Properties

Label 1680.3.l.b.1121.6
Level $1680$
Weight $3$
Character 1680.1121
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1121,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1121"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,8,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 37 x^{14} - 116 x^{13} + 298 x^{12} - 548 x^{11} + 267 x^{10} + 3264 x^{9} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.6
Root \(-0.895194 + 2.86332i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1121
Dual form 1680.3.l.b.1121.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.895194 + 2.86332i) q^{3} +2.23607i q^{5} +2.64575 q^{7} +(-7.39726 - 5.12646i) q^{9} -3.00338i q^{11} -24.3241 q^{13} +(-6.40259 - 2.00171i) q^{15} -3.60390i q^{17} +16.8805 q^{19} +(-2.36846 + 7.57565i) q^{21} +12.4015i q^{23} -5.00000 q^{25} +(21.3007 - 16.5916i) q^{27} -13.5807i q^{29} -5.19503 q^{31} +(8.59964 + 2.68860i) q^{33} +5.91608i q^{35} -17.7081 q^{37} +(21.7747 - 69.6477i) q^{39} -19.6909i q^{41} +39.7227 q^{43} +(11.4631 - 16.5408i) q^{45} -72.1833i q^{47} +7.00000 q^{49} +(10.3191 + 3.22619i) q^{51} -14.4407i q^{53} +6.71576 q^{55} +(-15.1113 + 48.3343i) q^{57} -74.4914i q^{59} +66.1551 q^{61} +(-19.5713 - 13.5633i) q^{63} -54.3902i q^{65} +47.8138 q^{67} +(-35.5094 - 11.1017i) q^{69} +46.8183i q^{71} -42.2852 q^{73} +(4.47597 - 14.3166i) q^{75} -7.94619i q^{77} -3.12717 q^{79} +(28.4388 + 75.8435i) q^{81} +98.3606i q^{83} +8.05857 q^{85} +(38.8860 + 12.1574i) q^{87} -154.840i q^{89} -64.3554 q^{91} +(4.65056 - 14.8751i) q^{93} +37.7459i q^{95} -92.3775 q^{97} +(-15.3967 + 22.2168i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} - 10 q^{9} - 10 q^{15} - 48 q^{19} - 14 q^{21} - 80 q^{25} - 28 q^{27} - 24 q^{31} + 92 q^{33} - 40 q^{37} + 54 q^{39} + 168 q^{43} + 40 q^{45} + 112 q^{49} + 186 q^{51} + 80 q^{55} + 252 q^{57}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.895194 + 2.86332i −0.298398 + 0.954442i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 0 0
\(9\) −7.39726 5.12646i −0.821917 0.569607i
\(10\) 0 0
\(11\) 3.00338i 0.273034i −0.990638 0.136517i \(-0.956409\pi\)
0.990638 0.136517i \(-0.0435909\pi\)
\(12\) 0 0
\(13\) −24.3241 −1.87108 −0.935540 0.353220i \(-0.885087\pi\)
−0.935540 + 0.353220i \(0.885087\pi\)
\(14\) 0 0
\(15\) −6.40259 2.00171i −0.426839 0.133448i
\(16\) 0 0
\(17\) 3.60390i 0.211994i −0.994366 0.105997i \(-0.966197\pi\)
0.994366 0.105997i \(-0.0338035\pi\)
\(18\) 0 0
\(19\) 16.8805 0.888447 0.444223 0.895916i \(-0.353480\pi\)
0.444223 + 0.895916i \(0.353480\pi\)
\(20\) 0 0
\(21\) −2.36846 + 7.57565i −0.112784 + 0.360745i
\(22\) 0 0
\(23\) 12.4015i 0.539194i 0.962973 + 0.269597i \(0.0868904\pi\)
−0.962973 + 0.269597i \(0.913110\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 21.3007 16.5916i 0.788915 0.614503i
\(28\) 0 0
\(29\) 13.5807i 0.468301i −0.972200 0.234150i \(-0.924769\pi\)
0.972200 0.234150i \(-0.0752308\pi\)
\(30\) 0 0
\(31\) −5.19503 −0.167582 −0.0837908 0.996483i \(-0.526703\pi\)
−0.0837908 + 0.996483i \(0.526703\pi\)
\(32\) 0 0
\(33\) 8.59964 + 2.68860i 0.260595 + 0.0814729i
\(34\) 0 0
\(35\) 5.91608i 0.169031i
\(36\) 0 0
\(37\) −17.7081 −0.478598 −0.239299 0.970946i \(-0.576918\pi\)
−0.239299 + 0.970946i \(0.576918\pi\)
\(38\) 0 0
\(39\) 21.7747 69.6477i 0.558327 1.78584i
\(40\) 0 0
\(41\) 19.6909i 0.480267i −0.970740 0.240133i \(-0.922809\pi\)
0.970740 0.240133i \(-0.0771912\pi\)
\(42\) 0 0
\(43\) 39.7227 0.923783 0.461891 0.886937i \(-0.347171\pi\)
0.461891 + 0.886937i \(0.347171\pi\)
\(44\) 0 0
\(45\) 11.4631 16.5408i 0.254736 0.367573i
\(46\) 0 0
\(47\) 72.1833i 1.53582i −0.640561 0.767908i \(-0.721298\pi\)
0.640561 0.767908i \(-0.278702\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 10.3191 + 3.22619i 0.202336 + 0.0632587i
\(52\) 0 0
\(53\) 14.4407i 0.272467i −0.990677 0.136233i \(-0.956500\pi\)
0.990677 0.136233i \(-0.0434997\pi\)
\(54\) 0 0
\(55\) 6.71576 0.122105
\(56\) 0 0
\(57\) −15.1113 + 48.3343i −0.265111 + 0.847971i
\(58\) 0 0
\(59\) 74.4914i 1.26257i −0.775552 0.631283i \(-0.782529\pi\)
0.775552 0.631283i \(-0.217471\pi\)
\(60\) 0 0
\(61\) 66.1551 1.08451 0.542255 0.840214i \(-0.317571\pi\)
0.542255 + 0.840214i \(0.317571\pi\)
\(62\) 0 0
\(63\) −19.5713 13.5633i −0.310656 0.215291i
\(64\) 0 0
\(65\) 54.3902i 0.836773i
\(66\) 0 0
\(67\) 47.8138 0.713639 0.356820 0.934173i \(-0.383861\pi\)
0.356820 + 0.934173i \(0.383861\pi\)
\(68\) 0 0
\(69\) −35.5094 11.1017i −0.514629 0.160894i
\(70\) 0 0
\(71\) 46.8183i 0.659413i 0.944083 + 0.329707i \(0.106950\pi\)
−0.944083 + 0.329707i \(0.893050\pi\)
\(72\) 0 0
\(73\) −42.2852 −0.579249 −0.289624 0.957140i \(-0.593530\pi\)
−0.289624 + 0.957140i \(0.593530\pi\)
\(74\) 0 0
\(75\) 4.47597 14.3166i 0.0596796 0.190888i
\(76\) 0 0
\(77\) 7.94619i 0.103197i
\(78\) 0 0
\(79\) −3.12717 −0.0395844 −0.0197922 0.999804i \(-0.506300\pi\)
−0.0197922 + 0.999804i \(0.506300\pi\)
\(80\) 0 0
\(81\) 28.4388 + 75.8435i 0.351097 + 0.936339i
\(82\) 0 0
\(83\) 98.3606i 1.18507i 0.805545 + 0.592534i \(0.201872\pi\)
−0.805545 + 0.592534i \(0.798128\pi\)
\(84\) 0 0
\(85\) 8.05857 0.0948068
\(86\) 0 0
\(87\) 38.8860 + 12.1574i 0.446966 + 0.139740i
\(88\) 0 0
\(89\) 154.840i 1.73977i −0.493255 0.869885i \(-0.664193\pi\)
0.493255 0.869885i \(-0.335807\pi\)
\(90\) 0 0
\(91\) −64.3554 −0.707202
\(92\) 0 0
\(93\) 4.65056 14.8751i 0.0500060 0.159947i
\(94\) 0 0
\(95\) 37.7459i 0.397325i
\(96\) 0 0
\(97\) −92.3775 −0.952346 −0.476173 0.879352i \(-0.657976\pi\)
−0.476173 + 0.879352i \(0.657976\pi\)
\(98\) 0 0
\(99\) −15.3967 + 22.2168i −0.155522 + 0.224412i
\(100\) 0 0
\(101\) 94.4792i 0.935438i 0.883877 + 0.467719i \(0.154924\pi\)
−0.883877 + 0.467719i \(0.845076\pi\)
\(102\) 0 0
\(103\) −23.8293 −0.231352 −0.115676 0.993287i \(-0.536903\pi\)
−0.115676 + 0.993287i \(0.536903\pi\)
\(104\) 0 0
\(105\) −16.9397 5.29604i −0.161330 0.0504384i
\(106\) 0 0
\(107\) 150.037i 1.40221i 0.713056 + 0.701107i \(0.247310\pi\)
−0.713056 + 0.701107i \(0.752690\pi\)
\(108\) 0 0
\(109\) 161.310 1.47991 0.739953 0.672658i \(-0.234848\pi\)
0.739953 + 0.672658i \(0.234848\pi\)
\(110\) 0 0
\(111\) 15.8522 50.7042i 0.142813 0.456794i
\(112\) 0 0
\(113\) 200.957i 1.77838i −0.457538 0.889190i \(-0.651269\pi\)
0.457538 0.889190i \(-0.348731\pi\)
\(114\) 0 0
\(115\) −27.7305 −0.241135
\(116\) 0 0
\(117\) 179.931 + 124.696i 1.53787 + 1.06578i
\(118\) 0 0
\(119\) 9.53503i 0.0801263i
\(120\) 0 0
\(121\) 111.980 0.925452
\(122\) 0 0
\(123\) 56.3815 + 17.6272i 0.458387 + 0.143311i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −89.2829 −0.703015 −0.351507 0.936185i \(-0.614331\pi\)
−0.351507 + 0.936185i \(0.614331\pi\)
\(128\) 0 0
\(129\) −35.5595 + 113.739i −0.275655 + 0.881697i
\(130\) 0 0
\(131\) 133.670i 1.02038i −0.860061 0.510191i \(-0.829575\pi\)
0.860061 0.510191i \(-0.170425\pi\)
\(132\) 0 0
\(133\) 44.6616 0.335801
\(134\) 0 0
\(135\) 37.0999 + 47.6298i 0.274814 + 0.352813i
\(136\) 0 0
\(137\) 51.8272i 0.378301i −0.981948 0.189150i \(-0.939427\pi\)
0.981948 0.189150i \(-0.0605733\pi\)
\(138\) 0 0
\(139\) 190.393 1.36973 0.684866 0.728669i \(-0.259861\pi\)
0.684866 + 0.728669i \(0.259861\pi\)
\(140\) 0 0
\(141\) 206.684 + 64.6180i 1.46585 + 0.458284i
\(142\) 0 0
\(143\) 73.0543i 0.510869i
\(144\) 0 0
\(145\) 30.3674 0.209431
\(146\) 0 0
\(147\) −6.26636 + 20.0433i −0.0426283 + 0.136349i
\(148\) 0 0
\(149\) 7.21233i 0.0484049i 0.999707 + 0.0242024i \(0.00770463\pi\)
−0.999707 + 0.0242024i \(0.992295\pi\)
\(150\) 0 0
\(151\) 113.626 0.752491 0.376245 0.926520i \(-0.377215\pi\)
0.376245 + 0.926520i \(0.377215\pi\)
\(152\) 0 0
\(153\) −18.4753 + 26.6590i −0.120753 + 0.174242i
\(154\) 0 0
\(155\) 11.6164i 0.0749448i
\(156\) 0 0
\(157\) 204.211 1.30071 0.650355 0.759630i \(-0.274620\pi\)
0.650355 + 0.759630i \(0.274620\pi\)
\(158\) 0 0
\(159\) 41.3485 + 12.9272i 0.260053 + 0.0813034i
\(160\) 0 0
\(161\) 32.8112i 0.203796i
\(162\) 0 0
\(163\) −77.2206 −0.473746 −0.236873 0.971541i \(-0.576123\pi\)
−0.236873 + 0.971541i \(0.576123\pi\)
\(164\) 0 0
\(165\) −6.01190 + 19.2294i −0.0364358 + 0.116542i
\(166\) 0 0
\(167\) 284.381i 1.70288i −0.524454 0.851439i \(-0.675731\pi\)
0.524454 0.851439i \(-0.324269\pi\)
\(168\) 0 0
\(169\) 422.659 2.50094
\(170\) 0 0
\(171\) −124.869 86.5372i −0.730230 0.506065i
\(172\) 0 0
\(173\) 267.316i 1.54518i −0.634905 0.772590i \(-0.718961\pi\)
0.634905 0.772590i \(-0.281039\pi\)
\(174\) 0 0
\(175\) −13.2288 −0.0755929
\(176\) 0 0
\(177\) 213.293 + 66.6842i 1.20505 + 0.376747i
\(178\) 0 0
\(179\) 23.3604i 0.130505i 0.997869 + 0.0652525i \(0.0207853\pi\)
−0.997869 + 0.0652525i \(0.979215\pi\)
\(180\) 0 0
\(181\) −119.639 −0.660987 −0.330494 0.943808i \(-0.607215\pi\)
−0.330494 + 0.943808i \(0.607215\pi\)
\(182\) 0 0
\(183\) −59.2217 + 189.424i −0.323616 + 1.03510i
\(184\) 0 0
\(185\) 39.5966i 0.214036i
\(186\) 0 0
\(187\) −10.8239 −0.0578817
\(188\) 0 0
\(189\) 56.3563 43.8972i 0.298182 0.232260i
\(190\) 0 0
\(191\) 76.1540i 0.398712i 0.979927 + 0.199356i \(0.0638850\pi\)
−0.979927 + 0.199356i \(0.936115\pi\)
\(192\) 0 0
\(193\) −116.189 −0.602015 −0.301007 0.953622i \(-0.597323\pi\)
−0.301007 + 0.953622i \(0.597323\pi\)
\(194\) 0 0
\(195\) 155.737 + 48.6898i 0.798651 + 0.249691i
\(196\) 0 0
\(197\) 247.485i 1.25627i 0.778105 + 0.628134i \(0.216181\pi\)
−0.778105 + 0.628134i \(0.783819\pi\)
\(198\) 0 0
\(199\) 43.5013 0.218599 0.109300 0.994009i \(-0.465139\pi\)
0.109300 + 0.994009i \(0.465139\pi\)
\(200\) 0 0
\(201\) −42.8026 + 136.906i −0.212948 + 0.681127i
\(202\) 0 0
\(203\) 35.9312i 0.177001i
\(204\) 0 0
\(205\) 44.0303 0.214782
\(206\) 0 0
\(207\) 63.5756 91.7368i 0.307128 0.443173i
\(208\) 0 0
\(209\) 50.6985i 0.242576i
\(210\) 0 0
\(211\) 283.206 1.34221 0.671104 0.741363i \(-0.265820\pi\)
0.671104 + 0.741363i \(0.265820\pi\)
\(212\) 0 0
\(213\) −134.056 41.9115i −0.629371 0.196767i
\(214\) 0 0
\(215\) 88.8226i 0.413128i
\(216\) 0 0
\(217\) −13.7448 −0.0633399
\(218\) 0 0
\(219\) 37.8534 121.076i 0.172847 0.552859i
\(220\) 0 0
\(221\) 87.6615i 0.396659i
\(222\) 0 0
\(223\) 288.852 1.29530 0.647651 0.761937i \(-0.275751\pi\)
0.647651 + 0.761937i \(0.275751\pi\)
\(224\) 0 0
\(225\) 36.9863 + 25.6323i 0.164383 + 0.113921i
\(226\) 0 0
\(227\) 333.944i 1.47112i 0.677460 + 0.735559i \(0.263080\pi\)
−0.677460 + 0.735559i \(0.736920\pi\)
\(228\) 0 0
\(229\) −11.1825 −0.0488318 −0.0244159 0.999702i \(-0.507773\pi\)
−0.0244159 + 0.999702i \(0.507773\pi\)
\(230\) 0 0
\(231\) 22.7525 + 7.11338i 0.0984958 + 0.0307938i
\(232\) 0 0
\(233\) 249.339i 1.07012i −0.844813 0.535062i \(-0.820288\pi\)
0.844813 0.535062i \(-0.179712\pi\)
\(234\) 0 0
\(235\) 161.407 0.686837
\(236\) 0 0
\(237\) 2.79942 8.95410i 0.0118119 0.0377810i
\(238\) 0 0
\(239\) 144.066i 0.602786i −0.953500 0.301393i \(-0.902548\pi\)
0.953500 0.301393i \(-0.0974516\pi\)
\(240\) 0 0
\(241\) −347.745 −1.44292 −0.721462 0.692454i \(-0.756530\pi\)
−0.721462 + 0.692454i \(0.756530\pi\)
\(242\) 0 0
\(243\) −242.623 + 13.5350i −0.998448 + 0.0556995i
\(244\) 0 0
\(245\) 15.6525i 0.0638877i
\(246\) 0 0
\(247\) −410.602 −1.66236
\(248\) 0 0
\(249\) −281.638 88.0518i −1.13108 0.353622i
\(250\) 0 0
\(251\) 453.378i 1.80629i −0.429339 0.903143i \(-0.641253\pi\)
0.429339 0.903143i \(-0.358747\pi\)
\(252\) 0 0
\(253\) 37.2463 0.147218
\(254\) 0 0
\(255\) −7.21398 + 23.0743i −0.0282901 + 0.0904875i
\(256\) 0 0
\(257\) 422.789i 1.64509i −0.568697 0.822547i \(-0.692552\pi\)
0.568697 0.822547i \(-0.307448\pi\)
\(258\) 0 0
\(259\) −46.8513 −0.180893
\(260\) 0 0
\(261\) −69.6211 + 100.460i −0.266747 + 0.384905i
\(262\) 0 0
\(263\) 375.524i 1.42785i 0.700223 + 0.713924i \(0.253084\pi\)
−0.700223 + 0.713924i \(0.746916\pi\)
\(264\) 0 0
\(265\) 32.2904 0.121851
\(266\) 0 0
\(267\) 443.356 + 138.611i 1.66051 + 0.519144i
\(268\) 0 0
\(269\) 1.41316i 0.00525338i 0.999997 + 0.00262669i \(0.000836103\pi\)
−0.999997 + 0.00262669i \(0.999164\pi\)
\(270\) 0 0
\(271\) −226.054 −0.834146 −0.417073 0.908873i \(-0.636944\pi\)
−0.417073 + 0.908873i \(0.636944\pi\)
\(272\) 0 0
\(273\) 57.6105 184.270i 0.211028 0.674983i
\(274\) 0 0
\(275\) 15.0169i 0.0546069i
\(276\) 0 0
\(277\) −355.341 −1.28282 −0.641410 0.767198i \(-0.721650\pi\)
−0.641410 + 0.767198i \(0.721650\pi\)
\(278\) 0 0
\(279\) 38.4290 + 26.6321i 0.137738 + 0.0954556i
\(280\) 0 0
\(281\) 195.986i 0.697458i 0.937224 + 0.348729i \(0.113387\pi\)
−0.937224 + 0.348729i \(0.886613\pi\)
\(282\) 0 0
\(283\) 485.087 1.71409 0.857044 0.515244i \(-0.172299\pi\)
0.857044 + 0.515244i \(0.172299\pi\)
\(284\) 0 0
\(285\) −108.079 33.7899i −0.379224 0.118561i
\(286\) 0 0
\(287\) 52.0973i 0.181524i
\(288\) 0 0
\(289\) 276.012 0.955058
\(290\) 0 0
\(291\) 82.6958 264.507i 0.284178 0.908958i
\(292\) 0 0
\(293\) 378.468i 1.29170i 0.763465 + 0.645849i \(0.223497\pi\)
−0.763465 + 0.645849i \(0.776503\pi\)
\(294\) 0 0
\(295\) 166.568 0.564637
\(296\) 0 0
\(297\) −49.8308 63.9740i −0.167780 0.215401i
\(298\) 0 0
\(299\) 301.654i 1.00888i
\(300\) 0 0
\(301\) 105.096 0.349157
\(302\) 0 0
\(303\) −270.525 84.5772i −0.892821 0.279133i
\(304\) 0 0
\(305\) 147.927i 0.485008i
\(306\) 0 0
\(307\) 573.684 1.86868 0.934339 0.356385i \(-0.115991\pi\)
0.934339 + 0.356385i \(0.115991\pi\)
\(308\) 0 0
\(309\) 21.3318 68.2309i 0.0690349 0.220812i
\(310\) 0 0
\(311\) 441.918i 1.42096i −0.703718 0.710479i \(-0.748478\pi\)
0.703718 0.710479i \(-0.251522\pi\)
\(312\) 0 0
\(313\) −378.973 −1.21078 −0.605388 0.795930i \(-0.706982\pi\)
−0.605388 + 0.795930i \(0.706982\pi\)
\(314\) 0 0
\(315\) 30.3285 43.7628i 0.0962811 0.138929i
\(316\) 0 0
\(317\) 588.177i 1.85545i 0.373266 + 0.927724i \(0.378238\pi\)
−0.373266 + 0.927724i \(0.621762\pi\)
\(318\) 0 0
\(319\) −40.7881 −0.127862
\(320\) 0 0
\(321\) −429.604 134.312i −1.33833 0.418418i
\(322\) 0 0
\(323\) 60.8357i 0.188346i
\(324\) 0 0
\(325\) 121.620 0.374216
\(326\) 0 0
\(327\) −144.404 + 461.882i −0.441601 + 1.41248i
\(328\) 0 0
\(329\) 190.979i 0.580484i
\(330\) 0 0
\(331\) −205.546 −0.620984 −0.310492 0.950576i \(-0.600494\pi\)
−0.310492 + 0.950576i \(0.600494\pi\)
\(332\) 0 0
\(333\) 130.992 + 90.7801i 0.393368 + 0.272613i
\(334\) 0 0
\(335\) 106.915i 0.319149i
\(336\) 0 0
\(337\) 456.465 1.35450 0.677248 0.735755i \(-0.263172\pi\)
0.677248 + 0.735755i \(0.263172\pi\)
\(338\) 0 0
\(339\) 575.405 + 179.895i 1.69736 + 0.530665i
\(340\) 0 0
\(341\) 15.6026i 0.0457555i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 24.8242 79.4014i 0.0719541 0.230149i
\(346\) 0 0
\(347\) 302.625i 0.872118i −0.899918 0.436059i \(-0.856374\pi\)
0.899918 0.436059i \(-0.143626\pi\)
\(348\) 0 0
\(349\) 19.9121 0.0570549 0.0285274 0.999593i \(-0.490918\pi\)
0.0285274 + 0.999593i \(0.490918\pi\)
\(350\) 0 0
\(351\) −518.119 + 403.574i −1.47612 + 1.14978i
\(352\) 0 0
\(353\) 219.478i 0.621750i 0.950451 + 0.310875i \(0.100622\pi\)
−0.950451 + 0.310875i \(0.899378\pi\)
\(354\) 0 0
\(355\) −104.689 −0.294899
\(356\) 0 0
\(357\) 27.3019 + 8.53570i 0.0764759 + 0.0239095i
\(358\) 0 0
\(359\) 309.375i 0.861770i −0.902407 0.430885i \(-0.858201\pi\)
0.902407 0.430885i \(-0.141799\pi\)
\(360\) 0 0
\(361\) −76.0491 −0.210662
\(362\) 0 0
\(363\) −100.244 + 320.634i −0.276153 + 0.883290i
\(364\) 0 0
\(365\) 94.5525i 0.259048i
\(366\) 0 0
\(367\) −516.947 −1.40857 −0.704287 0.709915i \(-0.748733\pi\)
−0.704287 + 0.709915i \(0.748733\pi\)
\(368\) 0 0
\(369\) −100.945 + 145.659i −0.273563 + 0.394740i
\(370\) 0 0
\(371\) 38.2066i 0.102983i
\(372\) 0 0
\(373\) −417.787 −1.12007 −0.560037 0.828468i \(-0.689213\pi\)
−0.560037 + 0.828468i \(0.689213\pi\)
\(374\) 0 0
\(375\) 32.0129 + 10.0086i 0.0853678 + 0.0266895i
\(376\) 0 0
\(377\) 330.338i 0.876229i
\(378\) 0 0
\(379\) −468.822 −1.23700 −0.618499 0.785786i \(-0.712259\pi\)
−0.618499 + 0.785786i \(0.712259\pi\)
\(380\) 0 0
\(381\) 79.9255 255.646i 0.209778 0.670987i
\(382\) 0 0
\(383\) 260.516i 0.680198i −0.940390 0.340099i \(-0.889539\pi\)
0.940390 0.340099i \(-0.110461\pi\)
\(384\) 0 0
\(385\) 17.7682 0.0461512
\(386\) 0 0
\(387\) −293.839 203.637i −0.759273 0.526193i
\(388\) 0 0
\(389\) 724.894i 1.86348i −0.363125 0.931740i \(-0.618290\pi\)
0.363125 0.931740i \(-0.381710\pi\)
\(390\) 0 0
\(391\) 44.6937 0.114306
\(392\) 0 0
\(393\) 382.741 + 119.661i 0.973895 + 0.304480i
\(394\) 0 0
\(395\) 6.99256i 0.0177027i
\(396\) 0 0
\(397\) −394.446 −0.993567 −0.496784 0.867874i \(-0.665486\pi\)
−0.496784 + 0.867874i \(0.665486\pi\)
\(398\) 0 0
\(399\) −39.9808 + 127.881i −0.100202 + 0.320503i
\(400\) 0 0
\(401\) 340.136i 0.848219i −0.905611 0.424110i \(-0.860587\pi\)
0.905611 0.424110i \(-0.139413\pi\)
\(402\) 0 0
\(403\) 126.364 0.313559
\(404\) 0 0
\(405\) −169.591 + 63.5911i −0.418744 + 0.157015i
\(406\) 0 0
\(407\) 53.1842i 0.130674i
\(408\) 0 0
\(409\) −646.306 −1.58021 −0.790105 0.612971i \(-0.789974\pi\)
−0.790105 + 0.612971i \(0.789974\pi\)
\(410\) 0 0
\(411\) 148.398 + 46.3954i 0.361066 + 0.112884i
\(412\) 0 0
\(413\) 197.086i 0.477205i
\(414\) 0 0
\(415\) −219.941 −0.529979
\(416\) 0 0
\(417\) −170.438 + 545.157i −0.408725 + 1.30733i
\(418\) 0 0
\(419\) 774.244i 1.84784i −0.382590 0.923918i \(-0.624968\pi\)
0.382590 0.923918i \(-0.375032\pi\)
\(420\) 0 0
\(421\) 77.6930 0.184544 0.0922719 0.995734i \(-0.470587\pi\)
0.0922719 + 0.995734i \(0.470587\pi\)
\(422\) 0 0
\(423\) −370.045 + 533.959i −0.874811 + 1.26231i
\(424\) 0 0
\(425\) 18.0195i 0.0423989i
\(426\) 0 0
\(427\) 175.030 0.409906
\(428\) 0 0
\(429\) −209.178 65.3977i −0.487595 0.152442i
\(430\) 0 0
\(431\) 301.177i 0.698787i 0.936976 + 0.349394i \(0.113612\pi\)
−0.936976 + 0.349394i \(0.886388\pi\)
\(432\) 0 0
\(433\) −98.3440 −0.227123 −0.113561 0.993531i \(-0.536226\pi\)
−0.113561 + 0.993531i \(0.536226\pi\)
\(434\) 0 0
\(435\) −27.1847 + 86.9518i −0.0624936 + 0.199889i
\(436\) 0 0
\(437\) 209.343i 0.479045i
\(438\) 0 0
\(439\) −525.993 −1.19816 −0.599081 0.800688i \(-0.704467\pi\)
−0.599081 + 0.800688i \(0.704467\pi\)
\(440\) 0 0
\(441\) −51.7808 35.8852i −0.117417 0.0813724i
\(442\) 0 0
\(443\) 547.933i 1.23687i −0.785837 0.618434i \(-0.787767\pi\)
0.785837 0.618434i \(-0.212233\pi\)
\(444\) 0 0
\(445\) 346.232 0.778049
\(446\) 0 0
\(447\) −20.6512 6.45643i −0.0461996 0.0144439i
\(448\) 0 0
\(449\) 302.192i 0.673033i −0.941678 0.336517i \(-0.890751\pi\)
0.941678 0.336517i \(-0.109249\pi\)
\(450\) 0 0
\(451\) −59.1393 −0.131129
\(452\) 0 0
\(453\) −101.717 + 325.348i −0.224542 + 0.718208i
\(454\) 0 0
\(455\) 143.903i 0.316270i
\(456\) 0 0
\(457\) 202.530 0.443172 0.221586 0.975141i \(-0.428877\pi\)
0.221586 + 0.975141i \(0.428877\pi\)
\(458\) 0 0
\(459\) −59.7944 76.7657i −0.130271 0.167245i
\(460\) 0 0
\(461\) 850.540i 1.84499i −0.386010 0.922495i \(-0.626147\pi\)
0.386010 0.922495i \(-0.373853\pi\)
\(462\) 0 0
\(463\) −371.502 −0.802380 −0.401190 0.915995i \(-0.631403\pi\)
−0.401190 + 0.915995i \(0.631403\pi\)
\(464\) 0 0
\(465\) 33.2616 + 10.3990i 0.0715304 + 0.0223634i
\(466\) 0 0
\(467\) 571.243i 1.22322i 0.791160 + 0.611609i \(0.209477\pi\)
−0.791160 + 0.611609i \(0.790523\pi\)
\(468\) 0 0
\(469\) 126.503 0.269730
\(470\) 0 0
\(471\) −182.809 + 584.724i −0.388129 + 1.24145i
\(472\) 0 0
\(473\) 119.302i 0.252224i
\(474\) 0 0
\(475\) −84.4024 −0.177689
\(476\) 0 0
\(477\) −74.0298 + 106.822i −0.155199 + 0.223945i
\(478\) 0 0
\(479\) 433.086i 0.904145i −0.891981 0.452073i \(-0.850685\pi\)
0.891981 0.452073i \(-0.149315\pi\)
\(480\) 0 0
\(481\) 430.734 0.895496
\(482\) 0 0
\(483\) −93.9490 29.3723i −0.194511 0.0608123i
\(484\) 0 0
\(485\) 206.562i 0.425902i
\(486\) 0 0
\(487\) 319.390 0.655831 0.327916 0.944707i \(-0.393654\pi\)
0.327916 + 0.944707i \(0.393654\pi\)
\(488\) 0 0
\(489\) 69.1274 221.108i 0.141365 0.452163i
\(490\) 0 0
\(491\) 106.542i 0.216989i 0.994097 + 0.108495i \(0.0346031\pi\)
−0.994097 + 0.108495i \(0.965397\pi\)
\(492\) 0 0
\(493\) −48.9436 −0.0992772
\(494\) 0 0
\(495\) −49.6782 34.4281i −0.100360 0.0695516i
\(496\) 0 0
\(497\) 123.870i 0.249235i
\(498\) 0 0
\(499\) −189.829 −0.380420 −0.190210 0.981743i \(-0.560917\pi\)
−0.190210 + 0.981743i \(0.560917\pi\)
\(500\) 0 0
\(501\) 814.274 + 254.576i 1.62530 + 0.508135i
\(502\) 0 0
\(503\) 18.3298i 0.0364410i −0.999834 0.0182205i \(-0.994200\pi\)
0.999834 0.0182205i \(-0.00580008\pi\)
\(504\) 0 0
\(505\) −211.262 −0.418340
\(506\) 0 0
\(507\) −378.362 + 1210.21i −0.746276 + 2.38700i
\(508\) 0 0
\(509\) 102.736i 0.201839i −0.994895 0.100920i \(-0.967821\pi\)
0.994895 0.100920i \(-0.0321785\pi\)
\(510\) 0 0
\(511\) −111.876 −0.218936
\(512\) 0 0
\(513\) 359.566 280.074i 0.700909 0.545953i
\(514\) 0 0
\(515\) 53.2838i 0.103464i
\(516\) 0 0
\(517\) −216.794 −0.419330
\(518\) 0 0
\(519\) 765.413 + 239.300i 1.47478 + 0.461079i
\(520\) 0 0
\(521\) 341.510i 0.655489i 0.944766 + 0.327744i \(0.106289\pi\)
−0.944766 + 0.327744i \(0.893711\pi\)
\(522\) 0 0
\(523\) −400.488 −0.765751 −0.382875 0.923800i \(-0.625066\pi\)
−0.382875 + 0.923800i \(0.625066\pi\)
\(524\) 0 0
\(525\) 11.8423 37.8782i 0.0225568 0.0721490i
\(526\) 0 0
\(527\) 18.7224i 0.0355264i
\(528\) 0 0
\(529\) 375.204 0.709270
\(530\) 0 0
\(531\) −381.877 + 551.032i −0.719166 + 1.03773i
\(532\) 0 0
\(533\) 478.963i 0.898618i
\(534\) 0 0
\(535\) −335.493 −0.627089
\(536\) 0 0
\(537\) −66.8884 20.9121i −0.124559 0.0389424i
\(538\) 0 0
\(539\) 21.0236i 0.0390049i
\(540\) 0 0
\(541\) −516.907 −0.955465 −0.477733 0.878505i \(-0.658541\pi\)
−0.477733 + 0.878505i \(0.658541\pi\)
\(542\) 0 0
\(543\) 107.100 342.564i 0.197237 0.630874i
\(544\) 0 0
\(545\) 360.700i 0.661834i
\(546\) 0 0
\(547\) 725.077 1.32555 0.662776 0.748818i \(-0.269378\pi\)
0.662776 + 0.748818i \(0.269378\pi\)
\(548\) 0 0
\(549\) −489.367 339.142i −0.891378 0.617744i
\(550\) 0 0
\(551\) 229.249i 0.416060i
\(552\) 0 0
\(553\) −8.27371 −0.0149615
\(554\) 0 0
\(555\) 113.378 + 35.4466i 0.204285 + 0.0638678i
\(556\) 0 0
\(557\) 741.121i 1.33056i −0.746595 0.665279i \(-0.768313\pi\)
0.746595 0.665279i \(-0.231687\pi\)
\(558\) 0 0
\(559\) −966.216 −1.72847
\(560\) 0 0
\(561\) 9.68947 30.9923i 0.0172718 0.0552447i
\(562\) 0 0
\(563\) 926.643i 1.64590i −0.568112 0.822951i \(-0.692326\pi\)
0.568112 0.822951i \(-0.307674\pi\)
\(564\) 0 0
\(565\) 449.353 0.795316
\(566\) 0 0
\(567\) 75.2420 + 200.663i 0.132702 + 0.353903i
\(568\) 0 0
\(569\) 116.739i 0.205166i 0.994724 + 0.102583i \(0.0327107\pi\)
−0.994724 + 0.102583i \(0.967289\pi\)
\(570\) 0 0
\(571\) 202.431 0.354520 0.177260 0.984164i \(-0.443277\pi\)
0.177260 + 0.984164i \(0.443277\pi\)
\(572\) 0 0
\(573\) −218.054 68.1726i −0.380547 0.118975i
\(574\) 0 0
\(575\) 62.0073i 0.107839i
\(576\) 0 0
\(577\) −82.6440 −0.143230 −0.0716152 0.997432i \(-0.522815\pi\)
−0.0716152 + 0.997432i \(0.522815\pi\)
\(578\) 0 0
\(579\) 104.012 332.686i 0.179640 0.574588i
\(580\) 0 0
\(581\) 260.238i 0.447914i
\(582\) 0 0
\(583\) −43.3710 −0.0743927
\(584\) 0 0
\(585\) −278.829 + 402.339i −0.476631 + 0.687758i
\(586\) 0 0
\(587\) 108.578i 0.184970i −0.995714 0.0924851i \(-0.970519\pi\)
0.995714 0.0924851i \(-0.0294811\pi\)
\(588\) 0 0
\(589\) −87.6947 −0.148887
\(590\) 0 0
\(591\) −708.630 221.547i −1.19903 0.374868i
\(592\) 0 0
\(593\) 395.830i 0.667504i −0.942661 0.333752i \(-0.891685\pi\)
0.942661 0.333752i \(-0.108315\pi\)
\(594\) 0 0
\(595\) 21.3210 0.0358336
\(596\) 0 0
\(597\) −38.9420 + 124.558i −0.0652296 + 0.208640i
\(598\) 0 0
\(599\) 59.2409i 0.0988996i 0.998777 + 0.0494498i \(0.0157468\pi\)
−0.998777 + 0.0494498i \(0.984253\pi\)
\(600\) 0 0
\(601\) −350.659 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(602\) 0 0
\(603\) −353.691 245.116i −0.586552 0.406494i
\(604\) 0 0
\(605\) 250.394i 0.413875i
\(606\) 0 0
\(607\) −319.382 −0.526164 −0.263082 0.964773i \(-0.584739\pi\)
−0.263082 + 0.964773i \(0.584739\pi\)
\(608\) 0 0
\(609\) 102.883 + 32.1654i 0.168937 + 0.0528168i
\(610\) 0 0
\(611\) 1755.79i 2.87363i
\(612\) 0 0
\(613\) 423.614 0.691051 0.345525 0.938409i \(-0.387701\pi\)
0.345525 + 0.938409i \(0.387701\pi\)
\(614\) 0 0
\(615\) −39.4156 + 126.073i −0.0640904 + 0.204997i
\(616\) 0 0
\(617\) 986.842i 1.59942i 0.600386 + 0.799710i \(0.295014\pi\)
−0.600386 + 0.799710i \(0.704986\pi\)
\(618\) 0 0
\(619\) −857.133 −1.38471 −0.692353 0.721559i \(-0.743426\pi\)
−0.692353 + 0.721559i \(0.743426\pi\)
\(620\) 0 0
\(621\) 205.760 + 264.160i 0.331336 + 0.425378i
\(622\) 0 0
\(623\) 409.667i 0.657571i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 145.166 + 45.3850i 0.231525 + 0.0723843i
\(628\) 0 0
\(629\) 63.8184i 0.101460i
\(630\) 0 0
\(631\) 320.357 0.507697 0.253848 0.967244i \(-0.418304\pi\)
0.253848 + 0.967244i \(0.418304\pi\)
\(632\) 0 0
\(633\) −253.524 + 810.911i −0.400512 + 1.28106i
\(634\) 0 0
\(635\) 199.643i 0.314398i
\(636\) 0 0
\(637\) −170.268 −0.267297
\(638\) 0 0
\(639\) 240.012 346.327i 0.375606 0.541983i
\(640\) 0 0
\(641\) 280.940i 0.438284i −0.975693 0.219142i \(-0.929674\pi\)
0.975693 0.219142i \(-0.0703259\pi\)
\(642\) 0 0
\(643\) −206.903 −0.321777 −0.160889 0.986973i \(-0.551436\pi\)
−0.160889 + 0.986973i \(0.551436\pi\)
\(644\) 0 0
\(645\) −254.328 79.5134i −0.394307 0.123277i
\(646\) 0 0
\(647\) 907.218i 1.40219i 0.713067 + 0.701096i \(0.247306\pi\)
−0.713067 + 0.701096i \(0.752694\pi\)
\(648\) 0 0
\(649\) −223.726 −0.344724
\(650\) 0 0
\(651\) 12.3042 39.3557i 0.0189005 0.0604542i
\(652\) 0 0
\(653\) 93.6270i 0.143380i 0.997427 + 0.0716899i \(0.0228392\pi\)
−0.997427 + 0.0716899i \(0.977161\pi\)
\(654\) 0 0
\(655\) 298.895 0.456329
\(656\) 0 0
\(657\) 312.794 + 216.773i 0.476095 + 0.329944i
\(658\) 0 0
\(659\) 223.298i 0.338844i 0.985544 + 0.169422i \(0.0541900\pi\)
−0.985544 + 0.169422i \(0.945810\pi\)
\(660\) 0 0
\(661\) −409.255 −0.619145 −0.309572 0.950876i \(-0.600186\pi\)
−0.309572 + 0.950876i \(0.600186\pi\)
\(662\) 0 0
\(663\) −251.003 78.4741i −0.378587 0.118362i
\(664\) 0 0
\(665\) 99.8663i 0.150175i
\(666\) 0 0
\(667\) 168.421 0.252505
\(668\) 0 0
\(669\) −258.579 + 827.078i −0.386515 + 1.23629i
\(670\) 0 0
\(671\) 198.689i 0.296109i
\(672\) 0 0
\(673\) −256.438 −0.381037 −0.190519 0.981684i \(-0.561017\pi\)
−0.190519 + 0.981684i \(0.561017\pi\)
\(674\) 0 0
\(675\) −106.503 + 82.9579i −0.157783 + 0.122901i
\(676\) 0 0
\(677\) 186.843i 0.275986i 0.990433 + 0.137993i \(0.0440652\pi\)
−0.990433 + 0.137993i \(0.955935\pi\)
\(678\) 0 0
\(679\) −244.408 −0.359953
\(680\) 0 0
\(681\) −956.190 298.944i −1.40410 0.438979i
\(682\) 0 0
\(683\) 639.899i 0.936895i −0.883491 0.468447i \(-0.844814\pi\)
0.883491 0.468447i \(-0.155186\pi\)
\(684\) 0 0
\(685\) 115.889 0.169181
\(686\) 0 0
\(687\) 10.0105 32.0191i 0.0145713 0.0466071i
\(688\) 0 0
\(689\) 351.257i 0.509807i
\(690\) 0 0
\(691\) 784.721 1.13563 0.567815 0.823156i \(-0.307789\pi\)
0.567815 + 0.823156i \(0.307789\pi\)
\(692\) 0 0
\(693\) −40.7358 + 58.7800i −0.0587819 + 0.0848196i
\(694\) 0 0
\(695\) 425.731i 0.612563i
\(696\) 0 0
\(697\) −70.9642 −0.101814
\(698\) 0 0
\(699\) 713.938 + 223.206i 1.02137 + 0.319322i
\(700\) 0 0
\(701\) 743.171i 1.06016i −0.847948 0.530079i \(-0.822162\pi\)
0.847948 0.530079i \(-0.177838\pi\)
\(702\) 0 0
\(703\) −298.922 −0.425209
\(704\) 0 0
\(705\) −144.490 + 462.160i −0.204951 + 0.655546i
\(706\) 0 0
\(707\) 249.968i 0.353562i
\(708\) 0 0
\(709\) −742.471 −1.04721 −0.523605 0.851961i \(-0.675413\pi\)
−0.523605 + 0.851961i \(0.675413\pi\)
\(710\) 0 0
\(711\) 23.1325 + 16.0313i 0.0325351 + 0.0225475i
\(712\) 0 0
\(713\) 64.4259i 0.0903590i
\(714\) 0 0
\(715\) −163.354 −0.228468
\(716\) 0 0
\(717\) 412.507 + 128.967i 0.575324 + 0.179870i
\(718\) 0 0
\(719\) 1075.69i 1.49609i 0.663648 + 0.748045i \(0.269007\pi\)
−0.663648 + 0.748045i \(0.730993\pi\)
\(720\) 0 0
\(721\) −63.0463 −0.0874428
\(722\) 0 0
\(723\) 311.299 995.706i 0.430565 1.37719i
\(724\) 0 0
\(725\) 67.9036i 0.0936602i
\(726\) 0 0
\(727\) −276.007 −0.379652 −0.189826 0.981818i \(-0.560792\pi\)
−0.189826 + 0.981818i \(0.560792\pi\)
\(728\) 0 0
\(729\) 178.439 706.824i 0.244773 0.969580i
\(730\) 0 0
\(731\) 143.157i 0.195837i
\(732\) 0 0
\(733\) −1323.23 −1.80523 −0.902616 0.430448i \(-0.858356\pi\)
−0.902616 + 0.430448i \(0.858356\pi\)
\(734\) 0 0
\(735\) −44.8181 14.0120i −0.0609770 0.0190639i
\(736\) 0 0
\(737\) 143.603i 0.194848i
\(738\) 0 0
\(739\) −11.1722 −0.0151181 −0.00755903 0.999971i \(-0.502406\pi\)
−0.00755903 + 0.999971i \(0.502406\pi\)
\(740\) 0 0
\(741\) 367.568 1175.69i 0.496043 1.58662i
\(742\) 0 0
\(743\) 532.660i 0.716904i −0.933548 0.358452i \(-0.883305\pi\)
0.933548 0.358452i \(-0.116695\pi\)
\(744\) 0 0
\(745\) −16.1273 −0.0216473
\(746\) 0 0
\(747\) 504.242 727.599i 0.675023 0.974028i
\(748\) 0 0
\(749\) 396.960i 0.529987i
\(750\) 0 0
\(751\) 843.951 1.12377 0.561885 0.827215i \(-0.310076\pi\)
0.561885 + 0.827215i \(0.310076\pi\)
\(752\) 0 0
\(753\) 1298.17 + 405.861i 1.72400 + 0.538992i
\(754\) 0 0
\(755\) 254.076i 0.336524i
\(756\) 0 0
\(757\) −303.221 −0.400556 −0.200278 0.979739i \(-0.564185\pi\)
−0.200278 + 0.979739i \(0.564185\pi\)
\(758\) 0 0
\(759\) −33.3426 + 106.648i −0.0439297 + 0.140511i
\(760\) 0 0
\(761\) 115.096i 0.151243i 0.997137 + 0.0756215i \(0.0240941\pi\)
−0.997137 + 0.0756215i \(0.975906\pi\)
\(762\) 0 0
\(763\) 426.786 0.559352
\(764\) 0 0
\(765\) −59.6113 41.3120i −0.0779233 0.0540026i
\(766\) 0 0
\(767\) 1811.93i 2.36236i
\(768\) 0 0
\(769\) 801.344 1.04206 0.521030 0.853538i \(-0.325548\pi\)
0.521030 + 0.853538i \(0.325548\pi\)
\(770\) 0 0
\(771\) 1210.58 + 378.478i 1.57015 + 0.490893i
\(772\) 0 0
\(773\) 94.0269i 0.121639i 0.998149 + 0.0608194i \(0.0193714\pi\)
−0.998149 + 0.0608194i \(0.980629\pi\)
\(774\) 0 0
\(775\) 25.9752 0.0335163
\(776\) 0 0
\(777\) 41.9410 134.151i 0.0539781 0.172652i
\(778\) 0 0
\(779\) 332.393i 0.426691i
\(780\) 0 0
\(781\) 140.613 0.180042
\(782\) 0 0
\(783\) −225.326 289.279i −0.287772 0.369450i
\(784\) 0 0
\(785\) 456.631i 0.581695i
\(786\) 0 0
\(787\) 114.020 0.144880 0.0724398 0.997373i \(-0.476921\pi\)
0.0724398 + 0.997373i \(0.476921\pi\)
\(788\) 0 0
\(789\) −1075.25 336.167i −1.36280 0.426067i
\(790\) 0 0
\(791\) 531.682i 0.672165i
\(792\) 0 0
\(793\) −1609.16 −2.02921
\(794\) 0 0
\(795\) −28.9062 + 92.4580i −0.0363600 + 0.116299i
\(796\) 0 0
\(797\) 879.789i 1.10388i 0.833885 + 0.551938i \(0.186111\pi\)
−0.833885 + 0.551938i \(0.813889\pi\)
\(798\) 0 0
\(799\) −260.142 −0.325584
\(800\) 0 0
\(801\) −793.779 + 1145.39i −0.990984 + 1.42995i
\(802\) 0 0
\(803\) 126.998i 0.158155i
\(804\) 0 0
\(805\) −73.3680 −0.0911404
\(806\) 0 0
\(807\) −4.04634 1.26505i −0.00501405 0.00156760i
\(808\) 0 0
\(809\) 1429.94i 1.76753i −0.467927 0.883767i \(-0.654999\pi\)
0.467927 0.883767i \(-0.345001\pi\)
\(810\) 0 0
\(811\) 1369.69 1.68889 0.844445 0.535643i \(-0.179931\pi\)
0.844445 + 0.535643i \(0.179931\pi\)
\(812\) 0 0
\(813\) 202.362 647.265i 0.248907 0.796144i
\(814\) 0 0
\(815\) 172.670i 0.211866i
\(816\) 0 0
\(817\) 670.538 0.820732
\(818\) 0 0
\(819\) 476.053 + 329.915i 0.581262 + 0.402827i
\(820\) 0 0
\(821\) 1221.52i 1.48785i −0.668265 0.743923i \(-0.732963\pi\)
0.668265 0.743923i \(-0.267037\pi\)
\(822\) 0 0
\(823\) 223.454 0.271512 0.135756 0.990742i \(-0.456654\pi\)
0.135756 + 0.990742i \(0.456654\pi\)
\(824\) 0 0
\(825\) −42.9982 13.4430i −0.0521191 0.0162946i
\(826\) 0 0
\(827\) 150.303i 0.181744i −0.995863 0.0908722i \(-0.971035\pi\)
0.995863 0.0908722i \(-0.0289655\pi\)
\(828\) 0 0
\(829\) −994.512 −1.19965 −0.599826 0.800130i \(-0.704764\pi\)
−0.599826 + 0.800130i \(0.704764\pi\)
\(830\) 0 0
\(831\) 318.099 1017.46i 0.382791 1.22438i
\(832\) 0 0
\(833\) 25.2273i 0.0302849i
\(834\) 0 0
\(835\) 635.894 0.761550
\(836\) 0 0
\(837\) −110.658 + 86.1937i −0.132208 + 0.102979i
\(838\) 0 0
\(839\) 582.305i 0.694047i 0.937857 + 0.347023i \(0.112808\pi\)
−0.937857 + 0.347023i \(0.887192\pi\)
\(840\) 0 0
\(841\) 656.564 0.780694
\(842\) 0 0
\(843\) −561.171 175.445i −0.665683 0.208120i
\(844\) 0 0
\(845\) 945.095i 1.11846i
\(846\) 0 0
\(847\) 296.271 0.349788
\(848\) 0 0
\(849\) −434.246 + 1388.96i −0.511480 + 1.63600i
\(850\) 0 0
\(851\) 219.607i 0.258057i
\(852\) 0 0
\(853\) 1513.46 1.77428 0.887139 0.461503i \(-0.152690\pi\)
0.887139 + 0.461503i \(0.152690\pi\)
\(854\) 0 0
\(855\) 193.503 279.216i 0.226319 0.326569i
\(856\) 0 0
\(857\) 1275.06i 1.48782i −0.668278 0.743911i \(-0.732969\pi\)
0.668278 0.743911i \(-0.267031\pi\)
\(858\) 0 0
\(859\) 330.107 0.384292 0.192146 0.981366i \(-0.438455\pi\)
0.192146 + 0.981366i \(0.438455\pi\)
\(860\) 0 0
\(861\) 149.172 + 46.6372i 0.173254 + 0.0541663i
\(862\) 0 0
\(863\) 51.0607i 0.0591665i −0.999562 0.0295832i \(-0.990582\pi\)
0.999562 0.0295832i \(-0.00941801\pi\)
\(864\) 0 0
\(865\) 597.737 0.691026
\(866\) 0 0
\(867\) −247.084 + 790.312i −0.284987 + 0.911547i
\(868\) 0 0
\(869\) 9.39207i 0.0108079i
\(870\) 0 0
\(871\) −1163.03 −1.33528
\(872\) 0 0
\(873\) 683.340 + 473.570i 0.782750 + 0.542463i
\(874\) 0 0
\(875\) 29.5804i 0.0338062i
\(876\) 0 0
\(877\) 19.8915 0.0226813 0.0113406 0.999936i \(-0.496390\pi\)
0.0113406 + 0.999936i \(0.496390\pi\)
\(878\) 0 0
\(879\) −1083.68 338.802i −1.23285 0.385440i
\(880\) 0 0
\(881\) 946.321i 1.07414i −0.843536 0.537072i \(-0.819530\pi\)
0.843536 0.537072i \(-0.180470\pi\)
\(882\) 0 0
\(883\) 1500.11 1.69888 0.849441 0.527684i \(-0.176940\pi\)
0.849441 + 0.527684i \(0.176940\pi\)
\(884\) 0 0
\(885\) −149.110 + 476.938i −0.168486 + 0.538913i
\(886\) 0 0
\(887\) 515.237i 0.580876i 0.956894 + 0.290438i \(0.0938010\pi\)
−0.956894 + 0.290438i \(0.906199\pi\)
\(888\) 0 0
\(889\) −236.220 −0.265715
\(890\) 0 0
\(891\) 227.787 85.4125i 0.255653 0.0958614i
\(892\) 0 0
\(893\) 1218.49i 1.36449i
\(894\) 0 0
\(895\) −52.2355 −0.0583637
\(896\) 0 0
\(897\) 863.732 + 270.038i 0.962912 + 0.301046i
\(898\) 0 0
\(899\) 70.5523i 0.0784786i
\(900\) 0 0
\(901\) −52.0430 −0.0577614
\(902\) 0 0
\(903\) −94.0815 + 300.925i −0.104188 + 0.333250i
\(904\) 0 0
\(905\) 267.520i 0.295602i
\(906\) 0 0
\(907\) −841.383 −0.927655 −0.463827 0.885926i \(-0.653524\pi\)
−0.463827 + 0.885926i \(0.653524\pi\)
\(908\) 0 0
\(909\) 484.344 698.887i 0.532831 0.768852i
\(910\) 0 0
\(911\) 564.445i 0.619589i −0.950804 0.309794i \(-0.899740\pi\)
0.950804 0.309794i \(-0.100260\pi\)
\(912\) 0 0
\(913\) 295.414 0.323564
\(914\) 0 0
\(915\) −423.564 132.424i −0.462912 0.144725i
\(916\) 0 0
\(917\) 353.658i 0.385668i
\(918\) 0 0
\(919\) −1171.81 −1.27509 −0.637547 0.770411i \(-0.720051\pi\)
−0.637547 + 0.770411i \(0.720051\pi\)
\(920\) 0 0
\(921\) −513.558 + 1642.64i −0.557610 + 1.78354i
\(922\) 0 0
\(923\) 1138.81i 1.23382i
\(924\) 0 0
\(925\) 88.5407 0.0957197
\(926\) 0 0
\(927\) 176.271 + 122.160i 0.190152 + 0.131780i
\(928\) 0 0
\(929\) 812.845i 0.874967i −0.899226 0.437484i \(-0.855870\pi\)
0.899226 0.437484i \(-0.144130\pi\)
\(930\) 0 0
\(931\) 118.163 0.126921
\(932\) 0 0
\(933\) 1265.36 + 395.602i 1.35622 + 0.424011i
\(934\) 0 0
\(935\) 24.2029i 0.0258855i
\(936\) 0 0
\(937\) 1673.57 1.78610 0.893048 0.449962i \(-0.148563\pi\)
0.893048 + 0.449962i \(0.148563\pi\)
\(938\) 0 0
\(939\) 339.254 1085.12i 0.361293 1.15562i
\(940\) 0 0
\(941\) 974.517i 1.03562i 0.855496 + 0.517809i \(0.173252\pi\)
−0.855496 + 0.517809i \(0.826748\pi\)
\(942\) 0 0
\(943\) 244.196 0.258957
\(944\) 0 0
\(945\) 98.1571 + 126.017i 0.103870 + 0.133351i
\(946\) 0 0
\(947\) 876.037i 0.925066i −0.886602 0.462533i \(-0.846941\pi\)
0.886602 0.462533i \(-0.153059\pi\)
\(948\) 0 0
\(949\) 1028.55 1.08382
\(950\) 0 0
\(951\) −1684.14 526.533i −1.77092 0.553662i
\(952\) 0 0
\(953\) 6.64325i 0.00697088i 0.999994 + 0.00348544i \(0.00110945\pi\)
−0.999994 + 0.00348544i \(0.998891\pi\)
\(954\) 0 0
\(955\) −170.286 −0.178309
\(956\) 0 0
\(957\) 36.5132 116.789i 0.0381538 0.122037i
\(958\) 0 0
\(959\) 137.122i 0.142984i
\(960\) 0 0
\(961\) −934.012 −0.971916
\(962\) 0 0
\(963\) 769.158 1109.86i 0.798710 1.15250i
\(964\) 0 0
\(965\) 259.806i 0.269229i
\(966\) 0 0
\(967\) 1147.22 1.18637 0.593184 0.805067i \(-0.297871\pi\)
0.593184 + 0.805067i \(0.297871\pi\)
\(968\) 0 0
\(969\) 174.192 + 54.4597i 0.179765 + 0.0562020i
\(970\) 0 0
\(971\) 48.8617i 0.0503210i 0.999683 + 0.0251605i \(0.00800968\pi\)
−0.999683 + 0.0251605i \(0.991990\pi\)
\(972\) 0 0
\(973\) 503.732 0.517710
\(974\) 0 0
\(975\) −108.874 + 348.238i −0.111665 + 0.357167i
\(976\) 0 0
\(977\) 454.682i 0.465386i −0.972550 0.232693i \(-0.925246\pi\)
0.972550 0.232693i \(-0.0747537\pi\)
\(978\) 0 0
\(979\) −465.042 −0.475017
\(980\) 0 0
\(981\) −1193.25 826.948i −1.21636 0.842965i
\(982\) 0 0
\(983\) 493.543i 0.502078i 0.967977 + 0.251039i \(0.0807722\pi\)
−0.967977 + 0.251039i \(0.919228\pi\)
\(984\) 0 0
\(985\) −553.393 −0.561820
\(986\) 0 0
\(987\) 546.835 + 170.963i 0.554038 + 0.173215i
\(988\) 0 0
\(989\) 492.619i 0.498098i
\(990\) 0 0
\(991\) −321.693 −0.324614 −0.162307 0.986740i \(-0.551893\pi\)
−0.162307 + 0.986740i \(0.551893\pi\)
\(992\) 0 0
\(993\) 184.003 588.544i 0.185300 0.592693i
\(994\) 0 0
\(995\) 97.2718i 0.0977606i
\(996\) 0 0
\(997\) −1254.19 −1.25796 −0.628980 0.777421i \(-0.716527\pi\)
−0.628980 + 0.777421i \(0.716527\pi\)
\(998\) 0 0
\(999\) −377.196 + 293.806i −0.377573 + 0.294100i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.l.b.1121.6 16
3.2 odd 2 inner 1680.3.l.b.1121.5 16
4.3 odd 2 420.3.g.a.281.11 16
12.11 even 2 420.3.g.a.281.12 yes 16
20.3 even 4 2100.3.e.c.449.30 32
20.7 even 4 2100.3.e.c.449.3 32
20.19 odd 2 2100.3.g.d.701.6 16
60.23 odd 4 2100.3.e.c.449.4 32
60.47 odd 4 2100.3.e.c.449.29 32
60.59 even 2 2100.3.g.d.701.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.g.a.281.11 16 4.3 odd 2
420.3.g.a.281.12 yes 16 12.11 even 2
1680.3.l.b.1121.5 16 3.2 odd 2 inner
1680.3.l.b.1121.6 16 1.1 even 1 trivial
2100.3.e.c.449.3 32 20.7 even 4
2100.3.e.c.449.4 32 60.23 odd 4
2100.3.e.c.449.29 32 60.47 odd 4
2100.3.e.c.449.30 32 20.3 even 4
2100.3.g.d.701.5 16 60.59 even 2
2100.3.g.d.701.6 16 20.19 odd 2