Properties

Label 2100.3.e.c.449.32
Level $2100$
Weight $3$
Character 2100.449
Analytic conductor $57.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(449,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.32
Character \(\chi\) \(=\) 2100.449
Dual form 2100.3.e.c.449.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.97031 + 0.421042i) q^{3} +2.64575i q^{7} +(8.64545 + 2.50125i) q^{9} +8.16468i q^{11} +5.77792i q^{13} -28.0655 q^{17} +4.50420 q^{19} +(-1.11397 + 7.85869i) q^{21} -13.6408 q^{23} +(24.6265 + 11.0696i) q^{27} +15.1126i q^{29} -57.3810 q^{31} +(-3.43768 + 24.2516i) q^{33} -9.23344i q^{37} +(-2.43275 + 17.1622i) q^{39} +23.0823i q^{41} +33.1640i q^{43} -4.35488 q^{47} -7.00000 q^{49} +(-83.3630 - 11.8167i) q^{51} -22.9301 q^{53} +(13.3789 + 1.89646i) q^{57} -36.3623i q^{59} -22.8074 q^{61} +(-6.61769 + 22.8737i) q^{63} -6.78336i q^{67} +(-40.5173 - 5.74334i) q^{69} +80.7397i q^{71} -120.569i q^{73} -21.6017 q^{77} +54.4972 q^{79} +(68.4875 + 43.2489i) q^{81} -57.2963 q^{83} +(-6.36306 + 44.8892i) q^{87} -150.774i q^{89} -15.2869 q^{91} +(-170.439 - 24.1598i) q^{93} +117.942i q^{97} +(-20.4219 + 70.5873i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{9} - 96 q^{19} - 28 q^{21} + 48 q^{31} + 108 q^{39} - 224 q^{49} - 372 q^{51} - 304 q^{61} + 392 q^{69} - 424 q^{79} - 236 q^{81} + 392 q^{91} - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.97031 + 0.421042i 0.990102 + 0.140347i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) 8.64545 + 2.50125i 0.960605 + 0.277917i
\(10\) 0 0
\(11\) 8.16468i 0.742243i 0.928584 + 0.371122i \(0.121027\pi\)
−0.928584 + 0.371122i \(0.878973\pi\)
\(12\) 0 0
\(13\) 5.77792i 0.444455i 0.974995 + 0.222228i \(0.0713328\pi\)
−0.974995 + 0.222228i \(0.928667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −28.0655 −1.65091 −0.825454 0.564469i \(-0.809081\pi\)
−0.825454 + 0.564469i \(0.809081\pi\)
\(18\) 0 0
\(19\) 4.50420 0.237063 0.118532 0.992950i \(-0.462181\pi\)
0.118532 + 0.992950i \(0.462181\pi\)
\(20\) 0 0
\(21\) −1.11397 + 7.85869i −0.0530464 + 0.374223i
\(22\) 0 0
\(23\) −13.6408 −0.593077 −0.296538 0.955021i \(-0.595832\pi\)
−0.296538 + 0.955021i \(0.595832\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 24.6265 + 11.0696i 0.912092 + 0.409985i
\(28\) 0 0
\(29\) 15.1126i 0.521125i 0.965457 + 0.260563i \(0.0839080\pi\)
−0.965457 + 0.260563i \(0.916092\pi\)
\(30\) 0 0
\(31\) −57.3810 −1.85100 −0.925500 0.378748i \(-0.876355\pi\)
−0.925500 + 0.378748i \(0.876355\pi\)
\(32\) 0 0
\(33\) −3.43768 + 24.2516i −0.104172 + 0.734897i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.23344i 0.249552i −0.992185 0.124776i \(-0.960179\pi\)
0.992185 0.124776i \(-0.0398213\pi\)
\(38\) 0 0
\(39\) −2.43275 + 17.1622i −0.0623782 + 0.440056i
\(40\) 0 0
\(41\) 23.0823i 0.562983i 0.959564 + 0.281492i \(0.0908292\pi\)
−0.959564 + 0.281492i \(0.909171\pi\)
\(42\) 0 0
\(43\) 33.1640i 0.771255i 0.922654 + 0.385628i \(0.126015\pi\)
−0.922654 + 0.385628i \(0.873985\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.35488 −0.0926571 −0.0463286 0.998926i \(-0.514752\pi\)
−0.0463286 + 0.998926i \(0.514752\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) −83.3630 11.8167i −1.63457 0.231701i
\(52\) 0 0
\(53\) −22.9301 −0.432643 −0.216322 0.976322i \(-0.569406\pi\)
−0.216322 + 0.976322i \(0.569406\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 13.3789 + 1.89646i 0.234717 + 0.0332712i
\(58\) 0 0
\(59\) 36.3623i 0.616311i −0.951336 0.308155i \(-0.900288\pi\)
0.951336 0.308155i \(-0.0997117\pi\)
\(60\) 0 0
\(61\) −22.8074 −0.373892 −0.186946 0.982370i \(-0.559859\pi\)
−0.186946 + 0.982370i \(0.559859\pi\)
\(62\) 0 0
\(63\) −6.61769 + 22.8737i −0.105043 + 0.363075i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.78336i 0.101244i −0.998718 0.0506221i \(-0.983880\pi\)
0.998718 0.0506221i \(-0.0161204\pi\)
\(68\) 0 0
\(69\) −40.5173 5.74334i −0.587207 0.0832368i
\(70\) 0 0
\(71\) 80.7397i 1.13718i 0.822622 + 0.568589i \(0.192511\pi\)
−0.822622 + 0.568589i \(0.807489\pi\)
\(72\) 0 0
\(73\) 120.569i 1.65163i −0.563944 0.825813i \(-0.690717\pi\)
0.563944 0.825813i \(-0.309283\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −21.6017 −0.280542
\(78\) 0 0
\(79\) 54.4972 0.689838 0.344919 0.938633i \(-0.387906\pi\)
0.344919 + 0.938633i \(0.387906\pi\)
\(80\) 0 0
\(81\) 68.4875 + 43.2489i 0.845525 + 0.533937i
\(82\) 0 0
\(83\) −57.2963 −0.690316 −0.345158 0.938545i \(-0.612175\pi\)
−0.345158 + 0.938545i \(0.612175\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.36306 + 44.8892i −0.0731386 + 0.515967i
\(88\) 0 0
\(89\) 150.774i 1.69409i −0.531523 0.847044i \(-0.678380\pi\)
0.531523 0.847044i \(-0.321620\pi\)
\(90\) 0 0
\(91\) −15.2869 −0.167988
\(92\) 0 0
\(93\) −170.439 24.1598i −1.83268 0.259783i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 117.942i 1.21590i 0.793976 + 0.607949i \(0.208007\pi\)
−0.793976 + 0.607949i \(0.791993\pi\)
\(98\) 0 0
\(99\) −20.4219 + 70.5873i −0.206282 + 0.713003i
\(100\) 0 0
\(101\) 140.433i 1.39043i 0.718804 + 0.695213i \(0.244690\pi\)
−0.718804 + 0.695213i \(0.755310\pi\)
\(102\) 0 0
\(103\) 10.1147i 0.0982014i −0.998794 0.0491007i \(-0.984364\pi\)
0.998794 0.0491007i \(-0.0156355\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 55.1068 0.515017 0.257509 0.966276i \(-0.417098\pi\)
0.257509 + 0.966276i \(0.417098\pi\)
\(108\) 0 0
\(109\) −63.5989 −0.583477 −0.291738 0.956498i \(-0.594234\pi\)
−0.291738 + 0.956498i \(0.594234\pi\)
\(110\) 0 0
\(111\) 3.88767 27.4261i 0.0350241 0.247082i
\(112\) 0 0
\(113\) 25.6257 0.226776 0.113388 0.993551i \(-0.463830\pi\)
0.113388 + 0.993551i \(0.463830\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −14.4520 + 49.9527i −0.123522 + 0.426946i
\(118\) 0 0
\(119\) 74.2542i 0.623985i
\(120\) 0 0
\(121\) 54.3380 0.449075
\(122\) 0 0
\(123\) −9.71863 + 68.5616i −0.0790133 + 0.557411i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 69.5279i 0.547464i −0.961806 0.273732i \(-0.911742\pi\)
0.961806 0.273732i \(-0.0882581\pi\)
\(128\) 0 0
\(129\) −13.9634 + 98.5072i −0.108244 + 0.763622i
\(130\) 0 0
\(131\) 114.353i 0.872927i 0.899722 + 0.436463i \(0.143769\pi\)
−0.899722 + 0.436463i \(0.856231\pi\)
\(132\) 0 0
\(133\) 11.9170i 0.0896014i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −165.307 −1.20662 −0.603310 0.797507i \(-0.706152\pi\)
−0.603310 + 0.797507i \(0.706152\pi\)
\(138\) 0 0
\(139\) −207.941 −1.49598 −0.747989 0.663712i \(-0.768980\pi\)
−0.747989 + 0.663712i \(0.768980\pi\)
\(140\) 0 0
\(141\) −12.9353 1.83359i −0.0917400 0.0130042i
\(142\) 0 0
\(143\) −47.1749 −0.329894
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −20.7921 2.94730i −0.141443 0.0200496i
\(148\) 0 0
\(149\) 127.831i 0.857927i 0.903322 + 0.428963i \(0.141121\pi\)
−0.903322 + 0.428963i \(0.858879\pi\)
\(150\) 0 0
\(151\) 218.450 1.44669 0.723343 0.690489i \(-0.242604\pi\)
0.723343 + 0.690489i \(0.242604\pi\)
\(152\) 0 0
\(153\) −242.638 70.1987i −1.58587 0.458815i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 274.083i 1.74575i 0.487942 + 0.872876i \(0.337748\pi\)
−0.487942 + 0.872876i \(0.662252\pi\)
\(158\) 0 0
\(159\) −68.1094 9.65454i −0.428361 0.0607204i
\(160\) 0 0
\(161\) 36.0901i 0.224162i
\(162\) 0 0
\(163\) 283.820i 1.74123i 0.491968 + 0.870613i \(0.336278\pi\)
−0.491968 + 0.870613i \(0.663722\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −101.223 −0.606127 −0.303064 0.952970i \(-0.598009\pi\)
−0.303064 + 0.952970i \(0.598009\pi\)
\(168\) 0 0
\(169\) 135.616 0.802459
\(170\) 0 0
\(171\) 38.9408 + 11.2661i 0.227724 + 0.0658838i
\(172\) 0 0
\(173\) −332.624 −1.92268 −0.961340 0.275363i \(-0.911202\pi\)
−0.961340 + 0.275363i \(0.911202\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 15.3101 108.007i 0.0864977 0.610211i
\(178\) 0 0
\(179\) 15.1419i 0.0845918i 0.999105 + 0.0422959i \(0.0134672\pi\)
−0.999105 + 0.0422959i \(0.986533\pi\)
\(180\) 0 0
\(181\) 244.178 1.34905 0.674525 0.738252i \(-0.264349\pi\)
0.674525 + 0.738252i \(0.264349\pi\)
\(182\) 0 0
\(183\) −67.7450 9.60288i −0.370191 0.0524748i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 229.145i 1.22538i
\(188\) 0 0
\(189\) −29.2874 + 65.1556i −0.154960 + 0.344739i
\(190\) 0 0
\(191\) 328.924i 1.72211i 0.508508 + 0.861057i \(0.330197\pi\)
−0.508508 + 0.861057i \(0.669803\pi\)
\(192\) 0 0
\(193\) 304.626i 1.57837i −0.614154 0.789186i \(-0.710502\pi\)
0.614154 0.789186i \(-0.289498\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −235.048 −1.19314 −0.596568 0.802563i \(-0.703469\pi\)
−0.596568 + 0.802563i \(0.703469\pi\)
\(198\) 0 0
\(199\) 298.075 1.49786 0.748931 0.662648i \(-0.230567\pi\)
0.748931 + 0.662648i \(0.230567\pi\)
\(200\) 0 0
\(201\) 2.85608 20.1487i 0.0142094 0.100242i
\(202\) 0 0
\(203\) −39.9843 −0.196967
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −117.931 34.1190i −0.569713 0.164826i
\(208\) 0 0
\(209\) 36.7753i 0.175959i
\(210\) 0 0
\(211\) −113.494 −0.537885 −0.268942 0.963156i \(-0.586674\pi\)
−0.268942 + 0.963156i \(0.586674\pi\)
\(212\) 0 0
\(213\) −33.9948 + 239.822i −0.159600 + 1.12592i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 151.816i 0.699612i
\(218\) 0 0
\(219\) 50.7646 358.126i 0.231802 1.63528i
\(220\) 0 0
\(221\) 162.160i 0.733755i
\(222\) 0 0
\(223\) 337.861i 1.51507i −0.652794 0.757536i \(-0.726403\pi\)
0.652794 0.757536i \(-0.273597\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 41.4984 0.182812 0.0914062 0.995814i \(-0.470864\pi\)
0.0914062 + 0.995814i \(0.470864\pi\)
\(228\) 0 0
\(229\) 341.169 1.48982 0.744911 0.667164i \(-0.232492\pi\)
0.744911 + 0.667164i \(0.232492\pi\)
\(230\) 0 0
\(231\) −64.1637 9.09524i −0.277765 0.0393733i
\(232\) 0 0
\(233\) 113.530 0.487255 0.243627 0.969869i \(-0.421663\pi\)
0.243627 + 0.969869i \(0.421663\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 161.873 + 22.9456i 0.683010 + 0.0968170i
\(238\) 0 0
\(239\) 157.758i 0.660074i 0.943968 + 0.330037i \(0.107061\pi\)
−0.943968 + 0.330037i \(0.892939\pi\)
\(240\) 0 0
\(241\) 247.947 1.02883 0.514413 0.857542i \(-0.328010\pi\)
0.514413 + 0.857542i \(0.328010\pi\)
\(242\) 0 0
\(243\) 185.219 + 157.299i 0.762219 + 0.647319i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 26.0249i 0.105364i
\(248\) 0 0
\(249\) −170.187 24.1242i −0.683484 0.0968842i
\(250\) 0 0
\(251\) 276.737i 1.10254i 0.834328 + 0.551268i \(0.185856\pi\)
−0.834328 + 0.551268i \(0.814144\pi\)
\(252\) 0 0
\(253\) 111.372i 0.440207i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −157.228 −0.611782 −0.305891 0.952067i \(-0.598954\pi\)
−0.305891 + 0.952067i \(0.598954\pi\)
\(258\) 0 0
\(259\) 24.4294 0.0943219
\(260\) 0 0
\(261\) −37.8005 + 130.655i −0.144829 + 0.500596i
\(262\) 0 0
\(263\) −306.093 −1.16385 −0.581926 0.813242i \(-0.697701\pi\)
−0.581926 + 0.813242i \(0.697701\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 63.4822 447.844i 0.237761 1.67732i
\(268\) 0 0
\(269\) 240.912i 0.895584i −0.894138 0.447792i \(-0.852211\pi\)
0.894138 0.447792i \(-0.147789\pi\)
\(270\) 0 0
\(271\) 0.693234 0.00255806 0.00127903 0.999999i \(-0.499593\pi\)
0.00127903 + 0.999999i \(0.499593\pi\)
\(272\) 0 0
\(273\) −45.4069 6.43645i −0.166326 0.0235767i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 195.345i 0.705215i −0.935771 0.352608i \(-0.885295\pi\)
0.935771 0.352608i \(-0.114705\pi\)
\(278\) 0 0
\(279\) −496.084 143.524i −1.77808 0.514424i
\(280\) 0 0
\(281\) 407.985i 1.45191i 0.687745 + 0.725953i \(0.258601\pi\)
−0.687745 + 0.725953i \(0.741399\pi\)
\(282\) 0 0
\(283\) 387.819i 1.37039i 0.728362 + 0.685193i \(0.240282\pi\)
−0.728362 + 0.685193i \(0.759718\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −61.0701 −0.212788
\(288\) 0 0
\(289\) 498.670 1.72550
\(290\) 0 0
\(291\) −49.6586 + 350.324i −0.170648 + 1.20386i
\(292\) 0 0
\(293\) −98.4013 −0.335840 −0.167920 0.985801i \(-0.553705\pi\)
−0.167920 + 0.985801i \(0.553705\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −90.3796 + 201.067i −0.304308 + 0.676995i
\(298\) 0 0
\(299\) 78.8153i 0.263596i
\(300\) 0 0
\(301\) −87.7437 −0.291507
\(302\) 0 0
\(303\) −59.1283 + 417.129i −0.195143 + 1.37666i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 172.156i 0.560769i −0.959888 0.280384i \(-0.909538\pi\)
0.959888 0.280384i \(-0.0904620\pi\)
\(308\) 0 0
\(309\) 4.25874 30.0439i 0.0137823 0.0972294i
\(310\) 0 0
\(311\) 463.864i 1.49152i −0.666212 0.745762i \(-0.732086\pi\)
0.666212 0.745762i \(-0.267914\pi\)
\(312\) 0 0
\(313\) 354.701i 1.13323i 0.823983 + 0.566615i \(0.191747\pi\)
−0.823983 + 0.566615i \(0.808253\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 44.9323 0.141742 0.0708711 0.997485i \(-0.477422\pi\)
0.0708711 + 0.997485i \(0.477422\pi\)
\(318\) 0 0
\(319\) −123.390 −0.386802
\(320\) 0 0
\(321\) 163.684 + 23.2023i 0.509920 + 0.0722814i
\(322\) 0 0
\(323\) −126.412 −0.391370
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −188.908 26.7779i −0.577701 0.0818895i
\(328\) 0 0
\(329\) 11.5219i 0.0350211i
\(330\) 0 0
\(331\) −31.4599 −0.0950451 −0.0475226 0.998870i \(-0.515133\pi\)
−0.0475226 + 0.998870i \(0.515133\pi\)
\(332\) 0 0
\(333\) 23.0951 79.8272i 0.0693548 0.239721i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 392.031i 1.16330i −0.813441 0.581648i \(-0.802408\pi\)
0.813441 0.581648i \(-0.197592\pi\)
\(338\) 0 0
\(339\) 76.1163 + 10.7895i 0.224532 + 0.0318275i
\(340\) 0 0
\(341\) 468.497i 1.37389i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 649.989 1.87317 0.936584 0.350444i \(-0.113969\pi\)
0.936584 + 0.350444i \(0.113969\pi\)
\(348\) 0 0
\(349\) 176.534 0.505827 0.252913 0.967489i \(-0.418611\pi\)
0.252913 + 0.967489i \(0.418611\pi\)
\(350\) 0 0
\(351\) −63.9592 + 142.290i −0.182220 + 0.405384i
\(352\) 0 0
\(353\) −84.4749 −0.239306 −0.119653 0.992816i \(-0.538178\pi\)
−0.119653 + 0.992816i \(0.538178\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 31.2642 220.558i 0.0875747 0.617809i
\(358\) 0 0
\(359\) 175.365i 0.488481i 0.969715 + 0.244241i \(0.0785387\pi\)
−0.969715 + 0.244241i \(0.921461\pi\)
\(360\) 0 0
\(361\) −340.712 −0.943801
\(362\) 0 0
\(363\) 161.401 + 22.8786i 0.444630 + 0.0630265i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 643.483i 1.75336i 0.481075 + 0.876680i \(0.340247\pi\)
−0.481075 + 0.876680i \(0.659753\pi\)
\(368\) 0 0
\(369\) −57.7347 + 199.557i −0.156462 + 0.540805i
\(370\) 0 0
\(371\) 60.6673i 0.163524i
\(372\) 0 0
\(373\) 312.351i 0.837402i −0.908124 0.418701i \(-0.862486\pi\)
0.908124 0.418701i \(-0.137514\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −87.3196 −0.231617
\(378\) 0 0
\(379\) −129.174 −0.340830 −0.170415 0.985372i \(-0.554511\pi\)
−0.170415 + 0.985372i \(0.554511\pi\)
\(380\) 0 0
\(381\) 29.2742 206.519i 0.0768352 0.542045i
\(382\) 0 0
\(383\) −371.018 −0.968716 −0.484358 0.874870i \(-0.660947\pi\)
−0.484358 + 0.874870i \(0.660947\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −82.9514 + 286.717i −0.214345 + 0.740872i
\(388\) 0 0
\(389\) 239.364i 0.615332i 0.951494 + 0.307666i \(0.0995479\pi\)
−0.951494 + 0.307666i \(0.900452\pi\)
\(390\) 0 0
\(391\) 382.834 0.979116
\(392\) 0 0
\(393\) −48.1476 + 339.665i −0.122513 + 0.864287i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 745.866i 1.87875i 0.342885 + 0.939377i \(0.388596\pi\)
−0.342885 + 0.939377i \(0.611404\pi\)
\(398\) 0 0
\(399\) −5.01756 + 35.3971i −0.0125753 + 0.0887146i
\(400\) 0 0
\(401\) 338.979i 0.845335i 0.906285 + 0.422667i \(0.138906\pi\)
−0.906285 + 0.422667i \(0.861094\pi\)
\(402\) 0 0
\(403\) 331.543i 0.822687i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 75.3881 0.185229
\(408\) 0 0
\(409\) 242.273 0.592355 0.296177 0.955133i \(-0.404288\pi\)
0.296177 + 0.955133i \(0.404288\pi\)
\(410\) 0 0
\(411\) −491.012 69.6012i −1.19468 0.169346i
\(412\) 0 0
\(413\) 96.2057 0.232944
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −617.648 87.5519i −1.48117 0.209957i
\(418\) 0 0
\(419\) 116.740i 0.278615i 0.990249 + 0.139308i \(0.0444877\pi\)
−0.990249 + 0.139308i \(0.955512\pi\)
\(420\) 0 0
\(421\) −57.9552 −0.137661 −0.0688304 0.997628i \(-0.521927\pi\)
−0.0688304 + 0.997628i \(0.521927\pi\)
\(422\) 0 0
\(423\) −37.6499 10.8927i −0.0890069 0.0257510i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 60.3427i 0.141318i
\(428\) 0 0
\(429\) −140.124 19.8626i −0.326629 0.0462998i
\(430\) 0 0
\(431\) 683.443i 1.58571i −0.609408 0.792857i \(-0.708593\pi\)
0.609408 0.792857i \(-0.291407\pi\)
\(432\) 0 0
\(433\) 710.818i 1.64161i −0.571207 0.820806i \(-0.693525\pi\)
0.571207 0.820806i \(-0.306475\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −61.4407 −0.140597
\(438\) 0 0
\(439\) 113.873 0.259392 0.129696 0.991554i \(-0.458600\pi\)
0.129696 + 0.991554i \(0.458600\pi\)
\(440\) 0 0
\(441\) −60.5181 17.5088i −0.137229 0.0397024i
\(442\) 0 0
\(443\) 285.321 0.644066 0.322033 0.946728i \(-0.395634\pi\)
0.322033 + 0.946728i \(0.395634\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −53.8223 + 379.698i −0.120408 + 0.849435i
\(448\) 0 0
\(449\) 248.688i 0.553871i −0.960888 0.276936i \(-0.910681\pi\)
0.960888 0.276936i \(-0.0893189\pi\)
\(450\) 0 0
\(451\) −188.460 −0.417871
\(452\) 0 0
\(453\) 648.863 + 91.9766i 1.43237 + 0.203039i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 179.703i 0.393224i 0.980481 + 0.196612i \(0.0629940\pi\)
−0.980481 + 0.196612i \(0.937006\pi\)
\(458\) 0 0
\(459\) −691.154 310.673i −1.50578 0.676847i
\(460\) 0 0
\(461\) 496.992i 1.07807i 0.842282 + 0.539037i \(0.181212\pi\)
−0.842282 + 0.539037i \(0.818788\pi\)
\(462\) 0 0
\(463\) 289.473i 0.625212i −0.949883 0.312606i \(-0.898798\pi\)
0.949883 0.312606i \(-0.101202\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 200.191 0.428674 0.214337 0.976760i \(-0.431241\pi\)
0.214337 + 0.976760i \(0.431241\pi\)
\(468\) 0 0
\(469\) 17.9471 0.0382667
\(470\) 0 0
\(471\) −115.401 + 814.111i −0.245012 + 1.72847i
\(472\) 0 0
\(473\) −270.773 −0.572459
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −198.241 57.3539i −0.415599 0.120239i
\(478\) 0 0
\(479\) 616.585i 1.28723i −0.765348 0.643617i \(-0.777433\pi\)
0.765348 0.643617i \(-0.222567\pi\)
\(480\) 0 0
\(481\) 53.3501 0.110915
\(482\) 0 0
\(483\) 15.1955 107.199i 0.0314606 0.221943i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 393.608i 0.808229i 0.914708 + 0.404115i \(0.132420\pi\)
−0.914708 + 0.404115i \(0.867580\pi\)
\(488\) 0 0
\(489\) −119.500 + 843.032i −0.244377 + 1.72399i
\(490\) 0 0
\(491\) 602.139i 1.22635i −0.789946 0.613176i \(-0.789892\pi\)
0.789946 0.613176i \(-0.210108\pi\)
\(492\) 0 0
\(493\) 424.143i 0.860330i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −213.617 −0.429813
\(498\) 0 0
\(499\) 384.486 0.770513 0.385257 0.922810i \(-0.374113\pi\)
0.385257 + 0.922810i \(0.374113\pi\)
\(500\) 0 0
\(501\) −300.664 42.6193i −0.600128 0.0850684i
\(502\) 0 0
\(503\) 458.304 0.911141 0.455571 0.890200i \(-0.349435\pi\)
0.455571 + 0.890200i \(0.349435\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 402.820 + 57.0999i 0.794517 + 0.112623i
\(508\) 0 0
\(509\) 715.661i 1.40601i 0.711183 + 0.703007i \(0.248160\pi\)
−0.711183 + 0.703007i \(0.751840\pi\)
\(510\) 0 0
\(511\) 318.995 0.624256
\(512\) 0 0
\(513\) 110.923 + 49.8596i 0.216223 + 0.0971922i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 35.5562i 0.0687741i
\(518\) 0 0
\(519\) −987.995 140.049i −1.90365 0.269843i
\(520\) 0 0
\(521\) 58.2889i 0.111879i −0.998434 0.0559394i \(-0.982185\pi\)
0.998434 0.0559394i \(-0.0178154\pi\)
\(522\) 0 0
\(523\) 676.567i 1.29363i −0.762648 0.646814i \(-0.776101\pi\)
0.762648 0.646814i \(-0.223899\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1610.42 3.05583
\(528\) 0 0
\(529\) −342.929 −0.648260
\(530\) 0 0
\(531\) 90.9513 314.369i 0.171283 0.592031i
\(532\) 0 0
\(533\) −133.368 −0.250221
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.37540 + 44.9762i −0.0118722 + 0.0837546i
\(538\) 0 0
\(539\) 57.1527i 0.106035i
\(540\) 0 0
\(541\) −430.418 −0.795596 −0.397798 0.917473i \(-0.630226\pi\)
−0.397798 + 0.917473i \(0.630226\pi\)
\(542\) 0 0
\(543\) 725.284 + 102.809i 1.33570 + 0.189336i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 110.245i 0.201546i −0.994909 0.100773i \(-0.967868\pi\)
0.994909 0.100773i \(-0.0321315\pi\)
\(548\) 0 0
\(549\) −197.180 57.0470i −0.359162 0.103911i
\(550\) 0 0
\(551\) 68.0703i 0.123540i
\(552\) 0 0
\(553\) 144.186i 0.260734i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −463.317 −0.831809 −0.415904 0.909408i \(-0.636535\pi\)
−0.415904 + 0.909408i \(0.636535\pi\)
\(558\) 0 0
\(559\) −191.619 −0.342789
\(560\) 0 0
\(561\) 96.4799 680.632i 0.171978 1.21325i
\(562\) 0 0
\(563\) 878.072 1.55963 0.779815 0.626010i \(-0.215313\pi\)
0.779815 + 0.626010i \(0.215313\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −114.426 + 181.201i −0.201809 + 0.319578i
\(568\) 0 0
\(569\) 579.224i 1.01797i 0.860776 + 0.508984i \(0.169979\pi\)
−0.860776 + 0.508984i \(0.830021\pi\)
\(570\) 0 0
\(571\) 471.669 0.826040 0.413020 0.910722i \(-0.364474\pi\)
0.413020 + 0.910722i \(0.364474\pi\)
\(572\) 0 0
\(573\) −138.491 + 977.005i −0.241694 + 1.70507i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 291.140i 0.504576i 0.967652 + 0.252288i \(0.0811831\pi\)
−0.967652 + 0.252288i \(0.918817\pi\)
\(578\) 0 0
\(579\) 128.260 904.833i 0.221521 1.56275i
\(580\) 0 0
\(581\) 151.592i 0.260915i
\(582\) 0 0
\(583\) 187.217i 0.321127i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 731.515 1.24619 0.623096 0.782145i \(-0.285874\pi\)
0.623096 + 0.782145i \(0.285874\pi\)
\(588\) 0 0
\(589\) −258.455 −0.438804
\(590\) 0 0
\(591\) −698.164 98.9651i −1.18133 0.167454i
\(592\) 0 0
\(593\) 683.187 1.15209 0.576043 0.817419i \(-0.304596\pi\)
0.576043 + 0.817419i \(0.304596\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 885.373 + 125.502i 1.48304 + 0.210221i
\(598\) 0 0
\(599\) 464.649i 0.775708i 0.921721 + 0.387854i \(0.126783\pi\)
−0.921721 + 0.387854i \(0.873217\pi\)
\(600\) 0 0
\(601\) −242.259 −0.403093 −0.201547 0.979479i \(-0.564597\pi\)
−0.201547 + 0.979479i \(0.564597\pi\)
\(602\) 0 0
\(603\) 16.9669 58.6452i 0.0281374 0.0972557i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 143.456i 0.236337i −0.992994 0.118168i \(-0.962298\pi\)
0.992994 0.118168i \(-0.0377022\pi\)
\(608\) 0 0
\(609\) −118.766 16.8351i −0.195017 0.0276438i
\(610\) 0 0
\(611\) 25.1622i 0.0411820i
\(612\) 0 0
\(613\) 274.405i 0.447643i 0.974630 + 0.223821i \(0.0718533\pi\)
−0.974630 + 0.223821i \(0.928147\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 232.732 0.377199 0.188600 0.982054i \(-0.439605\pi\)
0.188600 + 0.982054i \(0.439605\pi\)
\(618\) 0 0
\(619\) 1209.75 1.95437 0.977185 0.212392i \(-0.0681253\pi\)
0.977185 + 0.212392i \(0.0681253\pi\)
\(620\) 0 0
\(621\) −335.924 150.998i −0.540941 0.243152i
\(622\) 0 0
\(623\) 398.910 0.640305
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −15.4840 + 109.234i −0.0246953 + 0.174217i
\(628\) 0 0
\(629\) 259.141i 0.411988i
\(630\) 0 0
\(631\) 581.467 0.921500 0.460750 0.887530i \(-0.347580\pi\)
0.460750 + 0.887530i \(0.347580\pi\)
\(632\) 0 0
\(633\) −337.111 47.7856i −0.532561 0.0754907i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 40.4454i 0.0634936i
\(638\) 0 0
\(639\) −201.950 + 698.031i −0.316041 + 1.09238i
\(640\) 0 0
\(641\) 1052.94i 1.64265i −0.570461 0.821325i \(-0.693235\pi\)
0.570461 0.821325i \(-0.306765\pi\)
\(642\) 0 0
\(643\) 307.328i 0.477959i −0.971025 0.238980i \(-0.923187\pi\)
0.971025 0.238980i \(-0.0768129\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −765.017 −1.18241 −0.591203 0.806523i \(-0.701347\pi\)
−0.591203 + 0.806523i \(0.701347\pi\)
\(648\) 0 0
\(649\) 296.887 0.457453
\(650\) 0 0
\(651\) 63.9209 450.940i 0.0981888 0.692688i
\(652\) 0 0
\(653\) −455.317 −0.697270 −0.348635 0.937259i \(-0.613355\pi\)
−0.348635 + 0.937259i \(0.613355\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 301.573 1042.37i 0.459015 1.58656i
\(658\) 0 0
\(659\) 345.201i 0.523825i −0.965092 0.261913i \(-0.915647\pi\)
0.965092 0.261913i \(-0.0843532\pi\)
\(660\) 0 0
\(661\) −487.944 −0.738191 −0.369096 0.929391i \(-0.620333\pi\)
−0.369096 + 0.929391i \(0.620333\pi\)
\(662\) 0 0
\(663\) 68.2762 481.665i 0.102981 0.726493i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 206.148i 0.309067i
\(668\) 0 0
\(669\) 142.254 1003.55i 0.212636 1.50008i
\(670\) 0 0
\(671\) 186.215i 0.277519i
\(672\) 0 0
\(673\) 562.562i 0.835902i 0.908470 + 0.417951i \(0.137252\pi\)
−0.908470 + 0.417951i \(0.862748\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −944.244 −1.39475 −0.697373 0.716708i \(-0.745648\pi\)
−0.697373 + 0.716708i \(0.745648\pi\)
\(678\) 0 0
\(679\) −312.045 −0.459566
\(680\) 0 0
\(681\) 123.263 + 17.4726i 0.181003 + 0.0256573i
\(682\) 0 0
\(683\) 801.351 1.17328 0.586641 0.809847i \(-0.300450\pi\)
0.586641 + 0.809847i \(0.300450\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1013.38 + 143.647i 1.47508 + 0.209093i
\(688\) 0 0
\(689\) 132.488i 0.192291i
\(690\) 0 0
\(691\) 360.516 0.521731 0.260866 0.965375i \(-0.415992\pi\)
0.260866 + 0.965375i \(0.415992\pi\)
\(692\) 0 0
\(693\) −186.756 54.0313i −0.269490 0.0779672i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 647.816i 0.929434i
\(698\) 0 0
\(699\) 337.220 + 47.8011i 0.482432 + 0.0683850i
\(700\) 0 0
\(701\) 818.208i 1.16720i 0.812041 + 0.583601i \(0.198357\pi\)
−0.812041 + 0.583601i \(0.801643\pi\)
\(702\) 0 0
\(703\) 41.5892i 0.0591597i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −371.551 −0.525531
\(708\) 0 0
\(709\) 437.371 0.616884 0.308442 0.951243i \(-0.400192\pi\)
0.308442 + 0.951243i \(0.400192\pi\)
\(710\) 0 0
\(711\) 471.152 + 136.311i 0.662662 + 0.191717i
\(712\) 0 0
\(713\) 782.721 1.09778
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −66.4227 + 468.589i −0.0926397 + 0.653541i
\(718\) 0 0
\(719\) 527.093i 0.733091i −0.930400 0.366546i \(-0.880540\pi\)
0.930400 0.366546i \(-0.119460\pi\)
\(720\) 0 0
\(721\) 26.7611 0.0371166
\(722\) 0 0
\(723\) 736.479 + 104.396i 1.01864 + 0.144393i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 809.719i 1.11378i −0.830586 0.556891i \(-0.811994\pi\)
0.830586 0.556891i \(-0.188006\pi\)
\(728\) 0 0
\(729\) 483.929 + 545.210i 0.663825 + 0.747888i
\(730\) 0 0
\(731\) 930.762i 1.27327i
\(732\) 0 0
\(733\) 215.991i 0.294667i −0.989087 0.147333i \(-0.952931\pi\)
0.989087 0.147333i \(-0.0470690\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 55.3839 0.0751478
\(738\) 0 0
\(739\) 1025.08 1.38712 0.693560 0.720398i \(-0.256041\pi\)
0.693560 + 0.720398i \(0.256041\pi\)
\(740\) 0 0
\(741\) −10.9576 + 77.3020i −0.0147876 + 0.104321i
\(742\) 0 0
\(743\) 168.132 0.226287 0.113144 0.993579i \(-0.463908\pi\)
0.113144 + 0.993579i \(0.463908\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −495.352 143.312i −0.663121 0.191850i
\(748\) 0 0
\(749\) 145.799i 0.194658i
\(750\) 0 0
\(751\) 998.130 1.32907 0.664534 0.747258i \(-0.268630\pi\)
0.664534 + 0.747258i \(0.268630\pi\)
\(752\) 0 0
\(753\) −116.518 + 821.993i −0.154738 + 1.09162i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 310.157i 0.409719i −0.978791 0.204860i \(-0.934326\pi\)
0.978791 0.204860i \(-0.0656738\pi\)
\(758\) 0 0
\(759\) 46.8925 330.810i 0.0617820 0.435850i
\(760\) 0 0
\(761\) 1386.50i 1.82194i −0.412469 0.910972i \(-0.635333\pi\)
0.412469 0.910972i \(-0.364667\pi\)
\(762\) 0 0
\(763\) 168.267i 0.220533i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 210.099 0.273923
\(768\) 0 0
\(769\) 950.327 1.23580 0.617898 0.786258i \(-0.287985\pi\)
0.617898 + 0.786258i \(0.287985\pi\)
\(770\) 0 0
\(771\) −467.015 66.1996i −0.605727 0.0858621i
\(772\) 0 0
\(773\) 898.658 1.16256 0.581279 0.813704i \(-0.302552\pi\)
0.581279 + 0.813704i \(0.302552\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 72.5628 + 10.2858i 0.0933884 + 0.0132378i
\(778\) 0 0
\(779\) 103.967i 0.133463i
\(780\) 0 0
\(781\) −659.214 −0.844063
\(782\) 0 0
\(783\) −167.291 + 372.171i −0.213653 + 0.475314i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 409.324i 0.520107i −0.965594 0.260054i \(-0.916260\pi\)
0.965594 0.260054i \(-0.0837402\pi\)
\(788\) 0 0
\(789\) −909.190 128.878i −1.15233 0.163344i
\(790\) 0 0
\(791\) 67.7993i 0.0857134i
\(792\) 0 0
\(793\) 131.779i 0.166178i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −163.126 −0.204675 −0.102337 0.994750i \(-0.532632\pi\)
−0.102337 + 0.994750i \(0.532632\pi\)
\(798\) 0 0
\(799\) 122.222 0.152968
\(800\) 0 0
\(801\) 377.123 1303.51i 0.470815 1.62735i
\(802\) 0 0
\(803\) 984.405 1.22591
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 101.434 715.583i 0.125693 0.886719i
\(808\) 0 0
\(809\) 226.377i 0.279823i 0.990164 + 0.139912i \(0.0446818\pi\)
−0.990164 + 0.139912i \(0.955318\pi\)
\(810\) 0 0
\(811\) −1232.29 −1.51948 −0.759738 0.650230i \(-0.774673\pi\)
−0.759738 + 0.650230i \(0.774673\pi\)
\(812\) 0 0
\(813\) 2.05912 + 0.291881i 0.00253274 + 0.000359017i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 149.377i 0.182836i
\(818\) 0 0
\(819\) −132.162 38.2365i −0.161370 0.0466868i
\(820\) 0 0
\(821\) 499.367i 0.608242i 0.952633 + 0.304121i \(0.0983627\pi\)
−0.952633 + 0.304121i \(0.901637\pi\)
\(822\) 0 0
\(823\) 468.938i 0.569792i −0.958558 0.284896i \(-0.908041\pi\)
0.958558 0.284896i \(-0.0919590\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.39906 0.00290092 0.00145046 0.999999i \(-0.499538\pi\)
0.00145046 + 0.999999i \(0.499538\pi\)
\(828\) 0 0
\(829\) −487.181 −0.587674 −0.293837 0.955856i \(-0.594932\pi\)
−0.293837 + 0.955856i \(0.594932\pi\)
\(830\) 0 0
\(831\) 82.2484 580.234i 0.0989752 0.698235i
\(832\) 0 0
\(833\) 196.458 0.235844
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1413.09 635.184i −1.68828 0.758881i
\(838\) 0 0
\(839\) 883.573i 1.05313i −0.850136 0.526563i \(-0.823480\pi\)
0.850136 0.526563i \(-0.176520\pi\)
\(840\) 0 0
\(841\) 612.608 0.728429
\(842\) 0 0
\(843\) −171.779 + 1211.84i −0.203771 + 1.43753i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 143.765i 0.169734i
\(848\) 0 0
\(849\) −163.288 + 1151.94i −0.192330 + 1.35682i
\(850\) 0 0
\(851\) 125.951i 0.148004i
\(852\) 0 0
\(853\) 835.699i 0.979717i 0.871802 + 0.489859i \(0.162952\pi\)
−0.871802 + 0.489859i \(0.837048\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1339.06 −1.56249 −0.781247 0.624222i \(-0.785416\pi\)
−0.781247 + 0.624222i \(0.785416\pi\)
\(858\) 0 0
\(859\) 334.667 0.389600 0.194800 0.980843i \(-0.437594\pi\)
0.194800 + 0.980843i \(0.437594\pi\)
\(860\) 0 0
\(861\) −181.397 25.7131i −0.210682 0.0298642i
\(862\) 0 0
\(863\) −995.095 −1.15306 −0.576532 0.817074i \(-0.695594\pi\)
−0.576532 + 0.817074i \(0.695594\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1481.20 + 209.961i 1.70842 + 0.242170i
\(868\) 0 0
\(869\) 444.952i 0.512027i
\(870\) 0 0
\(871\) 39.1937 0.0449985
\(872\) 0 0
\(873\) −295.003 + 1019.66i −0.337918 + 1.16800i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1095.18i 1.24878i 0.781112 + 0.624391i \(0.214653\pi\)
−0.781112 + 0.624391i \(0.785347\pi\)
\(878\) 0 0
\(879\) −292.282 41.4311i −0.332516 0.0471344i
\(880\) 0 0
\(881\) 1219.05i 1.38371i 0.722036 + 0.691855i \(0.243206\pi\)
−0.722036 + 0.691855i \(0.756794\pi\)
\(882\) 0 0
\(883\) 1339.04i 1.51646i −0.651985 0.758232i \(-0.726064\pi\)
0.651985 0.758232i \(-0.273936\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 938.587 1.05816 0.529079 0.848572i \(-0.322537\pi\)
0.529079 + 0.848572i \(0.322537\pi\)
\(888\) 0 0
\(889\) 183.954 0.206922
\(890\) 0 0
\(891\) −353.113 + 559.178i −0.396311 + 0.627585i
\(892\) 0 0
\(893\) −19.6153 −0.0219656
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 33.1846 234.106i 0.0369951 0.260987i
\(898\) 0 0
\(899\) 867.178i 0.964602i
\(900\) 0 0
\(901\) 643.543 0.714255
\(902\) 0 0
\(903\) −260.626 36.9438i −0.288622 0.0409123i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1575.14i 1.73665i −0.495994 0.868326i \(-0.665196\pi\)
0.495994 0.868326i \(-0.334804\pi\)
\(908\) 0 0
\(909\) −351.258 + 1214.11i −0.386423 + 1.33565i
\(910\) 0 0
\(911\) 566.329i 0.621656i 0.950466 + 0.310828i \(0.100606\pi\)
−0.950466 + 0.310828i \(0.899394\pi\)
\(912\) 0 0
\(913\) 467.805i 0.512383i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −302.551 −0.329935
\(918\) 0 0
\(919\) −276.281 −0.300632 −0.150316 0.988638i \(-0.548029\pi\)
−0.150316 + 0.988638i \(0.548029\pi\)
\(920\) 0 0
\(921\) 72.4850 511.356i 0.0787025 0.555219i
\(922\) 0 0
\(923\) −466.507 −0.505425
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 25.2995 87.4464i 0.0272918 0.0943327i
\(928\) 0 0
\(929\) 160.080i 0.172314i −0.996282 0.0861571i \(-0.972541\pi\)
0.996282 0.0861571i \(-0.0274587\pi\)
\(930\) 0 0
\(931\) −31.5294 −0.0338662
\(932\) 0 0
\(933\) 195.306 1377.82i 0.209332 1.47676i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1084.01i 1.15689i −0.815720 0.578446i \(-0.803659\pi\)
0.815720 0.578446i \(-0.196341\pi\)
\(938\) 0 0
\(939\) −149.344 + 1053.57i −0.159046 + 1.12201i
\(940\) 0 0
\(941\) 692.493i 0.735912i −0.929843 0.367956i \(-0.880058\pi\)
0.929843 0.367956i \(-0.119942\pi\)
\(942\) 0 0
\(943\) 314.860i 0.333892i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1795.10 1.89556 0.947781 0.318923i \(-0.103321\pi\)
0.947781 + 0.318923i \(0.103321\pi\)
\(948\) 0 0
\(949\) 696.636 0.734074
\(950\) 0 0
\(951\) 133.463 + 18.9184i 0.140339 + 0.0198932i
\(952\) 0 0
\(953\) 789.199 0.828121 0.414060 0.910249i \(-0.364110\pi\)
0.414060 + 0.910249i \(0.364110\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −366.505 51.9523i −0.382973 0.0542867i
\(958\) 0 0
\(959\) 437.361i 0.456059i
\(960\) 0 0
\(961\) 2331.58 2.42620
\(962\) 0 0
\(963\) 476.423 + 137.836i 0.494728 + 0.143132i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1464.86i 1.51485i 0.652921 + 0.757426i \(0.273543\pi\)
−0.652921 + 0.757426i \(0.726457\pi\)
\(968\) 0 0
\(969\) −375.484 53.2250i −0.387496 0.0549277i
\(970\) 0 0
\(971\) 1278.47i 1.31665i −0.752733 0.658326i \(-0.771265\pi\)
0.752733 0.658326i \(-0.228735\pi\)
\(972\) 0 0
\(973\) 550.160i 0.565426i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 403.422 0.412919 0.206460 0.978455i \(-0.433806\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(978\) 0 0
\(979\) 1231.02 1.25743
\(980\) 0 0
\(981\) −549.841 159.077i −0.560491 0.162158i
\(982\) 0 0
\(983\) 1086.01 1.10479 0.552394 0.833583i \(-0.313714\pi\)
0.552394 + 0.833583i \(0.313714\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.85123 34.2237i 0.00491512 0.0346745i
\(988\) 0 0
\(989\) 452.382i 0.457414i
\(990\) 0 0
\(991\) 70.0427 0.0706788 0.0353394 0.999375i \(-0.488749\pi\)
0.0353394 + 0.999375i \(0.488749\pi\)
\(992\) 0 0
\(993\) −93.4457 13.2460i −0.0941044 0.0133393i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 719.365i 0.721529i 0.932657 + 0.360765i \(0.117484\pi\)
−0.932657 + 0.360765i \(0.882516\pi\)
\(998\) 0 0
\(999\) 102.210 227.387i 0.102313 0.227615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.e.c.449.32 32
3.2 odd 2 inner 2100.3.e.c.449.2 32
5.2 odd 4 2100.3.g.d.701.7 16
5.3 odd 4 420.3.g.a.281.10 yes 16
5.4 even 2 inner 2100.3.e.c.449.1 32
15.2 even 4 2100.3.g.d.701.8 16
15.8 even 4 420.3.g.a.281.9 16
15.14 odd 2 inner 2100.3.e.c.449.31 32
20.3 even 4 1680.3.l.b.1121.7 16
60.23 odd 4 1680.3.l.b.1121.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.g.a.281.9 16 15.8 even 4
420.3.g.a.281.10 yes 16 5.3 odd 4
1680.3.l.b.1121.7 16 20.3 even 4
1680.3.l.b.1121.8 16 60.23 odd 4
2100.3.e.c.449.1 32 5.4 even 2 inner
2100.3.e.c.449.2 32 3.2 odd 2 inner
2100.3.e.c.449.31 32 15.14 odd 2 inner
2100.3.e.c.449.32 32 1.1 even 1 trivial
2100.3.g.d.701.7 16 5.2 odd 4
2100.3.g.d.701.8 16 15.2 even 4