Properties

Label 2100.3.e.c.449.4
Level $2100$
Weight $3$
Character 2100.449
Analytic conductor $57.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(449,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.4
Character \(\chi\) \(=\) 2100.449
Dual form 2100.3.e.c.449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.86332 + 0.895194i) q^{3} +2.64575i q^{7} +(7.39726 - 5.12646i) q^{9} -3.00338i q^{11} -24.3241i q^{13} +3.60390 q^{17} +16.8805 q^{19} +(-2.36846 - 7.57565i) q^{21} -12.4015 q^{23} +(-16.5916 + 21.3007i) q^{27} -13.5807i q^{29} +5.19503 q^{31} +(2.68860 + 8.59964i) q^{33} +17.7081i q^{37} +(21.7747 + 69.6477i) q^{39} +19.6909i q^{41} -39.7227i q^{43} -72.1833 q^{47} -7.00000 q^{49} +(-10.3191 + 3.22619i) q^{51} -14.4407 q^{53} +(-48.3343 + 15.1113i) q^{57} +74.4914i q^{59} +66.1551 q^{61} +(13.5633 + 19.5713i) q^{63} +47.8138i q^{67} +(35.5094 - 11.1017i) q^{69} +46.8183i q^{71} -42.2852i q^{73} +7.94619 q^{77} -3.12717 q^{79} +(28.4388 - 75.8435i) q^{81} -98.3606 q^{83} +(12.1574 + 38.8860i) q^{87} -154.840i q^{89} +64.3554 q^{91} +(-14.8751 + 4.65056i) q^{93} +92.3775i q^{97} +(-15.3967 - 22.2168i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{9} - 96 q^{19} - 28 q^{21} + 48 q^{31} + 108 q^{39} - 224 q^{49} - 372 q^{51} - 304 q^{61} + 392 q^{69} - 424 q^{79} - 236 q^{81} + 392 q^{91} - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.86332 + 0.895194i −0.954442 + 0.298398i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) 7.39726 5.12646i 0.821917 0.569607i
\(10\) 0 0
\(11\) 3.00338i 0.273034i −0.990638 0.136517i \(-0.956409\pi\)
0.990638 0.136517i \(-0.0435909\pi\)
\(12\) 0 0
\(13\) 24.3241i 1.87108i −0.353220 0.935540i \(-0.614913\pi\)
0.353220 0.935540i \(-0.385087\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.60390 0.211994 0.105997 0.994366i \(-0.466197\pi\)
0.105997 + 0.994366i \(0.466197\pi\)
\(18\) 0 0
\(19\) 16.8805 0.888447 0.444223 0.895916i \(-0.353480\pi\)
0.444223 + 0.895916i \(0.353480\pi\)
\(20\) 0 0
\(21\) −2.36846 7.57565i −0.112784 0.360745i
\(22\) 0 0
\(23\) −12.4015 −0.539194 −0.269597 0.962973i \(-0.586890\pi\)
−0.269597 + 0.962973i \(0.586890\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −16.5916 + 21.3007i −0.614503 + 0.788915i
\(28\) 0 0
\(29\) 13.5807i 0.468301i −0.972200 0.234150i \(-0.924769\pi\)
0.972200 0.234150i \(-0.0752308\pi\)
\(30\) 0 0
\(31\) 5.19503 0.167582 0.0837908 0.996483i \(-0.473297\pi\)
0.0837908 + 0.996483i \(0.473297\pi\)
\(32\) 0 0
\(33\) 2.68860 + 8.59964i 0.0814729 + 0.260595i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 17.7081i 0.478598i 0.970946 + 0.239299i \(0.0769177\pi\)
−0.970946 + 0.239299i \(0.923082\pi\)
\(38\) 0 0
\(39\) 21.7747 + 69.6477i 0.558327 + 1.78584i
\(40\) 0 0
\(41\) 19.6909i 0.480267i 0.970740 + 0.240133i \(0.0771912\pi\)
−0.970740 + 0.240133i \(0.922809\pi\)
\(42\) 0 0
\(43\) 39.7227i 0.923783i −0.886937 0.461891i \(-0.847171\pi\)
0.886937 0.461891i \(-0.152829\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −72.1833 −1.53582 −0.767908 0.640561i \(-0.778702\pi\)
−0.767908 + 0.640561i \(0.778702\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) −10.3191 + 3.22619i −0.202336 + 0.0632587i
\(52\) 0 0
\(53\) −14.4407 −0.272467 −0.136233 0.990677i \(-0.543500\pi\)
−0.136233 + 0.990677i \(0.543500\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −48.3343 + 15.1113i −0.847971 + 0.265111i
\(58\) 0 0
\(59\) 74.4914i 1.26257i 0.775552 + 0.631283i \(0.217471\pi\)
−0.775552 + 0.631283i \(0.782529\pi\)
\(60\) 0 0
\(61\) 66.1551 1.08451 0.542255 0.840214i \(-0.317571\pi\)
0.542255 + 0.840214i \(0.317571\pi\)
\(62\) 0 0
\(63\) 13.5633 + 19.5713i 0.215291 + 0.310656i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 47.8138i 0.713639i 0.934173 + 0.356820i \(0.116139\pi\)
−0.934173 + 0.356820i \(0.883861\pi\)
\(68\) 0 0
\(69\) 35.5094 11.1017i 0.514629 0.160894i
\(70\) 0 0
\(71\) 46.8183i 0.659413i 0.944083 + 0.329707i \(0.106950\pi\)
−0.944083 + 0.329707i \(0.893050\pi\)
\(72\) 0 0
\(73\) 42.2852i 0.579249i −0.957140 0.289624i \(-0.906470\pi\)
0.957140 0.289624i \(-0.0935304\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.94619 0.103197
\(78\) 0 0
\(79\) −3.12717 −0.0395844 −0.0197922 0.999804i \(-0.506300\pi\)
−0.0197922 + 0.999804i \(0.506300\pi\)
\(80\) 0 0
\(81\) 28.4388 75.8435i 0.351097 0.936339i
\(82\) 0 0
\(83\) −98.3606 −1.18507 −0.592534 0.805545i \(-0.701872\pi\)
−0.592534 + 0.805545i \(0.701872\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12.1574 + 38.8860i 0.139740 + 0.446966i
\(88\) 0 0
\(89\) 154.840i 1.73977i −0.493255 0.869885i \(-0.664193\pi\)
0.493255 0.869885i \(-0.335807\pi\)
\(90\) 0 0
\(91\) 64.3554 0.707202
\(92\) 0 0
\(93\) −14.8751 + 4.65056i −0.159947 + 0.0500060i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 92.3775i 0.952346i 0.879352 + 0.476173i \(0.157976\pi\)
−0.879352 + 0.476173i \(0.842024\pi\)
\(98\) 0 0
\(99\) −15.3967 22.2168i −0.155522 0.224412i
\(100\) 0 0
\(101\) 94.4792i 0.935438i −0.883877 0.467719i \(-0.845076\pi\)
0.883877 0.467719i \(-0.154924\pi\)
\(102\) 0 0
\(103\) 23.8293i 0.231352i 0.993287 + 0.115676i \(0.0369034\pi\)
−0.993287 + 0.115676i \(0.963097\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 150.037 1.40221 0.701107 0.713056i \(-0.252690\pi\)
0.701107 + 0.713056i \(0.252690\pi\)
\(108\) 0 0
\(109\) −161.310 −1.47991 −0.739953 0.672658i \(-0.765152\pi\)
−0.739953 + 0.672658i \(0.765152\pi\)
\(110\) 0 0
\(111\) −15.8522 50.7042i −0.142813 0.456794i
\(112\) 0 0
\(113\) −200.957 −1.77838 −0.889190 0.457538i \(-0.848731\pi\)
−0.889190 + 0.457538i \(0.848731\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −124.696 179.931i −1.06578 1.53787i
\(118\) 0 0
\(119\) 9.53503i 0.0801263i
\(120\) 0 0
\(121\) 111.980 0.925452
\(122\) 0 0
\(123\) −17.6272 56.3815i −0.143311 0.458387i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 89.2829i 0.703015i −0.936185 0.351507i \(-0.885669\pi\)
0.936185 0.351507i \(-0.114331\pi\)
\(128\) 0 0
\(129\) 35.5595 + 113.739i 0.275655 + 0.881697i
\(130\) 0 0
\(131\) 133.670i 1.02038i −0.860061 0.510191i \(-0.829575\pi\)
0.860061 0.510191i \(-0.170425\pi\)
\(132\) 0 0
\(133\) 44.6616i 0.335801i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 51.8272 0.378301 0.189150 0.981948i \(-0.439427\pi\)
0.189150 + 0.981948i \(0.439427\pi\)
\(138\) 0 0
\(139\) 190.393 1.36973 0.684866 0.728669i \(-0.259861\pi\)
0.684866 + 0.728669i \(0.259861\pi\)
\(140\) 0 0
\(141\) 206.684 64.6180i 1.46585 0.458284i
\(142\) 0 0
\(143\) −73.0543 −0.510869
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 20.0433 6.26636i 0.136349 0.0426283i
\(148\) 0 0
\(149\) 7.21233i 0.0484049i 0.999707 + 0.0242024i \(0.00770463\pi\)
−0.999707 + 0.0242024i \(0.992295\pi\)
\(150\) 0 0
\(151\) −113.626 −0.752491 −0.376245 0.926520i \(-0.622785\pi\)
−0.376245 + 0.926520i \(0.622785\pi\)
\(152\) 0 0
\(153\) 26.6590 18.4753i 0.174242 0.120753i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 204.211i 1.30071i −0.759630 0.650355i \(-0.774620\pi\)
0.759630 0.650355i \(-0.225380\pi\)
\(158\) 0 0
\(159\) 41.3485 12.9272i 0.260053 0.0813034i
\(160\) 0 0
\(161\) 32.8112i 0.203796i
\(162\) 0 0
\(163\) 77.2206i 0.473746i 0.971541 + 0.236873i \(0.0761225\pi\)
−0.971541 + 0.236873i \(0.923877\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −284.381 −1.70288 −0.851439 0.524454i \(-0.824269\pi\)
−0.851439 + 0.524454i \(0.824269\pi\)
\(168\) 0 0
\(169\) −422.659 −2.50094
\(170\) 0 0
\(171\) 124.869 86.5372i 0.730230 0.506065i
\(172\) 0 0
\(173\) −267.316 −1.54518 −0.772590 0.634905i \(-0.781039\pi\)
−0.772590 + 0.634905i \(0.781039\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −66.6842 213.293i −0.376747 1.20505i
\(178\) 0 0
\(179\) 23.3604i 0.130505i −0.997869 0.0652525i \(-0.979215\pi\)
0.997869 0.0652525i \(-0.0207853\pi\)
\(180\) 0 0
\(181\) −119.639 −0.660987 −0.330494 0.943808i \(-0.607215\pi\)
−0.330494 + 0.943808i \(0.607215\pi\)
\(182\) 0 0
\(183\) −189.424 + 59.2217i −1.03510 + 0.323616i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.8239i 0.0578817i
\(188\) 0 0
\(189\) −56.3563 43.8972i −0.298182 0.232260i
\(190\) 0 0
\(191\) 76.1540i 0.398712i 0.979927 + 0.199356i \(0.0638850\pi\)
−0.979927 + 0.199356i \(0.936115\pi\)
\(192\) 0 0
\(193\) 116.189i 0.602015i −0.953622 0.301007i \(-0.902677\pi\)
0.953622 0.301007i \(-0.0973229\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −247.485 −1.25627 −0.628134 0.778105i \(-0.716181\pi\)
−0.628134 + 0.778105i \(0.716181\pi\)
\(198\) 0 0
\(199\) 43.5013 0.218599 0.109300 0.994009i \(-0.465139\pi\)
0.109300 + 0.994009i \(0.465139\pi\)
\(200\) 0 0
\(201\) −42.8026 136.906i −0.212948 0.681127i
\(202\) 0 0
\(203\) 35.9312 0.177001
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −91.7368 + 63.5756i −0.443173 + 0.307128i
\(208\) 0 0
\(209\) 50.6985i 0.242576i
\(210\) 0 0
\(211\) −283.206 −1.34221 −0.671104 0.741363i \(-0.734180\pi\)
−0.671104 + 0.741363i \(0.734180\pi\)
\(212\) 0 0
\(213\) −41.9115 134.056i −0.196767 0.629371i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 13.7448i 0.0633399i
\(218\) 0 0
\(219\) 37.8534 + 121.076i 0.172847 + 0.552859i
\(220\) 0 0
\(221\) 87.6615i 0.396659i
\(222\) 0 0
\(223\) 288.852i 1.29530i −0.761937 0.647651i \(-0.775751\pi\)
0.761937 0.647651i \(-0.224249\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 333.944 1.47112 0.735559 0.677460i \(-0.236920\pi\)
0.735559 + 0.677460i \(0.236920\pi\)
\(228\) 0 0
\(229\) 11.1825 0.0488318 0.0244159 0.999702i \(-0.492227\pi\)
0.0244159 + 0.999702i \(0.492227\pi\)
\(230\) 0 0
\(231\) −22.7525 + 7.11338i −0.0984958 + 0.0307938i
\(232\) 0 0
\(233\) −249.339 −1.07012 −0.535062 0.844813i \(-0.679712\pi\)
−0.535062 + 0.844813i \(0.679712\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.95410 2.79942i 0.0377810 0.0118119i
\(238\) 0 0
\(239\) 144.066i 0.602786i 0.953500 + 0.301393i \(0.0974516\pi\)
−0.953500 + 0.301393i \(0.902548\pi\)
\(240\) 0 0
\(241\) −347.745 −1.44292 −0.721462 0.692454i \(-0.756530\pi\)
−0.721462 + 0.692454i \(0.756530\pi\)
\(242\) 0 0
\(243\) −13.5350 + 242.623i −0.0556995 + 0.998448i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 410.602i 1.66236i
\(248\) 0 0
\(249\) 281.638 88.0518i 1.13108 0.353622i
\(250\) 0 0
\(251\) 453.378i 1.80629i −0.429339 0.903143i \(-0.641253\pi\)
0.429339 0.903143i \(-0.358747\pi\)
\(252\) 0 0
\(253\) 37.2463i 0.147218i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 422.789 1.64509 0.822547 0.568697i \(-0.192552\pi\)
0.822547 + 0.568697i \(0.192552\pi\)
\(258\) 0 0
\(259\) −46.8513 −0.180893
\(260\) 0 0
\(261\) −69.6211 100.460i −0.266747 0.384905i
\(262\) 0 0
\(263\) −375.524 −1.42785 −0.713924 0.700223i \(-0.753084\pi\)
−0.713924 + 0.700223i \(0.753084\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 138.611 + 443.356i 0.519144 + 1.66051i
\(268\) 0 0
\(269\) 1.41316i 0.00525338i 0.999997 + 0.00262669i \(0.000836103\pi\)
−0.999997 + 0.00262669i \(0.999164\pi\)
\(270\) 0 0
\(271\) 226.054 0.834146 0.417073 0.908873i \(-0.363056\pi\)
0.417073 + 0.908873i \(0.363056\pi\)
\(272\) 0 0
\(273\) −184.270 + 57.6105i −0.674983 + 0.211028i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 355.341i 1.28282i 0.767198 + 0.641410i \(0.221650\pi\)
−0.767198 + 0.641410i \(0.778350\pi\)
\(278\) 0 0
\(279\) 38.4290 26.6321i 0.137738 0.0954556i
\(280\) 0 0
\(281\) 195.986i 0.697458i −0.937224 0.348729i \(-0.886613\pi\)
0.937224 0.348729i \(-0.113387\pi\)
\(282\) 0 0
\(283\) 485.087i 1.71409i −0.515244 0.857044i \(-0.672299\pi\)
0.515244 0.857044i \(-0.327701\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −52.0973 −0.181524
\(288\) 0 0
\(289\) −276.012 −0.955058
\(290\) 0 0
\(291\) −82.6958 264.507i −0.284178 0.908958i
\(292\) 0 0
\(293\) 378.468 1.29170 0.645849 0.763465i \(-0.276503\pi\)
0.645849 + 0.763465i \(0.276503\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 63.9740 + 49.8308i 0.215401 + 0.167780i
\(298\) 0 0
\(299\) 301.654i 1.00888i
\(300\) 0 0
\(301\) 105.096 0.349157
\(302\) 0 0
\(303\) 84.5772 + 270.525i 0.279133 + 0.892821i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 573.684i 1.86868i 0.356385 + 0.934339i \(0.384009\pi\)
−0.356385 + 0.934339i \(0.615991\pi\)
\(308\) 0 0
\(309\) −21.3318 68.2309i −0.0690349 0.220812i
\(310\) 0 0
\(311\) 441.918i 1.42096i −0.703718 0.710479i \(-0.748478\pi\)
0.703718 0.710479i \(-0.251522\pi\)
\(312\) 0 0
\(313\) 378.973i 1.21078i −0.795930 0.605388i \(-0.793018\pi\)
0.795930 0.605388i \(-0.206982\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −588.177 −1.85545 −0.927724 0.373266i \(-0.878238\pi\)
−0.927724 + 0.373266i \(0.878238\pi\)
\(318\) 0 0
\(319\) −40.7881 −0.127862
\(320\) 0 0
\(321\) −429.604 + 134.312i −1.33833 + 0.418418i
\(322\) 0 0
\(323\) 60.8357 0.188346
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 461.882 144.404i 1.41248 0.441601i
\(328\) 0 0
\(329\) 190.979i 0.580484i
\(330\) 0 0
\(331\) 205.546 0.620984 0.310492 0.950576i \(-0.399506\pi\)
0.310492 + 0.950576i \(0.399506\pi\)
\(332\) 0 0
\(333\) 90.7801 + 130.992i 0.272613 + 0.393368i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 456.465i 1.35450i −0.735755 0.677248i \(-0.763172\pi\)
0.735755 0.677248i \(-0.236828\pi\)
\(338\) 0 0
\(339\) 575.405 179.895i 1.69736 0.530665i
\(340\) 0 0
\(341\) 15.6026i 0.0457555i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −302.625 −0.872118 −0.436059 0.899918i \(-0.643626\pi\)
−0.436059 + 0.899918i \(0.643626\pi\)
\(348\) 0 0
\(349\) −19.9121 −0.0570549 −0.0285274 0.999593i \(-0.509082\pi\)
−0.0285274 + 0.999593i \(0.509082\pi\)
\(350\) 0 0
\(351\) 518.119 + 403.574i 1.47612 + 1.14978i
\(352\) 0 0
\(353\) 219.478 0.621750 0.310875 0.950451i \(-0.399378\pi\)
0.310875 + 0.950451i \(0.399378\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −8.53570 27.3019i −0.0239095 0.0764759i
\(358\) 0 0
\(359\) 309.375i 0.861770i 0.902407 + 0.430885i \(0.141799\pi\)
−0.902407 + 0.430885i \(0.858201\pi\)
\(360\) 0 0
\(361\) −76.0491 −0.210662
\(362\) 0 0
\(363\) −320.634 + 100.244i −0.883290 + 0.276153i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 516.947i 1.40857i −0.709915 0.704287i \(-0.751267\pi\)
0.709915 0.704287i \(-0.248733\pi\)
\(368\) 0 0
\(369\) 100.945 + 145.659i 0.273563 + 0.394740i
\(370\) 0 0
\(371\) 38.2066i 0.102983i
\(372\) 0 0
\(373\) 417.787i 1.12007i −0.828468 0.560037i \(-0.810787\pi\)
0.828468 0.560037i \(-0.189213\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −330.338 −0.876229
\(378\) 0 0
\(379\) −468.822 −1.23700 −0.618499 0.785786i \(-0.712259\pi\)
−0.618499 + 0.785786i \(0.712259\pi\)
\(380\) 0 0
\(381\) 79.9255 + 255.646i 0.209778 + 0.670987i
\(382\) 0 0
\(383\) 260.516 0.680198 0.340099 0.940390i \(-0.389539\pi\)
0.340099 + 0.940390i \(0.389539\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −203.637 293.839i −0.526193 0.759273i
\(388\) 0 0
\(389\) 724.894i 1.86348i −0.363125 0.931740i \(-0.618290\pi\)
0.363125 0.931740i \(-0.381710\pi\)
\(390\) 0 0
\(391\) −44.6937 −0.114306
\(392\) 0 0
\(393\) 119.661 + 382.741i 0.304480 + 0.973895i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 394.446i 0.993567i 0.867874 + 0.496784i \(0.165486\pi\)
−0.867874 + 0.496784i \(0.834514\pi\)
\(398\) 0 0
\(399\) −39.9808 127.881i −0.100202 0.320503i
\(400\) 0 0
\(401\) 340.136i 0.848219i 0.905611 + 0.424110i \(0.139413\pi\)
−0.905611 + 0.424110i \(0.860587\pi\)
\(402\) 0 0
\(403\) 126.364i 0.313559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 53.1842 0.130674
\(408\) 0 0
\(409\) 646.306 1.58021 0.790105 0.612971i \(-0.210026\pi\)
0.790105 + 0.612971i \(0.210026\pi\)
\(410\) 0 0
\(411\) −148.398 + 46.3954i −0.361066 + 0.112884i
\(412\) 0 0
\(413\) −197.086 −0.477205
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −545.157 + 170.438i −1.30733 + 0.408725i
\(418\) 0 0
\(419\) 774.244i 1.84784i 0.382590 + 0.923918i \(0.375032\pi\)
−0.382590 + 0.923918i \(0.624968\pi\)
\(420\) 0 0
\(421\) 77.6930 0.184544 0.0922719 0.995734i \(-0.470587\pi\)
0.0922719 + 0.995734i \(0.470587\pi\)
\(422\) 0 0
\(423\) −533.959 + 370.045i −1.26231 + 0.874811i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 175.030i 0.409906i
\(428\) 0 0
\(429\) 209.178 65.3977i 0.487595 0.152442i
\(430\) 0 0
\(431\) 301.177i 0.698787i 0.936976 + 0.349394i \(0.113612\pi\)
−0.936976 + 0.349394i \(0.886388\pi\)
\(432\) 0 0
\(433\) 98.3440i 0.227123i −0.993531 0.113561i \(-0.963774\pi\)
0.993531 0.113561i \(-0.0362258\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −209.343 −0.479045
\(438\) 0 0
\(439\) −525.993 −1.19816 −0.599081 0.800688i \(-0.704467\pi\)
−0.599081 + 0.800688i \(0.704467\pi\)
\(440\) 0 0
\(441\) −51.7808 + 35.8852i −0.117417 + 0.0813724i
\(442\) 0 0
\(443\) 547.933 1.23687 0.618434 0.785837i \(-0.287767\pi\)
0.618434 + 0.785837i \(0.287767\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.45643 20.6512i −0.0144439 0.0461996i
\(448\) 0 0
\(449\) 302.192i 0.673033i −0.941678 0.336517i \(-0.890751\pi\)
0.941678 0.336517i \(-0.109249\pi\)
\(450\) 0 0
\(451\) 59.1393 0.131129
\(452\) 0 0
\(453\) 325.348 101.717i 0.718208 0.224542i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 202.530i 0.443172i −0.975141 0.221586i \(-0.928877\pi\)
0.975141 0.221586i \(-0.0711234\pi\)
\(458\) 0 0
\(459\) −59.7944 + 76.7657i −0.130271 + 0.167245i
\(460\) 0 0
\(461\) 850.540i 1.84499i 0.386010 + 0.922495i \(0.373853\pi\)
−0.386010 + 0.922495i \(0.626147\pi\)
\(462\) 0 0
\(463\) 371.502i 0.802380i 0.915995 + 0.401190i \(0.131403\pi\)
−0.915995 + 0.401190i \(0.868597\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 571.243 1.22322 0.611609 0.791160i \(-0.290523\pi\)
0.611609 + 0.791160i \(0.290523\pi\)
\(468\) 0 0
\(469\) −126.503 −0.269730
\(470\) 0 0
\(471\) 182.809 + 584.724i 0.388129 + 1.24145i
\(472\) 0 0
\(473\) −119.302 −0.252224
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −106.822 + 74.0298i −0.223945 + 0.155199i
\(478\) 0 0
\(479\) 433.086i 0.904145i 0.891981 + 0.452073i \(0.149315\pi\)
−0.891981 + 0.452073i \(0.850685\pi\)
\(480\) 0 0
\(481\) 430.734 0.895496
\(482\) 0 0
\(483\) 29.3723 + 93.9490i 0.0608123 + 0.194511i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 319.390i 0.655831i 0.944707 + 0.327916i \(0.106346\pi\)
−0.944707 + 0.327916i \(0.893654\pi\)
\(488\) 0 0
\(489\) −69.1274 221.108i −0.141365 0.452163i
\(490\) 0 0
\(491\) 106.542i 0.216989i 0.994097 + 0.108495i \(0.0346031\pi\)
−0.994097 + 0.108495i \(0.965397\pi\)
\(492\) 0 0
\(493\) 48.9436i 0.0992772i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −123.870 −0.249235
\(498\) 0 0
\(499\) −189.829 −0.380420 −0.190210 0.981743i \(-0.560917\pi\)
−0.190210 + 0.981743i \(0.560917\pi\)
\(500\) 0 0
\(501\) 814.274 254.576i 1.62530 0.508135i
\(502\) 0 0
\(503\) 18.3298 0.0364410 0.0182205 0.999834i \(-0.494200\pi\)
0.0182205 + 0.999834i \(0.494200\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1210.21 378.362i 2.38700 0.746276i
\(508\) 0 0
\(509\) 102.736i 0.201839i −0.994895 0.100920i \(-0.967821\pi\)
0.994895 0.100920i \(-0.0321785\pi\)
\(510\) 0 0
\(511\) 111.876 0.218936
\(512\) 0 0
\(513\) −280.074 + 359.566i −0.545953 + 0.700909i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 216.794i 0.419330i
\(518\) 0 0
\(519\) 765.413 239.300i 1.47478 0.461079i
\(520\) 0 0
\(521\) 341.510i 0.655489i −0.944766 0.327744i \(-0.893711\pi\)
0.944766 0.327744i \(-0.106289\pi\)
\(522\) 0 0
\(523\) 400.488i 0.765751i 0.923800 + 0.382875i \(0.125066\pi\)
−0.923800 + 0.382875i \(0.874934\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.7224 0.0355264
\(528\) 0 0
\(529\) −375.204 −0.709270
\(530\) 0 0
\(531\) 381.877 + 551.032i 0.719166 + 1.03773i
\(532\) 0 0
\(533\) 478.963 0.898618
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 20.9121 + 66.8884i 0.0389424 + 0.124559i
\(538\) 0 0
\(539\) 21.0236i 0.0390049i
\(540\) 0 0
\(541\) −516.907 −0.955465 −0.477733 0.878505i \(-0.658541\pi\)
−0.477733 + 0.878505i \(0.658541\pi\)
\(542\) 0 0
\(543\) 342.564 107.100i 0.630874 0.197237i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 725.077i 1.32555i 0.748818 + 0.662776i \(0.230622\pi\)
−0.748818 + 0.662776i \(0.769378\pi\)
\(548\) 0 0
\(549\) 489.367 339.142i 0.891378 0.617744i
\(550\) 0 0
\(551\) 229.249i 0.416060i
\(552\) 0 0
\(553\) 8.27371i 0.0149615i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 741.121 1.33056 0.665279 0.746595i \(-0.268313\pi\)
0.665279 + 0.746595i \(0.268313\pi\)
\(558\) 0 0
\(559\) −966.216 −1.72847
\(560\) 0 0
\(561\) 9.68947 + 30.9923i 0.0172718 + 0.0552447i
\(562\) 0 0
\(563\) 926.643 1.64590 0.822951 0.568112i \(-0.192326\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 200.663 + 75.2420i 0.353903 + 0.132702i
\(568\) 0 0
\(569\) 116.739i 0.205166i 0.994724 + 0.102583i \(0.0327107\pi\)
−0.994724 + 0.102583i \(0.967289\pi\)
\(570\) 0 0
\(571\) −202.431 −0.354520 −0.177260 0.984164i \(-0.556723\pi\)
−0.177260 + 0.984164i \(0.556723\pi\)
\(572\) 0 0
\(573\) −68.1726 218.054i −0.118975 0.380547i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 82.6440i 0.143230i 0.997432 + 0.0716152i \(0.0228154\pi\)
−0.997432 + 0.0716152i \(0.977185\pi\)
\(578\) 0 0
\(579\) 104.012 + 332.686i 0.179640 + 0.574588i
\(580\) 0 0
\(581\) 260.238i 0.447914i
\(582\) 0 0
\(583\) 43.3710i 0.0743927i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −108.578 −0.184970 −0.0924851 0.995714i \(-0.529481\pi\)
−0.0924851 + 0.995714i \(0.529481\pi\)
\(588\) 0 0
\(589\) 87.6947 0.148887
\(590\) 0 0
\(591\) 708.630 221.547i 1.19903 0.374868i
\(592\) 0 0
\(593\) −395.830 −0.667504 −0.333752 0.942661i \(-0.608315\pi\)
−0.333752 + 0.942661i \(0.608315\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −124.558 + 38.9420i −0.208640 + 0.0652296i
\(598\) 0 0
\(599\) 59.2409i 0.0988996i −0.998777 0.0494498i \(-0.984253\pi\)
0.998777 0.0494498i \(-0.0157468\pi\)
\(600\) 0 0
\(601\) −350.659 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(602\) 0 0
\(603\) 245.116 + 353.691i 0.406494 + 0.586552i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 319.382i 0.526164i −0.964773 0.263082i \(-0.915261\pi\)
0.964773 0.263082i \(-0.0847390\pi\)
\(608\) 0 0
\(609\) −102.883 + 32.1654i −0.168937 + 0.0528168i
\(610\) 0 0
\(611\) 1755.79i 2.87363i
\(612\) 0 0
\(613\) 423.614i 0.691051i 0.938409 + 0.345525i \(0.112299\pi\)
−0.938409 + 0.345525i \(0.887701\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −986.842 −1.59942 −0.799710 0.600386i \(-0.795014\pi\)
−0.799710 + 0.600386i \(0.795014\pi\)
\(618\) 0 0
\(619\) −857.133 −1.38471 −0.692353 0.721559i \(-0.743426\pi\)
−0.692353 + 0.721559i \(0.743426\pi\)
\(620\) 0 0
\(621\) 205.760 264.160i 0.331336 0.425378i
\(622\) 0 0
\(623\) 409.667 0.657571
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 45.3850 + 145.166i 0.0723843 + 0.231525i
\(628\) 0 0
\(629\) 63.8184i 0.101460i
\(630\) 0 0
\(631\) −320.357 −0.507697 −0.253848 0.967244i \(-0.581696\pi\)
−0.253848 + 0.967244i \(0.581696\pi\)
\(632\) 0 0
\(633\) 810.911 253.524i 1.28106 0.400512i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 170.268i 0.267297i
\(638\) 0 0
\(639\) 240.012 + 346.327i 0.375606 + 0.541983i
\(640\) 0 0
\(641\) 280.940i 0.438284i 0.975693 + 0.219142i \(0.0703259\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(642\) 0 0
\(643\) 206.903i 0.321777i 0.986973 + 0.160889i \(0.0514360\pi\)
−0.986973 + 0.160889i \(0.948564\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 907.218 1.40219 0.701096 0.713067i \(-0.252694\pi\)
0.701096 + 0.713067i \(0.252694\pi\)
\(648\) 0 0
\(649\) 223.726 0.344724
\(650\) 0 0
\(651\) −12.3042 39.3557i −0.0189005 0.0604542i
\(652\) 0 0
\(653\) 93.6270 0.143380 0.0716899 0.997427i \(-0.477161\pi\)
0.0716899 + 0.997427i \(0.477161\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −216.773 312.794i −0.329944 0.476095i
\(658\) 0 0
\(659\) 223.298i 0.338844i −0.985544 0.169422i \(-0.945810\pi\)
0.985544 0.169422i \(-0.0541900\pi\)
\(660\) 0 0
\(661\) −409.255 −0.619145 −0.309572 0.950876i \(-0.600186\pi\)
−0.309572 + 0.950876i \(0.600186\pi\)
\(662\) 0 0
\(663\) 78.4741 + 251.003i 0.118362 + 0.378587i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 168.421i 0.252505i
\(668\) 0 0
\(669\) 258.579 + 827.078i 0.386515 + 1.23629i
\(670\) 0 0
\(671\) 198.689i 0.296109i
\(672\) 0 0
\(673\) 256.438i 0.381037i −0.981684 0.190519i \(-0.938983\pi\)
0.981684 0.190519i \(-0.0610170\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −186.843 −0.275986 −0.137993 0.990433i \(-0.544065\pi\)
−0.137993 + 0.990433i \(0.544065\pi\)
\(678\) 0 0
\(679\) −244.408 −0.359953
\(680\) 0 0
\(681\) −956.190 + 298.944i −1.40410 + 0.438979i
\(682\) 0 0
\(683\) 639.899 0.936895 0.468447 0.883491i \(-0.344814\pi\)
0.468447 + 0.883491i \(0.344814\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −32.0191 + 10.0105i −0.0466071 + 0.0145713i
\(688\) 0 0
\(689\) 351.257i 0.509807i
\(690\) 0 0
\(691\) −784.721 −1.13563 −0.567815 0.823156i \(-0.692211\pi\)
−0.567815 + 0.823156i \(0.692211\pi\)
\(692\) 0 0
\(693\) 58.7800 40.7358i 0.0848196 0.0587819i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 70.9642i 0.101814i
\(698\) 0 0
\(699\) 713.938 223.206i 1.02137 0.319322i
\(700\) 0 0
\(701\) 743.171i 1.06016i 0.847948 + 0.530079i \(0.177838\pi\)
−0.847948 + 0.530079i \(0.822162\pi\)
\(702\) 0 0
\(703\) 298.922i 0.425209i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 249.968 0.353562
\(708\) 0 0
\(709\) 742.471 1.04721 0.523605 0.851961i \(-0.324587\pi\)
0.523605 + 0.851961i \(0.324587\pi\)
\(710\) 0 0
\(711\) −23.1325 + 16.0313i −0.0325351 + 0.0225475i
\(712\) 0 0
\(713\) −64.4259 −0.0903590
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −128.967 412.507i −0.179870 0.575324i
\(718\) 0 0
\(719\) 1075.69i 1.49609i −0.663648 0.748045i \(-0.730993\pi\)
0.663648 0.748045i \(-0.269007\pi\)
\(720\) 0 0
\(721\) −63.0463 −0.0874428
\(722\) 0 0
\(723\) 995.706 311.299i 1.37719 0.430565i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 276.007i 0.379652i −0.981818 0.189826i \(-0.939208\pi\)
0.981818 0.189826i \(-0.0607924\pi\)
\(728\) 0 0
\(729\) −178.439 706.824i −0.244773 0.969580i
\(730\) 0 0
\(731\) 143.157i 0.195837i
\(732\) 0 0
\(733\) 1323.23i 1.80523i −0.430448 0.902616i \(-0.641644\pi\)
0.430448 0.902616i \(-0.358356\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 143.603 0.194848
\(738\) 0 0
\(739\) −11.1722 −0.0151181 −0.00755903 0.999971i \(-0.502406\pi\)
−0.00755903 + 0.999971i \(0.502406\pi\)
\(740\) 0 0
\(741\) 367.568 + 1175.69i 0.496043 + 1.58662i
\(742\) 0 0
\(743\) 532.660 0.716904 0.358452 0.933548i \(-0.383305\pi\)
0.358452 + 0.933548i \(0.383305\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −727.599 + 504.242i −0.974028 + 0.675023i
\(748\) 0 0
\(749\) 396.960i 0.529987i
\(750\) 0 0
\(751\) −843.951 −1.12377 −0.561885 0.827215i \(-0.689924\pi\)
−0.561885 + 0.827215i \(0.689924\pi\)
\(752\) 0 0
\(753\) 405.861 + 1298.17i 0.538992 + 1.72400i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 303.221i 0.400556i 0.979739 + 0.200278i \(0.0641846\pi\)
−0.979739 + 0.200278i \(0.935815\pi\)
\(758\) 0 0
\(759\) −33.3426 106.648i −0.0439297 0.140511i
\(760\) 0 0
\(761\) 115.096i 0.151243i −0.997137 0.0756215i \(-0.975906\pi\)
0.997137 0.0756215i \(-0.0240941\pi\)
\(762\) 0 0
\(763\) 426.786i 0.559352i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1811.93 2.36236
\(768\) 0 0
\(769\) −801.344 −1.04206 −0.521030 0.853538i \(-0.674452\pi\)
−0.521030 + 0.853538i \(0.674452\pi\)
\(770\) 0 0
\(771\) −1210.58 + 378.478i −1.57015 + 0.490893i
\(772\) 0 0
\(773\) 94.0269 0.121639 0.0608194 0.998149i \(-0.480629\pi\)
0.0608194 + 0.998149i \(0.480629\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 134.151 41.9410i 0.172652 0.0539781i
\(778\) 0 0
\(779\) 332.393i 0.426691i
\(780\) 0 0
\(781\) 140.613 0.180042
\(782\) 0 0
\(783\) 289.279 + 225.326i 0.369450 + 0.287772i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 114.020i 0.144880i 0.997373 + 0.0724398i \(0.0230785\pi\)
−0.997373 + 0.0724398i \(0.976921\pi\)
\(788\) 0 0
\(789\) 1075.25 336.167i 1.36280 0.426067i
\(790\) 0 0
\(791\) 531.682i 0.672165i
\(792\) 0 0
\(793\) 1609.16i 2.02921i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −879.789 −1.10388 −0.551938 0.833885i \(-0.686111\pi\)
−0.551938 + 0.833885i \(0.686111\pi\)
\(798\) 0 0
\(799\) −260.142 −0.325584
\(800\) 0 0
\(801\) −793.779 1145.39i −0.990984 1.42995i
\(802\) 0 0
\(803\) −126.998 −0.158155
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.26505 4.04634i −0.00156760 0.00501405i
\(808\) 0 0
\(809\) 1429.94i 1.76753i −0.467927 0.883767i \(-0.654999\pi\)
0.467927 0.883767i \(-0.345001\pi\)
\(810\) 0 0
\(811\) −1369.69 −1.68889 −0.844445 0.535643i \(-0.820069\pi\)
−0.844445 + 0.535643i \(0.820069\pi\)
\(812\) 0 0
\(813\) −647.265 + 202.362i −0.796144 + 0.248907i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 670.538i 0.820732i
\(818\) 0 0
\(819\) 476.053 329.915i 0.581262 0.402827i
\(820\) 0 0
\(821\) 1221.52i 1.48785i 0.668265 + 0.743923i \(0.267037\pi\)
−0.668265 + 0.743923i \(0.732963\pi\)
\(822\) 0 0
\(823\) 223.454i 0.271512i −0.990742 0.135756i \(-0.956654\pi\)
0.990742 0.135756i \(-0.0433463\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −150.303 −0.181744 −0.0908722 0.995863i \(-0.528965\pi\)
−0.0908722 + 0.995863i \(0.528965\pi\)
\(828\) 0 0
\(829\) 994.512 1.19965 0.599826 0.800130i \(-0.295236\pi\)
0.599826 + 0.800130i \(0.295236\pi\)
\(830\) 0 0
\(831\) −318.099 1017.46i −0.382791 1.22438i
\(832\) 0 0
\(833\) −25.2273 −0.0302849
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −86.1937 + 110.658i −0.102979 + 0.132208i
\(838\) 0 0
\(839\) 582.305i 0.694047i −0.937857 0.347023i \(-0.887192\pi\)
0.937857 0.347023i \(-0.112808\pi\)
\(840\) 0 0
\(841\) 656.564 0.780694
\(842\) 0 0
\(843\) 175.445 + 561.171i 0.208120 + 0.665683i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 296.271i 0.349788i
\(848\) 0 0
\(849\) 434.246 + 1388.96i 0.511480 + 1.63600i
\(850\) 0 0
\(851\) 219.607i 0.258057i
\(852\) 0 0
\(853\) 1513.46i 1.77428i 0.461503 + 0.887139i \(0.347310\pi\)
−0.461503 + 0.887139i \(0.652690\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1275.06 1.48782 0.743911 0.668278i \(-0.232969\pi\)
0.743911 + 0.668278i \(0.232969\pi\)
\(858\) 0 0
\(859\) 330.107 0.384292 0.192146 0.981366i \(-0.438455\pi\)
0.192146 + 0.981366i \(0.438455\pi\)
\(860\) 0 0
\(861\) 149.172 46.6372i 0.173254 0.0541663i
\(862\) 0 0
\(863\) 51.0607 0.0591665 0.0295832 0.999562i \(-0.490582\pi\)
0.0295832 + 0.999562i \(0.490582\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 790.312 247.084i 0.911547 0.284987i
\(868\) 0 0
\(869\) 9.39207i 0.0108079i
\(870\) 0 0
\(871\) 1163.03 1.33528
\(872\) 0 0
\(873\) 473.570 + 683.340i 0.542463 + 0.782750i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.8915i 0.0226813i −0.999936 0.0113406i \(-0.996390\pi\)
0.999936 0.0113406i \(-0.00360991\pi\)
\(878\) 0 0
\(879\) −1083.68 + 338.802i −1.23285 + 0.385440i
\(880\) 0 0
\(881\) 946.321i 1.07414i 0.843536 + 0.537072i \(0.180470\pi\)
−0.843536 + 0.537072i \(0.819530\pi\)
\(882\) 0 0
\(883\) 1500.11i 1.69888i −0.527684 0.849441i \(-0.676940\pi\)
0.527684 0.849441i \(-0.323060\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 515.237 0.580876 0.290438 0.956894i \(-0.406199\pi\)
0.290438 + 0.956894i \(0.406199\pi\)
\(888\) 0 0
\(889\) 236.220 0.265715
\(890\) 0 0
\(891\) −227.787 85.4125i −0.255653 0.0958614i
\(892\) 0 0
\(893\) −1218.49 −1.36449
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −270.038 863.732i −0.301046 0.962912i
\(898\) 0 0
\(899\) 70.5523i 0.0784786i
\(900\) 0 0
\(901\) −52.0430 −0.0577614
\(902\) 0 0
\(903\) −300.925 + 94.0815i −0.333250 + 0.104188i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 841.383i 0.927655i −0.885926 0.463827i \(-0.846476\pi\)
0.885926 0.463827i \(-0.153524\pi\)
\(908\) 0 0
\(909\) −484.344 698.887i −0.532831 0.768852i
\(910\) 0 0
\(911\) 564.445i 0.619589i −0.950804 0.309794i \(-0.899740\pi\)
0.950804 0.309794i \(-0.100260\pi\)
\(912\) 0 0
\(913\) 295.414i 0.323564i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 353.658 0.385668
\(918\) 0 0
\(919\) −1171.81 −1.27509 −0.637547 0.770411i \(-0.720051\pi\)
−0.637547 + 0.770411i \(0.720051\pi\)
\(920\) 0 0
\(921\) −513.558 1642.64i −0.557610 1.78354i
\(922\) 0 0
\(923\) 1138.81 1.23382
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 122.160 + 176.271i 0.131780 + 0.190152i
\(928\) 0 0
\(929\) 812.845i 0.874967i −0.899226 0.437484i \(-0.855870\pi\)
0.899226 0.437484i \(-0.144130\pi\)
\(930\) 0 0
\(931\) −118.163 −0.126921
\(932\) 0 0
\(933\) 395.602 + 1265.36i 0.424011 + 1.35622i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1673.57i 1.78610i −0.449962 0.893048i \(-0.648563\pi\)
0.449962 0.893048i \(-0.351437\pi\)
\(938\) 0 0
\(939\) 339.254 + 1085.12i 0.361293 + 1.15562i
\(940\) 0 0
\(941\) 974.517i 1.03562i −0.855496 0.517809i \(-0.826748\pi\)
0.855496 0.517809i \(-0.173252\pi\)
\(942\) 0 0
\(943\) 244.196i 0.258957i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −876.037 −0.925066 −0.462533 0.886602i \(-0.653059\pi\)
−0.462533 + 0.886602i \(0.653059\pi\)
\(948\) 0 0
\(949\) −1028.55 −1.08382
\(950\) 0 0
\(951\) 1684.14 526.533i 1.77092 0.553662i
\(952\) 0 0
\(953\) 6.64325 0.00697088 0.00348544 0.999994i \(-0.498891\pi\)
0.00348544 + 0.999994i \(0.498891\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 116.789 36.5132i 0.122037 0.0381538i
\(958\) 0 0
\(959\) 137.122i 0.142984i
\(960\) 0 0
\(961\) −934.012 −0.971916
\(962\) 0 0
\(963\) 1109.86 769.158i 1.15250 0.798710i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1147.22i 1.18637i 0.805067 + 0.593184i \(0.202129\pi\)
−0.805067 + 0.593184i \(0.797871\pi\)
\(968\) 0 0
\(969\) −174.192 + 54.4597i −0.179765 + 0.0562020i
\(970\) 0 0
\(971\) 48.8617i 0.0503210i 0.999683 + 0.0251605i \(0.00800968\pi\)
−0.999683 + 0.0251605i \(0.991990\pi\)
\(972\) 0 0
\(973\) 503.732i 0.517710i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 454.682 0.465386 0.232693 0.972550i \(-0.425246\pi\)
0.232693 + 0.972550i \(0.425246\pi\)
\(978\) 0 0
\(979\) −465.042 −0.475017
\(980\) 0 0
\(981\) −1193.25 + 826.948i −1.21636 + 0.842965i
\(982\) 0 0
\(983\) −493.543 −0.502078 −0.251039 0.967977i \(-0.580772\pi\)
−0.251039 + 0.967977i \(0.580772\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 170.963 + 546.835i 0.173215 + 0.554038i
\(988\) 0 0
\(989\) 492.619i 0.498098i
\(990\) 0 0
\(991\) 321.693 0.324614 0.162307 0.986740i \(-0.448107\pi\)
0.162307 + 0.986740i \(0.448107\pi\)
\(992\) 0 0
\(993\) −588.544 + 184.003i −0.592693 + 0.185300i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1254.19i 1.25796i 0.777421 + 0.628980i \(0.216527\pi\)
−0.777421 + 0.628980i \(0.783473\pi\)
\(998\) 0 0
\(999\) −377.196 293.806i −0.377573 0.294100i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.e.c.449.4 32
3.2 odd 2 inner 2100.3.e.c.449.30 32
5.2 odd 4 420.3.g.a.281.12 yes 16
5.3 odd 4 2100.3.g.d.701.5 16
5.4 even 2 inner 2100.3.e.c.449.29 32
15.2 even 4 420.3.g.a.281.11 16
15.8 even 4 2100.3.g.d.701.6 16
15.14 odd 2 inner 2100.3.e.c.449.3 32
20.7 even 4 1680.3.l.b.1121.5 16
60.47 odd 4 1680.3.l.b.1121.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.g.a.281.11 16 15.2 even 4
420.3.g.a.281.12 yes 16 5.2 odd 4
1680.3.l.b.1121.5 16 20.7 even 4
1680.3.l.b.1121.6 16 60.47 odd 4
2100.3.e.c.449.3 32 15.14 odd 2 inner
2100.3.e.c.449.4 32 1.1 even 1 trivial
2100.3.e.c.449.29 32 5.4 even 2 inner
2100.3.e.c.449.30 32 3.2 odd 2 inner
2100.3.g.d.701.5 16 5.3 odd 4
2100.3.g.d.701.6 16 15.8 even 4