0.647357i
\(894\) 0 0
\(895\) −10.6612 192.886i −0.0119120 0.215515i
\(896\) 0 0
\(897\) 751.867i 0.838202i
\(898\) 0 0
\(899\) 825.010i 0.917697i
\(900\) 0 0
\(901\) 451.410i 0.501010i
\(902\) 0 0
\(903\) −110.693 + 718.046i −0.122584 + 0.795179i
\(904\) 0 0
\(905\) 1361.73 75.2658i 1.50467 0.0831666i
\(906\) 0 0
\(907\) 611.612i 0.674324i −0.941447 0.337162i \(-0.890533\pi\)
0.941447 0.337162i \(-0.109467\pi\)
\(908\) 0 0
\(909\) 334.044i 0.367485i
\(910\) 0 0
\(911\) 169.118 0.185640 0.0928198 0.995683i \(-0.470412\pi\)
0.0928198 + 0.995683i \(0.470412\pi\)
\(912\) 0 0
\(913\) −278.172 −0.304679
\(914\) 0 0
\(915\) −655.138 + 36.2109i −0.715997 + 0.0395747i
\(916\) 0 0
\(917\) 71.9318 466.608i 0.0784426 0.508842i
\(918\) 0 0
\(919\) 204.249 0.222251 0.111126 0.993806i \(-0.464554\pi\)
0.111126 + 0.993806i \(0.464554\pi\)
\(920\) 0 0
\(921\) 683.531 0.742162
\(922\) 0 0
\(923\) −848.948 −0.919770
\(924\) 0 0
\(925\) 102.615 + 925.436i 0.110935 + 1.00047i
\(926\) 0 0
\(927\) −192.042 −0.207165
\(928\) 0 0
\(929\) 607.668i 0.654110i 0.945005 + 0.327055i \(0.106056\pi\)
−0.945005 + 0.327055i \(0.893944\pi\)
\(930\) 0 0
\(931\) 482.835 1528.81i 0.518619 1.64212i
\(932\) 0 0
\(933\) 590.793i 0.633219i
\(934\) 0 0
\(935\) −20.3603 368.365i −0.0217758 0.393973i
\(936\) 0 0
\(937\) 1226.32 1.30878 0.654389 0.756158i \(-0.272926\pi\)
0.654389 + 0.756158i \(0.272926\pi\)
\(938\) 0 0
\(939\) −176.193 −0.187639
\(940\) 0 0
\(941\) 1570.92i 1.66942i 0.550693 + 0.834708i \(0.314363\pi\)
−0.550693 + 0.834708i \(0.685637\pi\)
\(942\) 0 0
\(943\) 1397.18 1.48164
\(944\) 0 0
\(945\) −17.7471 + 180.997i −0.0187799 + 0.191532i
\(946\) 0 0
\(947\) 845.061i 0.892356i 0.894944 + 0.446178i \(0.147215\pi\)
−0.894944 + 0.446178i \(0.852785\pi\)
\(948\) 0 0
\(949\) −197.216 −0.207814
\(950\) 0 0
\(951\) 823.970i 0.866425i
\(952\) 0 0
\(953\) 367.141i 0.385248i 0.981273 + 0.192624i \(0.0616997\pi\)
−0.981273 + 0.192624i \(0.938300\pi\)
\(954\) 0 0
\(955\) 5.14904 + 93.1580i 0.00539167 + 0.0975477i
\(956\) 0 0
\(957\) 99.3237 0.103786
\(958\) 0 0
\(959\) −96.0080 + 622.786i −0.100113 + 0.649412i
\(960\) 0 0
\(961\) −994.598 −1.03496
\(962\) 0 0
\(963\) 333.047i 0.345844i
\(964\) 0 0
\(965\) −1038.99 + 57.4273i −1.07668 + 0.0595102i
\(966\) 0 0
\(967\) 1013.20i 1.04777i −0.851789 0.523886i \(-0.824482\pi\)
0.851789 0.523886i \(-0.175518\pi\)
\(968\) 0 0
\(969\) 1360.39i 1.40391i
\(970\) 0 0
\(971\) 659.717i 0.679420i 0.940530 + 0.339710i \(0.110329\pi\)
−0.940530 + 0.339710i \(0.889671\pi\)
\(972\) 0 0
\(973\) −87.3092 + 566.358i −0.0897320 + 0.582074i
\(974\) 0 0
\(975\) −768.328 + 85.1946i −0.788029 + 0.0873791i
\(976\) 0 0
\(977\) 867.534i 0.887957i −0.896037 0.443978i \(-0.853567\pi\)
0.896037 0.443978i \(-0.146433\pi\)
\(978\) 0 0
\(979\) 341.674i 0.349003i
\(980\) 0 0
\(981\) 440.254 0.448781
\(982\) 0 0
\(983\) −1757.82 −1.78822 −0.894109 0.447849i \(-0.852190\pi\)
−0.894109 + 0.447849i \(0.852190\pi\)
\(984\) 0 0
\(985\) −1247.87 + 68.9725i −1.26687 + 0.0700228i
\(986\) 0 0
\(987\) 211.714 + 32.6377i 0.214503 + 0.0330676i
\(988\) 0 0
\(989\) 1457.05 1.47326
\(990\) 0 0
\(991\) 395.645 0.399238 0.199619 0.979874i \(-0.436030\pi\)
0.199619 + 0.979874i \(0.436030\pi\)
\(992\) 0 0
\(993\) −488.259 −0.491701
\(994\) 0 0
\(995\) −425.259 + 23.5050i −0.427396 + 0.0236231i
\(996\) 0 0
\(997\) 1605.98 1.61081 0.805406 0.592724i \(-0.201947\pi\)
0.805406 + 0.592724i \(0.201947\pi\)
\(998\) 0 0
\(999\) 193.527i 0.193721i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.3.p.a.349.3 16
3.2 odd 2 1260.3.p.e.1189.10 16
4.3 odd 2 1680.3.bd.b.769.11 16
5.2 odd 4 2100.3.j.g.601.12 16
5.3 odd 4 2100.3.j.g.601.5 16
5.4 even 2 inner 420.3.p.a.349.13 yes 16
7.6 odd 2 inner 420.3.p.a.349.14 yes 16
15.14 odd 2 1260.3.p.e.1189.8 16
20.19 odd 2 1680.3.bd.b.769.5 16
21.20 even 2 1260.3.p.e.1189.7 16
28.27 even 2 1680.3.bd.b.769.6 16
35.13 even 4 2100.3.j.g.601.13 16
35.27 even 4 2100.3.j.g.601.4 16
35.34 odd 2 inner 420.3.p.a.349.4 yes 16
105.104 even 2 1260.3.p.e.1189.9 16
140.139 even 2 1680.3.bd.b.769.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.3 16 1.1 even 1 trivial
420.3.p.a.349.4 yes 16 35.34 odd 2 inner
420.3.p.a.349.13 yes 16 5.4 even 2 inner
420.3.p.a.349.14 yes 16 7.6 odd 2 inner
1260.3.p.e.1189.7 16 21.20 even 2
1260.3.p.e.1189.8 16 15.14 odd 2
1260.3.p.e.1189.9 16 105.104 even 2
1260.3.p.e.1189.10 16 3.2 odd 2
1680.3.bd.b.769.5 16 20.19 odd 2
1680.3.bd.b.769.6 16 28.27 even 2
1680.3.bd.b.769.11 16 4.3 odd 2
1680.3.bd.b.769.12 16 140.139 even 2
2100.3.j.g.601.4 16 35.27 even 4
2100.3.j.g.601.5 16 5.3 odd 4
2100.3.j.g.601.12 16 5.2 odd 4
2100.3.j.g.601.13 16 35.13 even 4