Properties

Label 1260.3.p.e.1189.10
Level $1260$
Weight $3$
Character 1260.1189
Analytic conductor $34.333$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1260,3,Mod(1189,1260)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1260, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1260.1189"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1260.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.3325133094\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3876 x^{12} + 102922 x^{10} + 1866070 x^{8} + 23190492 x^{6} + 203608845 x^{4} + \cdots + 3839661225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.10
Root \(-1.73205 - 4.99238i\) of defining polynomial
Character \(\chi\) \(=\) 1260.1189
Dual form 1260.3.p.e.1189.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.275940 + 4.99238i) q^{5} +(6.91828 + 1.06651i) q^{7} -3.07378 q^{11} -17.8525 q^{13} -24.0048 q^{17} -32.7193i q^{19} -24.3154i q^{23} +(-24.8477 + 2.75519i) q^{25} +18.6560 q^{29} -44.2221i q^{31} +(-3.41542 + 34.8330i) q^{35} -37.2443i q^{37} +57.4609i q^{41} -59.9230i q^{43} +17.6682 q^{47} +(46.7251 + 14.7569i) q^{49} -18.8050i q^{53} +(-0.848177 - 15.3455i) q^{55} +85.2600i q^{59} +75.7642i q^{61} +(-4.92622 - 89.1266i) q^{65} -29.6009i q^{67} -47.5533 q^{71} +11.0469 q^{73} +(-21.2653 - 3.27823i) q^{77} +40.4910 q^{79} +90.4984 q^{83} +(-6.62387 - 119.841i) q^{85} -111.158i q^{89} +(-123.509 - 19.0400i) q^{91} +(163.347 - 9.02854i) q^{95} -26.3778 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{11} - 48 q^{25} + 32 q^{29} - 76 q^{35} - 88 q^{49} - 152 q^{65} - 168 q^{71} + 16 q^{79} - 416 q^{85} - 568 q^{91} - 136 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.275940 + 4.99238i 0.0551879 + 0.998476i
\(6\) 0 0
\(7\) 6.91828 + 1.06651i 0.988325 + 0.152359i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.07378 −0.279435 −0.139717 0.990191i \(-0.544619\pi\)
−0.139717 + 0.990191i \(0.544619\pi\)
\(12\) 0 0
\(13\) −17.8525 −1.37327 −0.686636 0.727001i \(-0.740913\pi\)
−0.686636 + 0.727001i \(0.740913\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −24.0048 −1.41205 −0.706024 0.708188i \(-0.749513\pi\)
−0.706024 + 0.708188i \(0.749513\pi\)
\(18\) 0 0
\(19\) 32.7193i 1.72207i −0.508548 0.861033i \(-0.669818\pi\)
0.508548 0.861033i \(-0.330182\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 24.3154i 1.05719i −0.848874 0.528595i \(-0.822719\pi\)
0.848874 0.528595i \(-0.177281\pi\)
\(24\) 0 0
\(25\) −24.8477 + 2.75519i −0.993909 + 0.110208i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 18.6560 0.643312 0.321656 0.946857i \(-0.395761\pi\)
0.321656 + 0.946857i \(0.395761\pi\)
\(30\) 0 0
\(31\) 44.2221i 1.42652i −0.700899 0.713260i \(-0.747218\pi\)
0.700899 0.713260i \(-0.252782\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.41542 + 34.8330i −0.0975835 + 0.995227i
\(36\) 0 0
\(37\) 37.2443i 1.00660i −0.864111 0.503301i \(-0.832119\pi\)
0.864111 0.503301i \(-0.167881\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 57.4609i 1.40149i 0.713414 + 0.700743i \(0.247148\pi\)
−0.713414 + 0.700743i \(0.752852\pi\)
\(42\) 0 0
\(43\) 59.9230i 1.39356i −0.717285 0.696780i \(-0.754616\pi\)
0.717285 0.696780i \(-0.245384\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 17.6682 0.375919 0.187959 0.982177i \(-0.439813\pi\)
0.187959 + 0.982177i \(0.439813\pi\)
\(48\) 0 0
\(49\) 46.7251 + 14.7569i 0.953573 + 0.301161i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 18.8050i 0.354811i −0.984138 0.177405i \(-0.943230\pi\)
0.984138 0.177405i \(-0.0567704\pi\)
\(54\) 0 0
\(55\) −0.848177 15.3455i −0.0154214 0.279009i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 85.2600i 1.44508i 0.691327 + 0.722542i \(0.257026\pi\)
−0.691327 + 0.722542i \(0.742974\pi\)
\(60\) 0 0
\(61\) 75.7642i 1.24204i 0.783796 + 0.621018i \(0.213281\pi\)
−0.783796 + 0.621018i \(0.786719\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.92622 89.1266i −0.0757880 1.37118i
\(66\) 0 0
\(67\) 29.6009i 0.441804i −0.975296 0.220902i \(-0.929100\pi\)
0.975296 0.220902i \(-0.0709001\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −47.5533 −0.669765 −0.334883 0.942260i \(-0.608697\pi\)
−0.334883 + 0.942260i \(0.608697\pi\)
\(72\) 0 0
\(73\) 11.0469 0.151328 0.0756640 0.997133i \(-0.475892\pi\)
0.0756640 + 0.997133i \(0.475892\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −21.2653 3.27823i −0.276172 0.0425744i
\(78\) 0 0
\(79\) 40.4910 0.512545 0.256272 0.966605i \(-0.417506\pi\)
0.256272 + 0.966605i \(0.417506\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 90.4984 1.09034 0.545171 0.838325i \(-0.316465\pi\)
0.545171 + 0.838325i \(0.316465\pi\)
\(84\) 0 0
\(85\) −6.62387 119.841i −0.0779279 1.40990i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 111.158i 1.24896i −0.781040 0.624481i \(-0.785311\pi\)
0.781040 0.624481i \(-0.214689\pi\)
\(90\) 0 0
\(91\) −123.509 19.0400i −1.35724 0.209231i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 163.347 9.02854i 1.71944 0.0950373i
\(96\) 0 0
\(97\) −26.3778 −0.271936 −0.135968 0.990713i \(-0.543414\pi\)
−0.135968 + 0.990713i \(0.543414\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 111.348i 1.10246i −0.834355 0.551228i \(-0.814159\pi\)
0.834355 0.551228i \(-0.185841\pi\)
\(102\) 0 0
\(103\) −64.0140 −0.621495 −0.310747 0.950493i \(-0.600579\pi\)
−0.310747 + 0.950493i \(0.600579\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 111.016i 1.03753i −0.854917 0.518765i \(-0.826392\pi\)
0.854917 0.518765i \(-0.173608\pi\)
\(108\) 0 0
\(109\) 146.751 1.34634 0.673171 0.739487i \(-0.264932\pi\)
0.673171 + 0.739487i \(0.264932\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.298184i 0.00263880i −0.999999 0.00131940i \(-0.999580\pi\)
0.999999 0.00131940i \(-0.000419978\pi\)
\(114\) 0 0
\(115\) 121.392 6.70957i 1.05558 0.0583441i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −166.072 25.6015i −1.39556 0.215138i
\(120\) 0 0
\(121\) −111.552 −0.921916
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20.6114 123.289i −0.164891 0.986312i
\(126\) 0 0
\(127\) 175.074i 1.37854i −0.724506 0.689268i \(-0.757932\pi\)
0.724506 0.689268i \(-0.242068\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 67.4457i 0.514853i 0.966298 + 0.257426i \(0.0828744\pi\)
−0.966298 + 0.257426i \(0.917126\pi\)
\(132\) 0 0
\(133\) 34.8956 226.361i 0.262373 1.70196i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 90.0204i 0.657083i −0.944490 0.328541i \(-0.893443\pi\)
0.944490 0.328541i \(-0.106557\pi\)
\(138\) 0 0
\(139\) 81.8640i 0.588950i 0.955659 + 0.294475i \(0.0951448\pi\)
−0.955659 + 0.294475i \(0.904855\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 54.8748 0.383740
\(144\) 0 0
\(145\) 5.14794 + 93.1380i 0.0355030 + 0.642331i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −250.370 −1.68034 −0.840168 0.542327i \(-0.817544\pi\)
−0.840168 + 0.542327i \(0.817544\pi\)
\(150\) 0 0
\(151\) 93.3221 0.618027 0.309014 0.951058i \(-0.400001\pi\)
0.309014 + 0.951058i \(0.400001\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 220.774 12.2026i 1.42435 0.0787267i
\(156\) 0 0
\(157\) −282.120 −1.79694 −0.898471 0.439033i \(-0.855321\pi\)
−0.898471 + 0.439033i \(0.855321\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 25.9327 168.220i 0.161073 1.04485i
\(162\) 0 0
\(163\) 168.152i 1.03161i 0.856707 + 0.515804i \(0.172507\pi\)
−0.856707 + 0.515804i \(0.827493\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −293.030 −1.75467 −0.877334 0.479880i \(-0.840680\pi\)
−0.877334 + 0.479880i \(0.840680\pi\)
\(168\) 0 0
\(169\) 149.713 0.885875
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −291.545 −1.68523 −0.842617 0.538514i \(-0.818986\pi\)
−0.842617 + 0.538514i \(0.818986\pi\)
\(174\) 0 0
\(175\) −174.842 7.43929i −0.999096 0.0425102i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −38.6361 −0.215844 −0.107922 0.994159i \(-0.534420\pi\)
−0.107922 + 0.994159i \(0.534420\pi\)
\(180\) 0 0
\(181\) 272.762i 1.50697i 0.657465 + 0.753485i \(0.271629\pi\)
−0.657465 + 0.753485i \(0.728371\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 185.938 10.2772i 1.00507 0.0555523i
\(186\) 0 0
\(187\) 73.7855 0.394575
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.6600 0.0976966 0.0488483 0.998806i \(-0.484445\pi\)
0.0488483 + 0.998806i \(0.484445\pi\)
\(192\) 0 0
\(193\) 208.116i 1.07832i −0.842203 0.539160i \(-0.818742\pi\)
0.842203 0.539160i \(-0.181258\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 249.955i 1.26881i 0.773002 + 0.634404i \(0.218754\pi\)
−0.773002 + 0.634404i \(0.781246\pi\)
\(198\) 0 0
\(199\) 85.1816i 0.428048i −0.976828 0.214024i \(-0.931343\pi\)
0.976828 0.214024i \(-0.0686571\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 129.068 + 19.8969i 0.635801 + 0.0980145i
\(204\) 0 0
\(205\) −286.867 + 15.8557i −1.39935 + 0.0773451i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 100.572i 0.481205i
\(210\) 0 0
\(211\) 64.2866 0.304676 0.152338 0.988328i \(-0.451320\pi\)
0.152338 + 0.988328i \(0.451320\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 299.159 16.5351i 1.39144 0.0769076i
\(216\) 0 0
\(217\) 47.1636 305.941i 0.217344 1.40987i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 428.546 1.93912
\(222\) 0 0
\(223\) 234.568 1.05187 0.525937 0.850524i \(-0.323715\pi\)
0.525937 + 0.850524i \(0.323715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −318.302 −1.40221 −0.701106 0.713057i \(-0.747310\pi\)
−0.701106 + 0.713057i \(0.747310\pi\)
\(228\) 0 0
\(229\) 2.89432i 0.0126389i 0.999980 + 0.00631947i \(0.00201156\pi\)
−0.999980 + 0.00631947i \(0.997988\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 328.322i 1.40911i −0.709652 0.704553i \(-0.751148\pi\)
0.709652 0.704553i \(-0.248852\pi\)
\(234\) 0 0
\(235\) 4.87535 + 88.2063i 0.0207462 + 0.375346i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −356.042 −1.48972 −0.744858 0.667223i \(-0.767483\pi\)
−0.744858 + 0.667223i \(0.767483\pi\)
\(240\) 0 0
\(241\) 190.743i 0.791466i −0.918366 0.395733i \(-0.870491\pi\)
0.918366 0.395733i \(-0.129509\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −60.7787 + 237.341i −0.248076 + 0.968740i
\(246\) 0 0
\(247\) 584.122i 2.36487i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 371.197i 1.47887i 0.673226 + 0.739436i \(0.264908\pi\)
−0.673226 + 0.739436i \(0.735092\pi\)
\(252\) 0 0
\(253\) 74.7401i 0.295415i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 79.6126 0.309777 0.154888 0.987932i \(-0.450498\pi\)
0.154888 + 0.987932i \(0.450498\pi\)
\(258\) 0 0
\(259\) 39.7216 257.666i 0.153365 0.994851i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 197.790i 0.752052i −0.926609 0.376026i \(-0.877290\pi\)
0.926609 0.376026i \(-0.122710\pi\)
\(264\) 0 0
\(265\) 93.8816 5.18904i 0.354270 0.0195813i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 38.5253i 0.143217i −0.997433 0.0716084i \(-0.977187\pi\)
0.997433 0.0716084i \(-0.0228132\pi\)
\(270\) 0 0
\(271\) 187.184i 0.690717i −0.938471 0.345359i \(-0.887757\pi\)
0.938471 0.345359i \(-0.112243\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 76.3764 8.46885i 0.277732 0.0307958i
\(276\) 0 0
\(277\) 204.467i 0.738147i 0.929400 + 0.369074i \(0.120325\pi\)
−0.929400 + 0.369074i \(0.879675\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 180.683 0.643000 0.321500 0.946910i \(-0.395813\pi\)
0.321500 + 0.946910i \(0.395813\pi\)
\(282\) 0 0
\(283\) −47.9753 −0.169524 −0.0847619 0.996401i \(-0.527013\pi\)
−0.0847619 + 0.996401i \(0.527013\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −61.2829 + 397.531i −0.213529 + 1.38512i
\(288\) 0 0
\(289\) 287.230 0.993877
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 339.798 1.15972 0.579859 0.814717i \(-0.303107\pi\)
0.579859 + 0.814717i \(0.303107\pi\)
\(294\) 0 0
\(295\) −425.650 + 23.5266i −1.44288 + 0.0797512i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 434.091i 1.45181i
\(300\) 0 0
\(301\) 63.9088 414.564i 0.212322 1.37729i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −378.244 + 20.9064i −1.24014 + 0.0685454i
\(306\) 0 0
\(307\) −394.637 −1.28546 −0.642731 0.766092i \(-0.722199\pi\)
−0.642731 + 0.766092i \(0.722199\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 341.095i 1.09677i −0.836227 0.548384i \(-0.815243\pi\)
0.836227 0.548384i \(-0.184757\pi\)
\(312\) 0 0
\(313\) 101.725 0.325000 0.162500 0.986709i \(-0.448044\pi\)
0.162500 + 0.986709i \(0.448044\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 475.720i 1.50069i −0.661045 0.750346i \(-0.729887\pi\)
0.661045 0.750346i \(-0.270113\pi\)
\(318\) 0 0
\(319\) −57.3446 −0.179763
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 785.419i 2.43164i
\(324\) 0 0
\(325\) 443.595 49.1871i 1.36491 0.151345i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 122.233 + 18.8434i 0.371530 + 0.0572747i
\(330\) 0 0
\(331\) 281.896 0.851651 0.425825 0.904805i \(-0.359984\pi\)
0.425825 + 0.904805i \(0.359984\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 147.779 8.16805i 0.441131 0.0243823i
\(336\) 0 0
\(337\) 80.4587i 0.238750i −0.992849 0.119375i \(-0.961911\pi\)
0.992849 0.119375i \(-0.0380891\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 135.929i 0.398619i
\(342\) 0 0
\(343\) 307.519 + 151.925i 0.896556 + 0.442931i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 197.979i 0.570546i 0.958446 + 0.285273i \(0.0920843\pi\)
−0.958446 + 0.285273i \(0.907916\pi\)
\(348\) 0 0
\(349\) 116.788i 0.334637i 0.985903 + 0.167318i \(0.0535108\pi\)
−0.985903 + 0.167318i \(0.946489\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 439.644 1.24545 0.622725 0.782441i \(-0.286026\pi\)
0.622725 + 0.782441i \(0.286026\pi\)
\(354\) 0 0
\(355\) −13.1219 237.404i −0.0369630 0.668745i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 456.067 1.27038 0.635191 0.772355i \(-0.280922\pi\)
0.635191 + 0.772355i \(0.280922\pi\)
\(360\) 0 0
\(361\) −709.551 −1.96551
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.04829 + 55.1505i 0.00835147 + 0.151097i
\(366\) 0 0
\(367\) 14.4035 0.0392465 0.0196233 0.999807i \(-0.493753\pi\)
0.0196233 + 0.999807i \(0.493753\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 20.0558 130.098i 0.0540587 0.350669i
\(372\) 0 0
\(373\) 357.070i 0.957293i 0.878008 + 0.478647i \(0.158873\pi\)
−0.878008 + 0.478647i \(0.841127\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −333.058 −0.883442
\(378\) 0 0
\(379\) 5.90977 0.0155931 0.00779653 0.999970i \(-0.497518\pi\)
0.00779653 + 0.999970i \(0.497518\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −334.550 −0.873500 −0.436750 0.899583i \(-0.643870\pi\)
−0.436750 + 0.899583i \(0.643870\pi\)
\(384\) 0 0
\(385\) 10.4983 107.069i 0.0272682 0.278101i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −297.061 −0.763653 −0.381826 0.924234i \(-0.624705\pi\)
−0.381826 + 0.924234i \(0.624705\pi\)
\(390\) 0 0
\(391\) 583.685i 1.49280i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.1731 + 202.147i 0.0282863 + 0.511764i
\(396\) 0 0
\(397\) −189.999 −0.478586 −0.239293 0.970947i \(-0.576916\pi\)
−0.239293 + 0.970947i \(0.576916\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −224.908 −0.560869 −0.280434 0.959873i \(-0.590478\pi\)
−0.280434 + 0.959873i \(0.590478\pi\)
\(402\) 0 0
\(403\) 789.477i 1.95900i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 114.481i 0.281280i
\(408\) 0 0
\(409\) 229.455i 0.561015i −0.959852 0.280508i \(-0.909497\pi\)
0.959852 0.280508i \(-0.0905028\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −90.9310 + 589.852i −0.220172 + 1.42821i
\(414\) 0 0
\(415\) 24.9721 + 451.802i 0.0601737 + 1.08868i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 171.731i 0.409859i −0.978777 0.204929i \(-0.934304\pi\)
0.978777 0.204929i \(-0.0656965\pi\)
\(420\) 0 0
\(421\) 253.361 0.601809 0.300904 0.953654i \(-0.402712\pi\)
0.300904 + 0.953654i \(0.402712\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 596.464 66.1378i 1.40345 0.155618i
\(426\) 0 0
\(427\) −80.8037 + 524.158i −0.189236 + 1.22754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −66.9553 −0.155349 −0.0776743 0.996979i \(-0.524749\pi\)
−0.0776743 + 0.996979i \(0.524749\pi\)
\(432\) 0 0
\(433\) −255.445 −0.589941 −0.294971 0.955506i \(-0.595310\pi\)
−0.294971 + 0.955506i \(0.595310\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −795.581 −1.82055
\(438\) 0 0
\(439\) 570.966i 1.30061i 0.759675 + 0.650303i \(0.225358\pi\)
−0.759675 + 0.650303i \(0.774642\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 234.490i 0.529323i −0.964341 0.264661i \(-0.914740\pi\)
0.964341 0.264661i \(-0.0852602\pi\)
\(444\) 0 0
\(445\) 554.941 30.6728i 1.24706 0.0689276i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 327.098 0.728503 0.364251 0.931301i \(-0.381325\pi\)
0.364251 + 0.931301i \(0.381325\pi\)
\(450\) 0 0
\(451\) 176.622i 0.391624i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 60.9739 621.857i 0.134009 1.36672i
\(456\) 0 0
\(457\) 57.4776i 0.125772i −0.998021 0.0628858i \(-0.979970\pi\)
0.998021 0.0628858i \(-0.0200304\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 202.731i 0.439764i 0.975526 + 0.219882i \(0.0705673\pi\)
−0.975526 + 0.219882i \(0.929433\pi\)
\(462\) 0 0
\(463\) 235.364i 0.508345i −0.967159 0.254172i \(-0.918197\pi\)
0.967159 0.254172i \(-0.0818030\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −551.433 −1.18080 −0.590399 0.807111i \(-0.701030\pi\)
−0.590399 + 0.807111i \(0.701030\pi\)
\(468\) 0 0
\(469\) 31.5698 204.787i 0.0673130 0.436646i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 184.190i 0.389409i
\(474\) 0 0
\(475\) 90.1478 + 812.999i 0.189785 + 1.71158i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 863.232i 1.80215i −0.433659 0.901077i \(-0.642778\pi\)
0.433659 0.901077i \(-0.357222\pi\)
\(480\) 0 0
\(481\) 664.905i 1.38234i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.27868 131.688i −0.0150076 0.271522i
\(486\) 0 0
\(487\) 588.387i 1.20819i 0.796913 + 0.604094i \(0.206465\pi\)
−0.796913 + 0.604094i \(0.793535\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −765.548 −1.55916 −0.779580 0.626303i \(-0.784567\pi\)
−0.779580 + 0.626303i \(0.784567\pi\)
\(492\) 0 0
\(493\) −447.834 −0.908386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −328.987 50.7164i −0.661946 0.102045i
\(498\) 0 0
\(499\) −499.204 −1.00041 −0.500204 0.865908i \(-0.666742\pi\)
−0.500204 + 0.865908i \(0.666742\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 809.915 1.61017 0.805085 0.593160i \(-0.202120\pi\)
0.805085 + 0.593160i \(0.202120\pi\)
\(504\) 0 0
\(505\) 555.892 30.7253i 1.10078 0.0608422i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 172.031i 0.337978i −0.985618 0.168989i \(-0.945950\pi\)
0.985618 0.168989i \(-0.0540502\pi\)
\(510\) 0 0
\(511\) 76.4258 + 11.7817i 0.149561 + 0.0230562i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −17.6640 319.582i −0.0342990 0.620548i
\(516\) 0 0
\(517\) −54.3081 −0.105045
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.5895i 0.0356804i −0.999841 0.0178402i \(-0.994321\pi\)
0.999841 0.0178402i \(-0.00567901\pi\)
\(522\) 0 0
\(523\) 111.743 0.213657 0.106828 0.994277i \(-0.465930\pi\)
0.106828 + 0.994277i \(0.465930\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1061.54i 2.01431i
\(528\) 0 0
\(529\) −62.2368 −0.117650
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1025.82i 1.92462i
\(534\) 0 0
\(535\) 554.233 30.6336i 1.03595 0.0572592i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −143.623 45.3594i −0.266461 0.0841548i
\(540\) 0 0
\(541\) −401.344 −0.741855 −0.370928 0.928662i \(-0.620960\pi\)
−0.370928 + 0.928662i \(0.620960\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 40.4945 + 732.638i 0.0743018 + 1.34429i
\(546\) 0 0
\(547\) 241.126i 0.440816i 0.975408 + 0.220408i \(0.0707389\pi\)
−0.975408 + 0.220408i \(0.929261\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 610.412i 1.10783i
\(552\) 0 0
\(553\) 280.128 + 43.1843i 0.506561 + 0.0780910i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 533.112i 0.957114i 0.878056 + 0.478557i \(0.158840\pi\)
−0.878056 + 0.478557i \(0.841160\pi\)
\(558\) 0 0
\(559\) 1069.78i 1.91374i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 965.363 1.71468 0.857338 0.514754i \(-0.172117\pi\)
0.857338 + 0.514754i \(0.172117\pi\)
\(564\) 0 0
\(565\) 1.48865 0.0822807i 0.00263477 0.000145630i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 599.641 1.05385 0.526926 0.849911i \(-0.323345\pi\)
0.526926 + 0.849911i \(0.323345\pi\)
\(570\) 0 0
\(571\) 287.986 0.504353 0.252177 0.967681i \(-0.418854\pi\)
0.252177 + 0.967681i \(0.418854\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 66.9934 + 604.181i 0.116510 + 1.05075i
\(576\) 0 0
\(577\) 268.952 0.466122 0.233061 0.972462i \(-0.425126\pi\)
0.233061 + 0.972462i \(0.425126\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 626.093 + 96.5179i 1.07761 + 0.166124i
\(582\) 0 0
\(583\) 57.8024i 0.0991464i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −784.787 −1.33695 −0.668473 0.743736i \(-0.733052\pi\)
−0.668473 + 0.743736i \(0.733052\pi\)
\(588\) 0 0
\(589\) −1446.92 −2.45656
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −45.1151 −0.0760794 −0.0380397 0.999276i \(-0.512111\pi\)
−0.0380397 + 0.999276i \(0.512111\pi\)
\(594\) 0 0
\(595\) 81.9865 836.158i 0.137792 1.40531i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −75.0608 −0.125310 −0.0626551 0.998035i \(-0.519957\pi\)
−0.0626551 + 0.998035i \(0.519957\pi\)
\(600\) 0 0
\(601\) 149.958i 0.249514i 0.992187 + 0.124757i \(0.0398151\pi\)
−0.992187 + 0.124757i \(0.960185\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −30.7816 556.909i −0.0508786 0.920511i
\(606\) 0 0
\(607\) −244.933 −0.403515 −0.201757 0.979436i \(-0.564665\pi\)
−0.201757 + 0.979436i \(0.564665\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −315.422 −0.516239
\(612\) 0 0
\(613\) 448.080i 0.730963i −0.930819 0.365481i \(-0.880904\pi\)
0.930819 0.365481i \(-0.119096\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 617.239i 1.00039i −0.865913 0.500194i \(-0.833262\pi\)
0.865913 0.500194i \(-0.166738\pi\)
\(618\) 0 0
\(619\) 960.005i 1.55090i −0.631411 0.775449i \(-0.717524\pi\)
0.631411 0.775449i \(-0.282476\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 118.551 769.019i 0.190291 1.23438i
\(624\) 0 0
\(625\) 609.818 136.920i 0.975709 0.219073i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 894.042i 1.42137i
\(630\) 0 0
\(631\) 898.089 1.42328 0.711639 0.702545i \(-0.247953\pi\)
0.711639 + 0.702545i \(0.247953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 874.037 48.3099i 1.37644 0.0760786i
\(636\) 0 0
\(637\) −834.161 263.448i −1.30952 0.413576i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −724.165 −1.12974 −0.564871 0.825179i \(-0.691074\pi\)
−0.564871 + 0.825179i \(0.691074\pi\)
\(642\) 0 0
\(643\) 624.036 0.970507 0.485254 0.874373i \(-0.338727\pi\)
0.485254 + 0.874373i \(0.338727\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −157.813 −0.243914 −0.121957 0.992535i \(-0.538917\pi\)
−0.121957 + 0.992535i \(0.538917\pi\)
\(648\) 0 0
\(649\) 262.070i 0.403806i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 671.329i 1.02807i 0.857770 + 0.514034i \(0.171850\pi\)
−0.857770 + 0.514034i \(0.828150\pi\)
\(654\) 0 0
\(655\) −336.714 + 18.6109i −0.514068 + 0.0284136i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 499.820 0.758452 0.379226 0.925304i \(-0.376190\pi\)
0.379226 + 0.925304i \(0.376190\pi\)
\(660\) 0 0
\(661\) 1061.68i 1.60617i −0.595866 0.803084i \(-0.703191\pi\)
0.595866 0.803084i \(-0.296809\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1139.71 + 111.750i 1.71385 + 0.168045i
\(666\) 0 0
\(667\) 453.628i 0.680102i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 232.883i 0.347068i
\(672\) 0 0
\(673\) 420.271i 0.624474i −0.950004 0.312237i \(-0.898922\pi\)
0.950004 0.312237i \(-0.101078\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −471.364 −0.696254 −0.348127 0.937447i \(-0.613182\pi\)
−0.348127 + 0.937447i \(0.613182\pi\)
\(678\) 0 0
\(679\) −182.489 28.1323i −0.268761 0.0414320i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 390.212i 0.571320i 0.958331 + 0.285660i \(0.0922129\pi\)
−0.958331 + 0.285660i \(0.907787\pi\)
\(684\) 0 0
\(685\) 449.416 24.8402i 0.656081 0.0362630i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 335.717i 0.487252i
\(690\) 0 0
\(691\) 453.717i 0.656609i −0.944572 0.328305i \(-0.893523\pi\)
0.944572 0.328305i \(-0.106477\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −408.696 + 22.5895i −0.588052 + 0.0325029i
\(696\) 0 0
\(697\) 1379.34i 1.97896i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −242.952 −0.346579 −0.173290 0.984871i \(-0.555440\pi\)
−0.173290 + 0.984871i \(0.555440\pi\)
\(702\) 0 0
\(703\) −1218.61 −1.73344
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 118.754 770.337i 0.167969 1.08959i
\(708\) 0 0
\(709\) 485.352 0.684559 0.342279 0.939598i \(-0.388801\pi\)
0.342279 + 0.939598i \(0.388801\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1075.28 −1.50810
\(714\) 0 0
\(715\) 15.1421 + 273.956i 0.0211778 + 0.383155i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.1312i 0.0349529i 0.999847 + 0.0174765i \(0.00556322\pi\)
−0.999847 + 0.0174765i \(0.994437\pi\)
\(720\) 0 0
\(721\) −442.866 68.2718i −0.614239 0.0946905i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −463.560 + 51.4009i −0.639393 + 0.0708978i
\(726\) 0 0
\(727\) −332.426 −0.457258 −0.228629 0.973514i \(-0.573424\pi\)
−0.228629 + 0.973514i \(0.573424\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1438.44i 1.96777i
\(732\) 0 0
\(733\) 1410.78 1.92467 0.962334 0.271870i \(-0.0876420\pi\)
0.962334 + 0.271870i \(0.0876420\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 90.9866i 0.123455i
\(738\) 0 0
\(739\) −928.931 −1.25701 −0.628505 0.777805i \(-0.716333\pi\)
−0.628505 + 0.777805i \(0.716333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 451.882i 0.608186i −0.952642 0.304093i \(-0.901647\pi\)
0.952642 0.304093i \(-0.0983534\pi\)
\(744\) 0 0
\(745\) −69.0870 1249.94i −0.0927342 1.67777i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 118.400 768.038i 0.158077 1.02542i
\(750\) 0 0
\(751\) 650.483 0.866156 0.433078 0.901356i \(-0.357427\pi\)
0.433078 + 0.901356i \(0.357427\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.7513 + 465.899i 0.0341076 + 0.617085i
\(756\) 0 0
\(757\) 1119.68i 1.47910i 0.673104 + 0.739548i \(0.264961\pi\)
−0.673104 + 0.739548i \(0.735039\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1165.04i 1.53093i 0.643479 + 0.765463i \(0.277490\pi\)
−0.643479 + 0.765463i \(0.722510\pi\)
\(762\) 0 0
\(763\) 1015.27 + 156.512i 1.33062 + 0.205128i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1522.11i 1.98449i
\(768\) 0 0
\(769\) 1347.17i 1.75185i 0.482446 + 0.875926i \(0.339749\pi\)
−0.482446 + 0.875926i \(0.660251\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 508.563 0.657908 0.328954 0.944346i \(-0.393304\pi\)
0.328954 + 0.944346i \(0.393304\pi\)
\(774\) 0 0
\(775\) 121.840 + 1098.82i 0.157213 + 1.41783i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1880.08 2.41345
\(780\) 0 0
\(781\) 146.169 0.187156
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −77.8480 1408.45i −0.0991695 1.79420i
\(786\) 0 0
\(787\) 275.176 0.349652 0.174826 0.984599i \(-0.444064\pi\)
0.174826 + 0.984599i \(0.444064\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.318018 2.06292i 0.000402045 0.00260799i
\(792\) 0 0
\(793\) 1352.58i 1.70565i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.56622 −0.00321985 −0.00160992 0.999999i \(-0.500512\pi\)
−0.00160992 + 0.999999i \(0.500512\pi\)
\(798\) 0 0
\(799\) −424.121 −0.530815
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.9559 −0.0422862
\(804\) 0 0
\(805\) 846.976 + 83.0472i 1.05214 + 0.103164i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1019.40 1.26007 0.630036 0.776566i \(-0.283040\pi\)
0.630036 + 0.776566i \(0.283040\pi\)
\(810\) 0 0
\(811\) 461.638i 0.569221i 0.958643 + 0.284610i \(0.0918642\pi\)
−0.958643 + 0.284610i \(0.908136\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −839.479 + 46.3998i −1.03004 + 0.0569323i
\(816\) 0 0
\(817\) −1960.64 −2.39980
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 336.204 0.409505 0.204752 0.978814i \(-0.434361\pi\)
0.204752 + 0.978814i \(0.434361\pi\)
\(822\) 0 0
\(823\) 64.0535i 0.0778293i −0.999243 0.0389147i \(-0.987610\pi\)
0.999243 0.0389147i \(-0.0123900\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1423.82i 1.72167i 0.508888 + 0.860833i \(0.330057\pi\)
−0.508888 + 0.860833i \(0.669943\pi\)
\(828\) 0 0
\(829\) 871.031i 1.05070i −0.850886 0.525350i \(-0.823934\pi\)
0.850886 0.525350i \(-0.176066\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1121.63 354.236i −1.34649 0.425254i
\(834\) 0 0
\(835\) −80.8584 1462.91i −0.0968365 1.75199i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1346.65i 1.60506i 0.596611 + 0.802530i \(0.296513\pi\)
−0.596611 + 0.802530i \(0.703487\pi\)
\(840\) 0 0
\(841\) −492.952 −0.586150
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 41.3117 + 747.424i 0.0488896 + 0.884525i
\(846\) 0 0
\(847\) −771.747 118.972i −0.911153 0.140463i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −905.608 −1.06417
\(852\) 0 0
\(853\) −1553.19 −1.82086 −0.910429 0.413666i \(-0.864248\pi\)
−0.910429 + 0.413666i \(0.864248\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −916.383 −1.06929 −0.534646 0.845076i \(-0.679555\pi\)
−0.534646 + 0.845076i \(0.679555\pi\)
\(858\) 0 0
\(859\) 220.008i 0.256121i −0.991766 0.128061i \(-0.959125\pi\)
0.991766 0.128061i \(-0.0408752\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1143.68i 1.32523i 0.748959 + 0.662616i \(0.230554\pi\)
−0.748959 + 0.662616i \(0.769446\pi\)
\(864\) 0 0
\(865\) −80.4489 1455.51i −0.0930045 1.68267i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −124.461 −0.143223
\(870\) 0 0
\(871\) 528.451i 0.606717i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.1060 874.930i −0.0126926 0.999919i
\(876\) 0 0
\(877\) 711.003i 0.810722i −0.914157 0.405361i \(-0.867146\pi\)
0.914157 0.405361i \(-0.132854\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 804.482i 0.913146i −0.889686 0.456573i \(-0.849077\pi\)
0.889686 0.456573i \(-0.150923\pi\)
\(882\) 0 0
\(883\) 203.330i 0.230271i 0.993350 + 0.115136i \(0.0367303\pi\)
−0.993350 + 0.115136i \(0.963270\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −840.574 −0.947659 −0.473830 0.880617i \(-0.657129\pi\)
−0.473830 + 0.880617i \(0.657129\pi\)
\(888\) 0 0
\(889\) 186.719 1211.21i 0.210033 1.36244i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 578.090i 0.647357i
\(894\) 0 0
\(895\) −10.6612 192.886i −0.0119120 0.215515i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 825.010i 0.917697i
\(900\) 0 0
\(901\) 451.410i 0.501010i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1361.73 + 75.2658i −1.50467 + 0.0831666i
\(906\) 0 0
\(907\) 611.612i 0.674324i −0.941447 0.337162i \(-0.890533\pi\)
0.941447 0.337162i \(-0.109467\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −169.118 −0.185640 −0.0928198 0.995683i \(-0.529588\pi\)
−0.0928198 + 0.995683i \(0.529588\pi\)
\(912\) 0 0
\(913\) −278.172 −0.304679
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −71.9318 + 466.608i −0.0784426 + 0.508842i
\(918\) 0 0
\(919\) 204.249 0.222251 0.111126 0.993806i \(-0.464554\pi\)
0.111126 + 0.993806i \(0.464554\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 848.948 0.919770
\(924\) 0 0
\(925\) 102.615 + 925.436i 0.110935 + 1.00047i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 607.668i 0.654110i −0.945005 0.327055i \(-0.893944\pi\)
0.945005 0.327055i \(-0.106056\pi\)
\(930\) 0 0
\(931\) 482.835 1528.81i 0.518619 1.64212i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.3603 + 368.365i 0.0217758 + 0.393973i
\(936\) 0 0
\(937\) 1226.32 1.30878 0.654389 0.756158i \(-0.272926\pi\)
0.654389 + 0.756158i \(0.272926\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1570.92i 1.66942i −0.550693 0.834708i \(-0.685637\pi\)
0.550693 0.834708i \(-0.314363\pi\)
\(942\) 0 0
\(943\) 1397.18 1.48164
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 845.061i 0.892356i −0.894944 0.446178i \(-0.852785\pi\)
0.894944 0.446178i \(-0.147215\pi\)
\(948\) 0 0
\(949\) −197.216 −0.207814
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 367.141i 0.385248i −0.981273 0.192624i \(-0.938300\pi\)
0.981273 0.192624i \(-0.0616997\pi\)
\(954\) 0 0
\(955\) 5.14904 + 93.1580i 0.00539167 + 0.0975477i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 96.0080 622.786i 0.100113 0.649412i
\(960\) 0 0
\(961\) −994.598 −1.03496
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1038.99 57.4273i 1.07668 0.0595102i
\(966\) 0 0
\(967\) 1013.20i 1.04777i −0.851789 0.523886i \(-0.824482\pi\)
0.851789 0.523886i \(-0.175518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 659.717i 0.679420i −0.940530 0.339710i \(-0.889671\pi\)
0.940530 0.339710i \(-0.110329\pi\)
\(972\) 0 0
\(973\) −87.3092 + 566.358i −0.0897320 + 0.582074i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 867.534i 0.887957i 0.896037 + 0.443978i \(0.146433\pi\)
−0.896037 + 0.443978i \(0.853567\pi\)
\(978\) 0 0
\(979\) 341.674i 0.349003i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1757.82 1.78822 0.894109 0.447849i \(-0.147810\pi\)
0.894109 + 0.447849i \(0.147810\pi\)
\(984\) 0 0
\(985\) −1247.87 + 68.9725i −1.26687 + 0.0700228i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1457.05 −1.47326
\(990\) 0 0
\(991\) 395.645 0.399238 0.199619 0.979874i \(-0.436030\pi\)
0.199619 + 0.979874i \(0.436030\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 425.259 23.5050i 0.427396 0.0236231i
\(996\) 0 0
\(997\) 1605.98 1.61081 0.805406 0.592724i \(-0.201947\pi\)
0.805406 + 0.592724i \(0.201947\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.3.p.e.1189.10 16
3.2 odd 2 420.3.p.a.349.3 16
5.4 even 2 inner 1260.3.p.e.1189.8 16
7.6 odd 2 inner 1260.3.p.e.1189.7 16
12.11 even 2 1680.3.bd.b.769.11 16
15.2 even 4 2100.3.j.g.601.12 16
15.8 even 4 2100.3.j.g.601.5 16
15.14 odd 2 420.3.p.a.349.13 yes 16
21.20 even 2 420.3.p.a.349.14 yes 16
35.34 odd 2 inner 1260.3.p.e.1189.9 16
60.59 even 2 1680.3.bd.b.769.5 16
84.83 odd 2 1680.3.bd.b.769.6 16
105.62 odd 4 2100.3.j.g.601.4 16
105.83 odd 4 2100.3.j.g.601.13 16
105.104 even 2 420.3.p.a.349.4 yes 16
420.419 odd 2 1680.3.bd.b.769.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.3 16 3.2 odd 2
420.3.p.a.349.4 yes 16 105.104 even 2
420.3.p.a.349.13 yes 16 15.14 odd 2
420.3.p.a.349.14 yes 16 21.20 even 2
1260.3.p.e.1189.7 16 7.6 odd 2 inner
1260.3.p.e.1189.8 16 5.4 even 2 inner
1260.3.p.e.1189.9 16 35.34 odd 2 inner
1260.3.p.e.1189.10 16 1.1 even 1 trivial
1680.3.bd.b.769.5 16 60.59 even 2
1680.3.bd.b.769.6 16 84.83 odd 2
1680.3.bd.b.769.11 16 12.11 even 2
1680.3.bd.b.769.12 16 420.419 odd 2
2100.3.j.g.601.4 16 105.62 odd 4
2100.3.j.g.601.5 16 15.8 even 4
2100.3.j.g.601.12 16 15.2 even 4
2100.3.j.g.601.13 16 105.83 odd 4