Properties

Label 1680.3.l.b.1121.7
Level $1680$
Weight $3$
Character 1680.1121
Analytic conductor $45.777$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1121,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1121"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,8,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 37 x^{14} - 116 x^{13} + 298 x^{12} - 548 x^{11} + 267 x^{10} + 3264 x^{9} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.7
Root \(0.421042 - 2.97031i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1121
Dual form 1680.3.l.b.1121.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.421042 - 2.97031i) q^{3} +2.23607i q^{5} -2.64575 q^{7} +(-8.64545 - 2.50125i) q^{9} -8.16468i q^{11} -5.77792 q^{13} +(6.64181 + 0.941480i) q^{15} +28.0655i q^{17} +4.50420 q^{19} +(-1.11397 + 7.85869i) q^{21} +13.6408i q^{23} -5.00000 q^{25} +(-11.0696 + 24.6265i) q^{27} -15.1126i q^{29} +57.3810 q^{31} +(-24.2516 - 3.43768i) q^{33} -5.91608i q^{35} -9.23344 q^{37} +(-2.43275 + 17.1622i) q^{39} +23.0823i q^{41} +33.1640 q^{43} +(5.59297 - 19.3318i) q^{45} -4.35488i q^{47} +7.00000 q^{49} +(83.3630 + 11.8167i) q^{51} -22.9301i q^{53} +18.2568 q^{55} +(1.89646 - 13.3789i) q^{57} -36.3623i q^{59} -22.8074 q^{61} +(22.8737 + 6.61769i) q^{63} -12.9198i q^{65} +6.78336 q^{67} +(40.5173 + 5.74334i) q^{69} -80.7397i q^{71} +120.569 q^{73} +(-2.10521 + 14.8515i) q^{75} +21.6017i q^{77} +54.4972 q^{79} +(68.4875 + 43.2489i) q^{81} +57.2963i q^{83} -62.7563 q^{85} +(-44.8892 - 6.36306i) q^{87} +150.774i q^{89} +15.2869 q^{91} +(24.1598 - 170.439i) q^{93} +10.0717i q^{95} +117.942 q^{97} +(-20.4219 + 70.5873i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} - 10 q^{9} - 10 q^{15} - 48 q^{19} - 14 q^{21} - 80 q^{25} - 28 q^{27} - 24 q^{31} + 92 q^{33} - 40 q^{37} + 54 q^{39} + 168 q^{43} + 40 q^{45} + 112 q^{49} + 186 q^{51} + 80 q^{55} + 252 q^{57}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.421042 2.97031i 0.140347 0.990102i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 0 0
\(9\) −8.64545 2.50125i −0.960605 0.277917i
\(10\) 0 0
\(11\) 8.16468i 0.742243i −0.928584 0.371122i \(-0.878973\pi\)
0.928584 0.371122i \(-0.121027\pi\)
\(12\) 0 0
\(13\) −5.77792 −0.444455 −0.222228 0.974995i \(-0.571333\pi\)
−0.222228 + 0.974995i \(0.571333\pi\)
\(14\) 0 0
\(15\) 6.64181 + 0.941480i 0.442787 + 0.0627653i
\(16\) 0 0
\(17\) 28.0655i 1.65091i 0.564469 + 0.825454i \(0.309081\pi\)
−0.564469 + 0.825454i \(0.690919\pi\)
\(18\) 0 0
\(19\) 4.50420 0.237063 0.118532 0.992950i \(-0.462181\pi\)
0.118532 + 0.992950i \(0.462181\pi\)
\(20\) 0 0
\(21\) −1.11397 + 7.85869i −0.0530464 + 0.374223i
\(22\) 0 0
\(23\) 13.6408i 0.593077i 0.955021 + 0.296538i \(0.0958323\pi\)
−0.955021 + 0.296538i \(0.904168\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) −11.0696 + 24.6265i −0.409985 + 0.912092i
\(28\) 0 0
\(29\) 15.1126i 0.521125i −0.965457 0.260563i \(-0.916092\pi\)
0.965457 0.260563i \(-0.0839080\pi\)
\(30\) 0 0
\(31\) 57.3810 1.85100 0.925500 0.378748i \(-0.123645\pi\)
0.925500 + 0.378748i \(0.123645\pi\)
\(32\) 0 0
\(33\) −24.2516 3.43768i −0.734897 0.104172i
\(34\) 0 0
\(35\) 5.91608i 0.169031i
\(36\) 0 0
\(37\) −9.23344 −0.249552 −0.124776 0.992185i \(-0.539821\pi\)
−0.124776 + 0.992185i \(0.539821\pi\)
\(38\) 0 0
\(39\) −2.43275 + 17.1622i −0.0623782 + 0.440056i
\(40\) 0 0
\(41\) 23.0823i 0.562983i 0.959564 + 0.281492i \(0.0908292\pi\)
−0.959564 + 0.281492i \(0.909171\pi\)
\(42\) 0 0
\(43\) 33.1640 0.771255 0.385628 0.922654i \(-0.373985\pi\)
0.385628 + 0.922654i \(0.373985\pi\)
\(44\) 0 0
\(45\) 5.59297 19.3318i 0.124288 0.429596i
\(46\) 0 0
\(47\) 4.35488i 0.0926571i −0.998926 0.0463286i \(-0.985248\pi\)
0.998926 0.0463286i \(-0.0147521\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 83.3630 + 11.8167i 1.63457 + 0.231701i
\(52\) 0 0
\(53\) 22.9301i 0.432643i −0.976322 0.216322i \(-0.930594\pi\)
0.976322 0.216322i \(-0.0694060\pi\)
\(54\) 0 0
\(55\) 18.2568 0.331941
\(56\) 0 0
\(57\) 1.89646 13.3789i 0.0332712 0.234717i
\(58\) 0 0
\(59\) 36.3623i 0.616311i −0.951336 0.308155i \(-0.900288\pi\)
0.951336 0.308155i \(-0.0997117\pi\)
\(60\) 0 0
\(61\) −22.8074 −0.373892 −0.186946 0.982370i \(-0.559859\pi\)
−0.186946 + 0.982370i \(0.559859\pi\)
\(62\) 0 0
\(63\) 22.8737 + 6.61769i 0.363075 + 0.105043i
\(64\) 0 0
\(65\) 12.9198i 0.198766i
\(66\) 0 0
\(67\) 6.78336 0.101244 0.0506221 0.998718i \(-0.483880\pi\)
0.0506221 + 0.998718i \(0.483880\pi\)
\(68\) 0 0
\(69\) 40.5173 + 5.74334i 0.587207 + 0.0832368i
\(70\) 0 0
\(71\) 80.7397i 1.13718i −0.822622 0.568589i \(-0.807489\pi\)
0.822622 0.568589i \(-0.192511\pi\)
\(72\) 0 0
\(73\) 120.569 1.65163 0.825813 0.563944i \(-0.190717\pi\)
0.825813 + 0.563944i \(0.190717\pi\)
\(74\) 0 0
\(75\) −2.10521 + 14.8515i −0.0280695 + 0.198020i
\(76\) 0 0
\(77\) 21.6017i 0.280542i
\(78\) 0 0
\(79\) 54.4972 0.689838 0.344919 0.938633i \(-0.387906\pi\)
0.344919 + 0.938633i \(0.387906\pi\)
\(80\) 0 0
\(81\) 68.4875 + 43.2489i 0.845525 + 0.533937i
\(82\) 0 0
\(83\) 57.2963i 0.690316i 0.938545 + 0.345158i \(0.112175\pi\)
−0.938545 + 0.345158i \(0.887825\pi\)
\(84\) 0 0
\(85\) −62.7563 −0.738309
\(86\) 0 0
\(87\) −44.8892 6.36306i −0.515967 0.0731386i
\(88\) 0 0
\(89\) 150.774i 1.69409i 0.531523 + 0.847044i \(0.321620\pi\)
−0.531523 + 0.847044i \(0.678380\pi\)
\(90\) 0 0
\(91\) 15.2869 0.167988
\(92\) 0 0
\(93\) 24.1598 170.439i 0.259783 1.83268i
\(94\) 0 0
\(95\) 10.0717i 0.106018i
\(96\) 0 0
\(97\) 117.942 1.21590 0.607949 0.793976i \(-0.291993\pi\)
0.607949 + 0.793976i \(0.291993\pi\)
\(98\) 0 0
\(99\) −20.4219 + 70.5873i −0.206282 + 0.713003i
\(100\) 0 0
\(101\) 140.433i 1.39043i 0.718804 + 0.695213i \(0.244690\pi\)
−0.718804 + 0.695213i \(0.755310\pi\)
\(102\) 0 0
\(103\) −10.1147 −0.0982014 −0.0491007 0.998794i \(-0.515636\pi\)
−0.0491007 + 0.998794i \(0.515636\pi\)
\(104\) 0 0
\(105\) −17.5726 2.49092i −0.167358 0.0237231i
\(106\) 0 0
\(107\) 55.1068i 0.515017i 0.966276 + 0.257509i \(0.0829016\pi\)
−0.966276 + 0.257509i \(0.917098\pi\)
\(108\) 0 0
\(109\) 63.5989 0.583477 0.291738 0.956498i \(-0.405766\pi\)
0.291738 + 0.956498i \(0.405766\pi\)
\(110\) 0 0
\(111\) −3.88767 + 27.4261i −0.0350241 + 0.247082i
\(112\) 0 0
\(113\) 25.6257i 0.226776i 0.993551 + 0.113388i \(0.0361704\pi\)
−0.993551 + 0.113388i \(0.963830\pi\)
\(114\) 0 0
\(115\) −30.5017 −0.265232
\(116\) 0 0
\(117\) 49.9527 + 14.4520i 0.426946 + 0.123522i
\(118\) 0 0
\(119\) 74.2542i 0.623985i
\(120\) 0 0
\(121\) 54.3380 0.449075
\(122\) 0 0
\(123\) 68.5616 + 9.71863i 0.557411 + 0.0790133i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 69.5279 0.547464 0.273732 0.961806i \(-0.411742\pi\)
0.273732 + 0.961806i \(0.411742\pi\)
\(128\) 0 0
\(129\) 13.9634 98.5072i 0.108244 0.763622i
\(130\) 0 0
\(131\) 114.353i 0.872927i −0.899722 0.436463i \(-0.856231\pi\)
0.899722 0.436463i \(-0.143769\pi\)
\(132\) 0 0
\(133\) −11.9170 −0.0896014
\(134\) 0 0
\(135\) −55.0665 24.7523i −0.407900 0.183351i
\(136\) 0 0
\(137\) 165.307i 1.20662i 0.797507 + 0.603310i \(0.206152\pi\)
−0.797507 + 0.603310i \(0.793848\pi\)
\(138\) 0 0
\(139\) −207.941 −1.49598 −0.747989 0.663712i \(-0.768980\pi\)
−0.747989 + 0.663712i \(0.768980\pi\)
\(140\) 0 0
\(141\) −12.9353 1.83359i −0.0917400 0.0130042i
\(142\) 0 0
\(143\) 47.1749i 0.329894i
\(144\) 0 0
\(145\) 33.7929 0.233054
\(146\) 0 0
\(147\) 2.94730 20.7921i 0.0200496 0.141443i
\(148\) 0 0
\(149\) 127.831i 0.857927i −0.903322 0.428963i \(-0.858879\pi\)
0.903322 0.428963i \(-0.141121\pi\)
\(150\) 0 0
\(151\) −218.450 −1.44669 −0.723343 0.690489i \(-0.757396\pi\)
−0.723343 + 0.690489i \(0.757396\pi\)
\(152\) 0 0
\(153\) 70.1987 242.638i 0.458815 1.58587i
\(154\) 0 0
\(155\) 128.308i 0.827792i
\(156\) 0 0
\(157\) 274.083 1.74575 0.872876 0.487942i \(-0.162252\pi\)
0.872876 + 0.487942i \(0.162252\pi\)
\(158\) 0 0
\(159\) −68.1094 9.65454i −0.428361 0.0607204i
\(160\) 0 0
\(161\) 36.0901i 0.224162i
\(162\) 0 0
\(163\) 283.820 1.74123 0.870613 0.491968i \(-0.163722\pi\)
0.870613 + 0.491968i \(0.163722\pi\)
\(164\) 0 0
\(165\) 7.68688 54.2282i 0.0465871 0.328656i
\(166\) 0 0
\(167\) 101.223i 0.606127i −0.952970 0.303064i \(-0.901991\pi\)
0.952970 0.303064i \(-0.0980095\pi\)
\(168\) 0 0
\(169\) −135.616 −0.802459
\(170\) 0 0
\(171\) −38.9408 11.2661i −0.227724 0.0658838i
\(172\) 0 0
\(173\) 332.624i 1.92268i −0.275363 0.961340i \(-0.588798\pi\)
0.275363 0.961340i \(-0.411202\pi\)
\(174\) 0 0
\(175\) 13.2288 0.0755929
\(176\) 0 0
\(177\) −108.007 15.3101i −0.610211 0.0864977i
\(178\) 0 0
\(179\) 15.1419i 0.0845918i 0.999105 + 0.0422959i \(0.0134672\pi\)
−0.999105 + 0.0422959i \(0.986533\pi\)
\(180\) 0 0
\(181\) 244.178 1.34905 0.674525 0.738252i \(-0.264349\pi\)
0.674525 + 0.738252i \(0.264349\pi\)
\(182\) 0 0
\(183\) −9.60288 + 67.7450i −0.0524748 + 0.370191i
\(184\) 0 0
\(185\) 20.6466i 0.111603i
\(186\) 0 0
\(187\) 229.145 1.22538
\(188\) 0 0
\(189\) 29.2874 65.1556i 0.154960 0.344739i
\(190\) 0 0
\(191\) 328.924i 1.72211i −0.508508 0.861057i \(-0.669803\pi\)
0.508508 0.861057i \(-0.330197\pi\)
\(192\) 0 0
\(193\) 304.626 1.57837 0.789186 0.614154i \(-0.210502\pi\)
0.789186 + 0.614154i \(0.210502\pi\)
\(194\) 0 0
\(195\) −38.3758 5.43979i −0.196799 0.0278964i
\(196\) 0 0
\(197\) 235.048i 1.19314i 0.802563 + 0.596568i \(0.203469\pi\)
−0.802563 + 0.596568i \(0.796531\pi\)
\(198\) 0 0
\(199\) 298.075 1.49786 0.748931 0.662648i \(-0.230567\pi\)
0.748931 + 0.662648i \(0.230567\pi\)
\(200\) 0 0
\(201\) 2.85608 20.1487i 0.0142094 0.100242i
\(202\) 0 0
\(203\) 39.9843i 0.196967i
\(204\) 0 0
\(205\) −51.6136 −0.251774
\(206\) 0 0
\(207\) 34.1190 117.931i 0.164826 0.569713i
\(208\) 0 0
\(209\) 36.7753i 0.175959i
\(210\) 0 0
\(211\) 113.494 0.537885 0.268942 0.963156i \(-0.413326\pi\)
0.268942 + 0.963156i \(0.413326\pi\)
\(212\) 0 0
\(213\) −239.822 33.9948i −1.12592 0.159600i
\(214\) 0 0
\(215\) 74.1569i 0.344916i
\(216\) 0 0
\(217\) −151.816 −0.699612
\(218\) 0 0
\(219\) 50.7646 358.126i 0.231802 1.63528i
\(220\) 0 0
\(221\) 162.160i 0.733755i
\(222\) 0 0
\(223\) −337.861 −1.51507 −0.757536 0.652794i \(-0.773597\pi\)
−0.757536 + 0.652794i \(0.773597\pi\)
\(224\) 0 0
\(225\) 43.2272 + 12.5063i 0.192121 + 0.0555834i
\(226\) 0 0
\(227\) 41.4984i 0.182812i 0.995814 + 0.0914062i \(0.0291362\pi\)
−0.995814 + 0.0914062i \(0.970864\pi\)
\(228\) 0 0
\(229\) −341.169 −1.48982 −0.744911 0.667164i \(-0.767508\pi\)
−0.744911 + 0.667164i \(0.767508\pi\)
\(230\) 0 0
\(231\) 64.1637 + 9.09524i 0.277765 + 0.0393733i
\(232\) 0 0
\(233\) 113.530i 0.487255i 0.969869 + 0.243627i \(0.0783374\pi\)
−0.969869 + 0.243627i \(0.921663\pi\)
\(234\) 0 0
\(235\) 9.73782 0.0414375
\(236\) 0 0
\(237\) 22.9456 161.873i 0.0968170 0.683010i
\(238\) 0 0
\(239\) 157.758i 0.660074i 0.943968 + 0.330037i \(0.107061\pi\)
−0.943968 + 0.330037i \(0.892939\pi\)
\(240\) 0 0
\(241\) 247.947 1.02883 0.514413 0.857542i \(-0.328010\pi\)
0.514413 + 0.857542i \(0.328010\pi\)
\(242\) 0 0
\(243\) 157.299 185.219i 0.647319 0.762219i
\(244\) 0 0
\(245\) 15.6525i 0.0638877i
\(246\) 0 0
\(247\) −26.0249 −0.105364
\(248\) 0 0
\(249\) 170.187 + 24.1242i 0.683484 + 0.0968842i
\(250\) 0 0
\(251\) 276.737i 1.10254i −0.834328 0.551268i \(-0.814144\pi\)
0.834328 0.551268i \(-0.185856\pi\)
\(252\) 0 0
\(253\) 111.372 0.440207
\(254\) 0 0
\(255\) −26.4230 + 186.405i −0.103620 + 0.731001i
\(256\) 0 0
\(257\) 157.228i 0.611782i 0.952067 + 0.305891i \(0.0989543\pi\)
−0.952067 + 0.305891i \(0.901046\pi\)
\(258\) 0 0
\(259\) 24.4294 0.0943219
\(260\) 0 0
\(261\) −37.8005 + 130.655i −0.144829 + 0.500596i
\(262\) 0 0
\(263\) 306.093i 1.16385i 0.813242 + 0.581926i \(0.197701\pi\)
−0.813242 + 0.581926i \(0.802299\pi\)
\(264\) 0 0
\(265\) 51.2732 0.193484
\(266\) 0 0
\(267\) 447.844 + 63.4822i 1.67732 + 0.237761i
\(268\) 0 0
\(269\) 240.912i 0.895584i 0.894138 + 0.447792i \(0.147789\pi\)
−0.894138 + 0.447792i \(0.852211\pi\)
\(270\) 0 0
\(271\) −0.693234 −0.00255806 −0.00127903 0.999999i \(-0.500407\pi\)
−0.00127903 + 0.999999i \(0.500407\pi\)
\(272\) 0 0
\(273\) 6.43645 45.4069i 0.0235767 0.166326i
\(274\) 0 0
\(275\) 40.8234i 0.148449i
\(276\) 0 0
\(277\) −195.345 −0.705215 −0.352608 0.935771i \(-0.614705\pi\)
−0.352608 + 0.935771i \(0.614705\pi\)
\(278\) 0 0
\(279\) −496.084 143.524i −1.77808 0.514424i
\(280\) 0 0
\(281\) 407.985i 1.45191i 0.687745 + 0.725953i \(0.258601\pi\)
−0.687745 + 0.725953i \(0.741399\pi\)
\(282\) 0 0
\(283\) 387.819 1.37039 0.685193 0.728362i \(-0.259718\pi\)
0.685193 + 0.728362i \(0.259718\pi\)
\(284\) 0 0
\(285\) 29.9160 + 4.24061i 0.104969 + 0.0148793i
\(286\) 0 0
\(287\) 61.0701i 0.212788i
\(288\) 0 0
\(289\) −498.670 −1.72550
\(290\) 0 0
\(291\) 49.6586 350.324i 0.170648 1.20386i
\(292\) 0 0
\(293\) 98.4013i 0.335840i −0.985801 0.167920i \(-0.946295\pi\)
0.985801 0.167920i \(-0.0537051\pi\)
\(294\) 0 0
\(295\) 81.3086 0.275623
\(296\) 0 0
\(297\) 201.067 + 90.3796i 0.676995 + 0.304308i
\(298\) 0 0
\(299\) 78.8153i 0.263596i
\(300\) 0 0
\(301\) −87.7437 −0.291507
\(302\) 0 0
\(303\) 417.129 + 59.1283i 1.37666 + 0.195143i
\(304\) 0 0
\(305\) 50.9989i 0.167209i
\(306\) 0 0
\(307\) 172.156 0.560769 0.280384 0.959888i \(-0.409538\pi\)
0.280384 + 0.959888i \(0.409538\pi\)
\(308\) 0 0
\(309\) −4.25874 + 30.0439i −0.0137823 + 0.0972294i
\(310\) 0 0
\(311\) 463.864i 1.49152i 0.666212 + 0.745762i \(0.267914\pi\)
−0.666212 + 0.745762i \(0.732086\pi\)
\(312\) 0 0
\(313\) −354.701 −1.13323 −0.566615 0.823983i \(-0.691747\pi\)
−0.566615 + 0.823983i \(0.691747\pi\)
\(314\) 0 0
\(315\) −14.7976 + 51.1472i −0.0469765 + 0.162372i
\(316\) 0 0
\(317\) 44.9323i 0.141742i −0.997485 0.0708711i \(-0.977422\pi\)
0.997485 0.0708711i \(-0.0225779\pi\)
\(318\) 0 0
\(319\) −123.390 −0.386802
\(320\) 0 0
\(321\) 163.684 + 23.2023i 0.509920 + 0.0722814i
\(322\) 0 0
\(323\) 126.412i 0.391370i
\(324\) 0 0
\(325\) 28.8896 0.0888911
\(326\) 0 0
\(327\) 26.7779 188.908i 0.0818895 0.577701i
\(328\) 0 0
\(329\) 11.5219i 0.0350211i
\(330\) 0 0
\(331\) 31.4599 0.0950451 0.0475226 0.998870i \(-0.484867\pi\)
0.0475226 + 0.998870i \(0.484867\pi\)
\(332\) 0 0
\(333\) 79.8272 + 23.0951i 0.239721 + 0.0693548i
\(334\) 0 0
\(335\) 15.1681i 0.0452778i
\(336\) 0 0
\(337\) −392.031 −1.16330 −0.581648 0.813441i \(-0.697592\pi\)
−0.581648 + 0.813441i \(0.697592\pi\)
\(338\) 0 0
\(339\) 76.1163 + 10.7895i 0.224532 + 0.0318275i
\(340\) 0 0
\(341\) 468.497i 1.37389i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 0 0
\(345\) −12.8425 + 90.5994i −0.0372246 + 0.262607i
\(346\) 0 0
\(347\) 649.989i 1.87317i 0.350444 + 0.936584i \(0.386031\pi\)
−0.350444 + 0.936584i \(0.613969\pi\)
\(348\) 0 0
\(349\) −176.534 −0.505827 −0.252913 0.967489i \(-0.581389\pi\)
−0.252913 + 0.967489i \(0.581389\pi\)
\(350\) 0 0
\(351\) 63.9592 142.290i 0.182220 0.405384i
\(352\) 0 0
\(353\) 84.4749i 0.239306i −0.992816 0.119653i \(-0.961822\pi\)
0.992816 0.119653i \(-0.0381782\pi\)
\(354\) 0 0
\(355\) 180.539 0.508562
\(356\) 0 0
\(357\) −220.558 31.2642i −0.617809 0.0875747i
\(358\) 0 0
\(359\) 175.365i 0.488481i 0.969715 + 0.244241i \(0.0785387\pi\)
−0.969715 + 0.244241i \(0.921461\pi\)
\(360\) 0 0
\(361\) −340.712 −0.943801
\(362\) 0 0
\(363\) 22.8786 161.401i 0.0630265 0.444630i
\(364\) 0 0
\(365\) 269.600i 0.738630i
\(366\) 0 0
\(367\) −643.483 −1.75336 −0.876680 0.481075i \(-0.840247\pi\)
−0.876680 + 0.481075i \(0.840247\pi\)
\(368\) 0 0
\(369\) 57.7347 199.557i 0.156462 0.540805i
\(370\) 0 0
\(371\) 60.6673i 0.163524i
\(372\) 0 0
\(373\) 312.351 0.837402 0.418701 0.908124i \(-0.362486\pi\)
0.418701 + 0.908124i \(0.362486\pi\)
\(374\) 0 0
\(375\) −33.2090 4.70740i −0.0885574 0.0125531i
\(376\) 0 0
\(377\) 87.3196i 0.231617i
\(378\) 0 0
\(379\) −129.174 −0.340830 −0.170415 0.985372i \(-0.554511\pi\)
−0.170415 + 0.985372i \(0.554511\pi\)
\(380\) 0 0
\(381\) 29.2742 206.519i 0.0768352 0.542045i
\(382\) 0 0
\(383\) 371.018i 0.968716i 0.874870 + 0.484358i \(0.160947\pi\)
−0.874870 + 0.484358i \(0.839053\pi\)
\(384\) 0 0
\(385\) −48.3029 −0.125462
\(386\) 0 0
\(387\) −286.717 82.9514i −0.740872 0.214345i
\(388\) 0 0
\(389\) 239.364i 0.615332i −0.951494 0.307666i \(-0.900452\pi\)
0.951494 0.307666i \(-0.0995479\pi\)
\(390\) 0 0
\(391\) −382.834 −0.979116
\(392\) 0 0
\(393\) −339.665 48.1476i −0.864287 0.122513i
\(394\) 0 0
\(395\) 121.859i 0.308505i
\(396\) 0 0
\(397\) 745.866 1.87875 0.939377 0.342885i \(-0.111404\pi\)
0.939377 + 0.342885i \(0.111404\pi\)
\(398\) 0 0
\(399\) −5.01756 + 35.3971i −0.0125753 + 0.0887146i
\(400\) 0 0
\(401\) 338.979i 0.845335i 0.906285 + 0.422667i \(0.138906\pi\)
−0.906285 + 0.422667i \(0.861094\pi\)
\(402\) 0 0
\(403\) −331.543 −0.822687
\(404\) 0 0
\(405\) −96.7074 + 153.143i −0.238784 + 0.378130i
\(406\) 0 0
\(407\) 75.3881i 0.185229i
\(408\) 0 0
\(409\) −242.273 −0.592355 −0.296177 0.955133i \(-0.595712\pi\)
−0.296177 + 0.955133i \(0.595712\pi\)
\(410\) 0 0
\(411\) 491.012 + 69.6012i 1.19468 + 0.169346i
\(412\) 0 0
\(413\) 96.2057i 0.232944i
\(414\) 0 0
\(415\) −128.118 −0.308719
\(416\) 0 0
\(417\) −87.5519 + 617.648i −0.209957 + 1.48117i
\(418\) 0 0
\(419\) 116.740i 0.278615i 0.990249 + 0.139308i \(0.0444877\pi\)
−0.990249 + 0.139308i \(0.955512\pi\)
\(420\) 0 0
\(421\) −57.9552 −0.137661 −0.0688304 0.997628i \(-0.521927\pi\)
−0.0688304 + 0.997628i \(0.521927\pi\)
\(422\) 0 0
\(423\) −10.8927 + 37.6499i −0.0257510 + 0.0890069i
\(424\) 0 0
\(425\) 140.327i 0.330182i
\(426\) 0 0
\(427\) 60.3427 0.141318
\(428\) 0 0
\(429\) 140.124 + 19.8626i 0.326629 + 0.0462998i
\(430\) 0 0
\(431\) 683.443i 1.58571i 0.609408 + 0.792857i \(0.291407\pi\)
−0.609408 + 0.792857i \(0.708593\pi\)
\(432\) 0 0
\(433\) 710.818 1.64161 0.820806 0.571207i \(-0.193525\pi\)
0.820806 + 0.571207i \(0.193525\pi\)
\(434\) 0 0
\(435\) 14.2282 100.375i 0.0327086 0.230748i
\(436\) 0 0
\(437\) 61.4407i 0.140597i
\(438\) 0 0
\(439\) 113.873 0.259392 0.129696 0.991554i \(-0.458600\pi\)
0.129696 + 0.991554i \(0.458600\pi\)
\(440\) 0 0
\(441\) −60.5181 17.5088i −0.137229 0.0397024i
\(442\) 0 0
\(443\) 285.321i 0.644066i −0.946728 0.322033i \(-0.895634\pi\)
0.946728 0.322033i \(-0.104366\pi\)
\(444\) 0 0
\(445\) −337.140 −0.757619
\(446\) 0 0
\(447\) −379.698 53.8223i −0.849435 0.120408i
\(448\) 0 0
\(449\) 248.688i 0.553871i 0.960888 + 0.276936i \(0.0893189\pi\)
−0.960888 + 0.276936i \(0.910681\pi\)
\(450\) 0 0
\(451\) 188.460 0.417871
\(452\) 0 0
\(453\) −91.9766 + 648.863i −0.203039 + 1.43237i
\(454\) 0 0
\(455\) 34.1826i 0.0751267i
\(456\) 0 0
\(457\) 179.703 0.393224 0.196612 0.980481i \(-0.437006\pi\)
0.196612 + 0.980481i \(0.437006\pi\)
\(458\) 0 0
\(459\) −691.154 310.673i −1.50578 0.676847i
\(460\) 0 0
\(461\) 496.992i 1.07807i 0.842282 + 0.539037i \(0.181212\pi\)
−0.842282 + 0.539037i \(0.818788\pi\)
\(462\) 0 0
\(463\) −289.473 −0.625212 −0.312606 0.949883i \(-0.601202\pi\)
−0.312606 + 0.949883i \(0.601202\pi\)
\(464\) 0 0
\(465\) 381.113 + 54.0230i 0.819599 + 0.116179i
\(466\) 0 0
\(467\) 200.191i 0.428674i 0.976760 + 0.214337i \(0.0687590\pi\)
−0.976760 + 0.214337i \(0.931241\pi\)
\(468\) 0 0
\(469\) −17.9471 −0.0382667
\(470\) 0 0
\(471\) 115.401 814.111i 0.245012 1.72847i
\(472\) 0 0
\(473\) 270.773i 0.572459i
\(474\) 0 0
\(475\) −22.5210 −0.0474126
\(476\) 0 0
\(477\) −57.3539 + 198.241i −0.120239 + 0.415599i
\(478\) 0 0
\(479\) 616.585i 1.28723i −0.765348 0.643617i \(-0.777433\pi\)
0.765348 0.643617i \(-0.222567\pi\)
\(480\) 0 0
\(481\) 53.3501 0.110915
\(482\) 0 0
\(483\) −107.199 15.1955i −0.221943 0.0314606i
\(484\) 0 0
\(485\) 263.726i 0.543766i
\(486\) 0 0
\(487\) −393.608 −0.808229 −0.404115 0.914708i \(-0.632420\pi\)
−0.404115 + 0.914708i \(0.632420\pi\)
\(488\) 0 0
\(489\) 119.500 843.032i 0.244377 1.72399i
\(490\) 0 0
\(491\) 602.139i 1.22635i 0.789946 + 0.613176i \(0.210108\pi\)
−0.789946 + 0.613176i \(0.789892\pi\)
\(492\) 0 0
\(493\) 424.143 0.860330
\(494\) 0 0
\(495\) −157.838 45.6648i −0.318865 0.0922521i
\(496\) 0 0
\(497\) 213.617i 0.429813i
\(498\) 0 0
\(499\) 384.486 0.770513 0.385257 0.922810i \(-0.374113\pi\)
0.385257 + 0.922810i \(0.374113\pi\)
\(500\) 0 0
\(501\) −300.664 42.6193i −0.600128 0.0850684i
\(502\) 0 0
\(503\) 458.304i 0.911141i −0.890200 0.455571i \(-0.849435\pi\)
0.890200 0.455571i \(-0.150565\pi\)
\(504\) 0 0
\(505\) −314.018 −0.621817
\(506\) 0 0
\(507\) −57.0999 + 402.820i −0.112623 + 0.794517i
\(508\) 0 0
\(509\) 715.661i 1.40601i −0.711183 0.703007i \(-0.751840\pi\)
0.711183 0.703007i \(-0.248160\pi\)
\(510\) 0 0
\(511\) −318.995 −0.624256
\(512\) 0 0
\(513\) −49.8596 + 110.923i −0.0971922 + 0.216223i
\(514\) 0 0
\(515\) 22.6172i 0.0439170i
\(516\) 0 0
\(517\) −35.5562 −0.0687741
\(518\) 0 0
\(519\) −987.995 140.049i −1.90365 0.269843i
\(520\) 0 0
\(521\) 58.2889i 0.111879i −0.998434 0.0559394i \(-0.982185\pi\)
0.998434 0.0559394i \(-0.0178154\pi\)
\(522\) 0 0
\(523\) −676.567 −1.29363 −0.646814 0.762648i \(-0.723899\pi\)
−0.646814 + 0.762648i \(0.723899\pi\)
\(524\) 0 0
\(525\) 5.56987 39.2935i 0.0106093 0.0748447i
\(526\) 0 0
\(527\) 1610.42i 3.05583i
\(528\) 0 0
\(529\) 342.929 0.648260
\(530\) 0 0
\(531\) −90.9513 + 314.369i −0.171283 + 0.592031i
\(532\) 0 0
\(533\) 133.368i 0.250221i
\(534\) 0 0
\(535\) −123.223 −0.230323
\(536\) 0 0
\(537\) 44.9762 + 6.37540i 0.0837546 + 0.0118722i
\(538\) 0 0
\(539\) 57.1527i 0.106035i
\(540\) 0 0
\(541\) −430.418 −0.795596 −0.397798 0.917473i \(-0.630226\pi\)
−0.397798 + 0.917473i \(0.630226\pi\)
\(542\) 0 0
\(543\) 102.809 725.284i 0.189336 1.33570i
\(544\) 0 0
\(545\) 142.212i 0.260939i
\(546\) 0 0
\(547\) 110.245 0.201546 0.100773 0.994909i \(-0.467868\pi\)
0.100773 + 0.994909i \(0.467868\pi\)
\(548\) 0 0
\(549\) 197.180 + 57.0470i 0.359162 + 0.103911i
\(550\) 0 0
\(551\) 68.0703i 0.123540i
\(552\) 0 0
\(553\) −144.186 −0.260734
\(554\) 0 0
\(555\) −61.3267 8.69309i −0.110499 0.0156632i
\(556\) 0 0
\(557\) 463.317i 0.831809i 0.909408 + 0.415904i \(0.136535\pi\)
−0.909408 + 0.415904i \(0.863465\pi\)
\(558\) 0 0
\(559\) −191.619 −0.342789
\(560\) 0 0
\(561\) 96.4799 680.632i 0.171978 1.21325i
\(562\) 0 0
\(563\) 878.072i 1.55963i −0.626010 0.779815i \(-0.715313\pi\)
0.626010 0.779815i \(-0.284687\pi\)
\(564\) 0 0
\(565\) −57.3009 −0.101417
\(566\) 0 0
\(567\) −181.201 114.426i −0.319578 0.201809i
\(568\) 0 0
\(569\) 579.224i 1.01797i −0.860776 0.508984i \(-0.830021\pi\)
0.860776 0.508984i \(-0.169979\pi\)
\(570\) 0 0
\(571\) −471.669 −0.826040 −0.413020 0.910722i \(-0.635526\pi\)
−0.413020 + 0.910722i \(0.635526\pi\)
\(572\) 0 0
\(573\) −977.005 138.491i −1.70507 0.241694i
\(574\) 0 0
\(575\) 68.2038i 0.118615i
\(576\) 0 0
\(577\) 291.140 0.504576 0.252288 0.967652i \(-0.418817\pi\)
0.252288 + 0.967652i \(0.418817\pi\)
\(578\) 0 0
\(579\) 128.260 904.833i 0.221521 1.56275i
\(580\) 0 0
\(581\) 151.592i 0.260915i
\(582\) 0 0
\(583\) −187.217 −0.321127
\(584\) 0 0
\(585\) −32.3157 + 111.698i −0.0552405 + 0.190936i
\(586\) 0 0
\(587\) 731.515i 1.24619i 0.782145 + 0.623096i \(0.214126\pi\)
−0.782145 + 0.623096i \(0.785874\pi\)
\(588\) 0 0
\(589\) 258.455 0.438804
\(590\) 0 0
\(591\) 698.164 + 98.9651i 1.18133 + 0.167454i
\(592\) 0 0
\(593\) 683.187i 1.15209i 0.817419 + 0.576043i \(0.195404\pi\)
−0.817419 + 0.576043i \(0.804596\pi\)
\(594\) 0 0
\(595\) 166.037 0.279055
\(596\) 0 0
\(597\) 125.502 885.373i 0.210221 1.48304i
\(598\) 0 0
\(599\) 464.649i 0.775708i 0.921721 + 0.387854i \(0.126783\pi\)
−0.921721 + 0.387854i \(0.873217\pi\)
\(600\) 0 0
\(601\) −242.259 −0.403093 −0.201547 0.979479i \(-0.564597\pi\)
−0.201547 + 0.979479i \(0.564597\pi\)
\(602\) 0 0
\(603\) −58.6452 16.9669i −0.0972557 0.0281374i
\(604\) 0 0
\(605\) 121.504i 0.200832i
\(606\) 0 0
\(607\) 143.456 0.236337 0.118168 0.992994i \(-0.462298\pi\)
0.118168 + 0.992994i \(0.462298\pi\)
\(608\) 0 0
\(609\) 118.766 + 16.8351i 0.195017 + 0.0276438i
\(610\) 0 0
\(611\) 25.1622i 0.0411820i
\(612\) 0 0
\(613\) −274.405 −0.447643 −0.223821 0.974630i \(-0.571853\pi\)
−0.223821 + 0.974630i \(0.571853\pi\)
\(614\) 0 0
\(615\) −21.7315 + 153.308i −0.0353358 + 0.249282i
\(616\) 0 0
\(617\) 232.732i 0.377199i −0.982054 0.188600i \(-0.939605\pi\)
0.982054 0.188600i \(-0.0603948\pi\)
\(618\) 0 0
\(619\) 1209.75 1.95437 0.977185 0.212392i \(-0.0681253\pi\)
0.977185 + 0.212392i \(0.0681253\pi\)
\(620\) 0 0
\(621\) −335.924 150.998i −0.540941 0.243152i
\(622\) 0 0
\(623\) 398.910i 0.640305i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) −109.234 15.4840i −0.174217 0.0246953i
\(628\) 0 0
\(629\) 259.141i 0.411988i
\(630\) 0 0
\(631\) −581.467 −0.921500 −0.460750 0.887530i \(-0.652420\pi\)
−0.460750 + 0.887530i \(0.652420\pi\)
\(632\) 0 0
\(633\) 47.7856 337.111i 0.0754907 0.532561i
\(634\) 0 0
\(635\) 155.469i 0.244833i
\(636\) 0 0
\(637\) −40.4454 −0.0634936
\(638\) 0 0
\(639\) −201.950 + 698.031i −0.316041 + 1.09238i
\(640\) 0 0
\(641\) 1052.94i 1.64265i −0.570461 0.821325i \(-0.693235\pi\)
0.570461 0.821325i \(-0.306765\pi\)
\(642\) 0 0
\(643\) −307.328 −0.477959 −0.238980 0.971025i \(-0.576813\pi\)
−0.238980 + 0.971025i \(0.576813\pi\)
\(644\) 0 0
\(645\) 220.269 + 31.2232i 0.341502 + 0.0484081i
\(646\) 0 0
\(647\) 765.017i 1.18241i −0.806523 0.591203i \(-0.798653\pi\)
0.806523 0.591203i \(-0.201347\pi\)
\(648\) 0 0
\(649\) −296.887 −0.457453
\(650\) 0 0
\(651\) −63.9209 + 450.940i −0.0981888 + 0.692688i
\(652\) 0 0
\(653\) 455.317i 0.697270i −0.937259 0.348635i \(-0.886645\pi\)
0.937259 0.348635i \(-0.113355\pi\)
\(654\) 0 0
\(655\) 255.702 0.390385
\(656\) 0 0
\(657\) −1042.37 301.573i −1.58656 0.459015i
\(658\) 0 0
\(659\) 345.201i 0.523825i −0.965092 0.261913i \(-0.915647\pi\)
0.965092 0.261913i \(-0.0843532\pi\)
\(660\) 0 0
\(661\) −487.944 −0.738191 −0.369096 0.929391i \(-0.620333\pi\)
−0.369096 + 0.929391i \(0.620333\pi\)
\(662\) 0 0
\(663\) −481.665 68.2762i −0.726493 0.102981i
\(664\) 0 0
\(665\) 26.6472i 0.0400710i
\(666\) 0 0
\(667\) 206.148 0.309067
\(668\) 0 0
\(669\) −142.254 + 1003.55i −0.212636 + 1.50008i
\(670\) 0 0
\(671\) 186.215i 0.277519i
\(672\) 0 0
\(673\) −562.562 −0.835902 −0.417951 0.908470i \(-0.637252\pi\)
−0.417951 + 0.908470i \(0.637252\pi\)
\(674\) 0 0
\(675\) 55.3479 123.132i 0.0819969 0.182418i
\(676\) 0 0
\(677\) 944.244i 1.39475i 0.716708 + 0.697373i \(0.245648\pi\)
−0.716708 + 0.697373i \(0.754352\pi\)
\(678\) 0 0
\(679\) −312.045 −0.459566
\(680\) 0 0
\(681\) 123.263 + 17.4726i 0.181003 + 0.0256573i
\(682\) 0 0
\(683\) 801.351i 1.17328i −0.809847 0.586641i \(-0.800450\pi\)
0.809847 0.586641i \(-0.199550\pi\)
\(684\) 0 0
\(685\) −369.637 −0.539616
\(686\) 0 0
\(687\) −143.647 + 1013.38i −0.209093 + 1.47508i
\(688\) 0 0
\(689\) 132.488i 0.192291i
\(690\) 0 0
\(691\) −360.516 −0.521731 −0.260866 0.965375i \(-0.584008\pi\)
−0.260866 + 0.965375i \(0.584008\pi\)
\(692\) 0 0
\(693\) 54.0313 186.756i 0.0779672 0.269490i
\(694\) 0 0
\(695\) 464.970i 0.669021i
\(696\) 0 0
\(697\) −647.816 −0.929434
\(698\) 0 0
\(699\) 337.220 + 47.8011i 0.482432 + 0.0683850i
\(700\) 0 0
\(701\) 818.208i 1.16720i 0.812041 + 0.583601i \(0.198357\pi\)
−0.812041 + 0.583601i \(0.801643\pi\)
\(702\) 0 0
\(703\) −41.5892 −0.0591597
\(704\) 0 0
\(705\) 4.10004 28.9243i 0.00581565 0.0410274i
\(706\) 0 0
\(707\) 371.551i 0.525531i
\(708\) 0 0
\(709\) −437.371 −0.616884 −0.308442 0.951243i \(-0.599808\pi\)
−0.308442 + 0.951243i \(0.599808\pi\)
\(710\) 0 0
\(711\) −471.152 136.311i −0.662662 0.191717i
\(712\) 0 0
\(713\) 782.721i 1.09778i
\(714\) 0 0
\(715\) −105.486 −0.147533
\(716\) 0 0
\(717\) 468.589 + 66.4227i 0.653541 + 0.0926397i
\(718\) 0 0
\(719\) 527.093i 0.733091i −0.930400 0.366546i \(-0.880540\pi\)
0.930400 0.366546i \(-0.119460\pi\)
\(720\) 0 0
\(721\) 26.7611 0.0371166
\(722\) 0 0
\(723\) 104.396 736.479i 0.144393 1.01864i
\(724\) 0 0
\(725\) 75.5632i 0.104225i
\(726\) 0 0
\(727\) 809.719 1.11378 0.556891 0.830586i \(-0.311994\pi\)
0.556891 + 0.830586i \(0.311994\pi\)
\(728\) 0 0
\(729\) −483.929 545.210i −0.663825 0.747888i
\(730\) 0 0
\(731\) 930.762i 1.27327i
\(732\) 0 0
\(733\) 215.991 0.294667 0.147333 0.989087i \(-0.452931\pi\)
0.147333 + 0.989087i \(0.452931\pi\)
\(734\) 0 0
\(735\) 46.4927 + 6.59036i 0.0632553 + 0.00896647i
\(736\) 0 0
\(737\) 55.3839i 0.0751478i
\(738\) 0 0
\(739\) 1025.08 1.38712 0.693560 0.720398i \(-0.256041\pi\)
0.693560 + 0.720398i \(0.256041\pi\)
\(740\) 0 0
\(741\) −10.9576 + 77.3020i −0.0147876 + 0.104321i
\(742\) 0 0
\(743\) 168.132i 0.226287i −0.993579 0.113144i \(-0.963908\pi\)
0.993579 0.113144i \(-0.0360921\pi\)
\(744\) 0 0
\(745\) 285.839 0.383676
\(746\) 0 0
\(747\) 143.312 495.352i 0.191850 0.663121i
\(748\) 0 0
\(749\) 145.799i 0.194658i
\(750\) 0 0
\(751\) −998.130 −1.32907 −0.664534 0.747258i \(-0.731370\pi\)
−0.664534 + 0.747258i \(0.731370\pi\)
\(752\) 0 0
\(753\) −821.993 116.518i −1.09162 0.154738i
\(754\) 0 0
\(755\) 488.468i 0.646978i
\(756\) 0 0
\(757\) −310.157 −0.409719 −0.204860 0.978791i \(-0.565674\pi\)
−0.204860 + 0.978791i \(0.565674\pi\)
\(758\) 0 0
\(759\) 46.8925 330.810i 0.0617820 0.435850i
\(760\) 0 0
\(761\) 1386.50i 1.82194i −0.412469 0.910972i \(-0.635333\pi\)
0.412469 0.910972i \(-0.364667\pi\)
\(762\) 0 0
\(763\) −168.267 −0.220533
\(764\) 0 0
\(765\) 542.556 + 156.969i 0.709223 + 0.205188i
\(766\) 0 0
\(767\) 210.099i 0.273923i
\(768\) 0 0
\(769\) −950.327 −1.23580 −0.617898 0.786258i \(-0.712015\pi\)
−0.617898 + 0.786258i \(0.712015\pi\)
\(770\) 0 0
\(771\) 467.015 + 66.1996i 0.605727 + 0.0858621i
\(772\) 0 0
\(773\) 898.658i 1.16256i 0.813704 + 0.581279i \(0.197448\pi\)
−0.813704 + 0.581279i \(0.802552\pi\)
\(774\) 0 0
\(775\) −286.905 −0.370200
\(776\) 0 0
\(777\) 10.2858 72.5628i 0.0132378 0.0933884i
\(778\) 0 0
\(779\) 103.967i 0.133463i
\(780\) 0 0
\(781\) −659.214 −0.844063
\(782\) 0 0
\(783\) 372.171 + 167.291i 0.475314 + 0.213653i
\(784\) 0 0
\(785\) 612.868i 0.780724i
\(786\) 0 0
\(787\) 409.324 0.520107 0.260054 0.965594i \(-0.416260\pi\)
0.260054 + 0.965594i \(0.416260\pi\)
\(788\) 0 0
\(789\) 909.190 + 128.878i 1.15233 + 0.163344i
\(790\) 0 0
\(791\) 67.7993i 0.0857134i
\(792\) 0 0
\(793\) 131.779 0.166178
\(794\) 0 0
\(795\) 21.5882 152.297i 0.0271550 0.191569i
\(796\) 0 0
\(797\) 163.126i 0.204675i 0.994750 + 0.102337i \(0.0326321\pi\)
−0.994750 + 0.102337i \(0.967368\pi\)
\(798\) 0 0
\(799\) 122.222 0.152968
\(800\) 0 0
\(801\) 377.123 1303.51i 0.470815 1.62735i
\(802\) 0 0
\(803\) 984.405i 1.22591i
\(804\) 0 0
\(805\) 80.6999 0.100248
\(806\) 0 0
\(807\) 715.583 + 101.434i 0.886719 + 0.125693i
\(808\) 0 0
\(809\) 226.377i 0.279823i −0.990164 0.139912i \(-0.955318\pi\)
0.990164 0.139912i \(-0.0446818\pi\)
\(810\) 0 0
\(811\) 1232.29 1.51948 0.759738 0.650230i \(-0.225327\pi\)
0.759738 + 0.650230i \(0.225327\pi\)
\(812\) 0 0
\(813\) −0.291881 + 2.05912i −0.000359017 + 0.00253274i
\(814\) 0 0
\(815\) 634.641i 0.778700i
\(816\) 0 0
\(817\) 149.377 0.182836
\(818\) 0 0
\(819\) −132.162 38.2365i −0.161370 0.0466868i
\(820\) 0 0
\(821\) 499.367i 0.608242i 0.952633 + 0.304121i \(0.0983627\pi\)
−0.952633 + 0.304121i \(0.901637\pi\)
\(822\) 0 0
\(823\) −468.938 −0.569792 −0.284896 0.958558i \(-0.591959\pi\)
−0.284896 + 0.958558i \(0.591959\pi\)
\(824\) 0 0
\(825\) 121.258 + 17.1884i 0.146979 + 0.0208344i
\(826\) 0 0
\(827\) 2.39906i 0.00290092i 0.999999 + 0.00145046i \(0.000461695\pi\)
−0.999999 + 0.00145046i \(0.999538\pi\)
\(828\) 0 0
\(829\) 487.181 0.587674 0.293837 0.955856i \(-0.405068\pi\)
0.293837 + 0.955856i \(0.405068\pi\)
\(830\) 0 0
\(831\) −82.2484 + 580.234i −0.0989752 + 0.698235i
\(832\) 0 0
\(833\) 196.458i 0.235844i
\(834\) 0 0
\(835\) 226.342 0.271068
\(836\) 0 0
\(837\) −635.184 + 1413.09i −0.758881 + 1.68828i
\(838\) 0 0
\(839\) 883.573i 1.05313i −0.850136 0.526563i \(-0.823480\pi\)
0.850136 0.526563i \(-0.176520\pi\)
\(840\) 0 0
\(841\) 612.608 0.728429
\(842\) 0 0
\(843\) 1211.84 + 171.779i 1.43753 + 0.203771i
\(844\) 0 0
\(845\) 303.246i 0.358871i
\(846\) 0 0
\(847\) −143.765 −0.169734
\(848\) 0 0
\(849\) 163.288 1151.94i 0.192330 1.35682i
\(850\) 0 0
\(851\) 125.951i 0.148004i
\(852\) 0 0
\(853\) −835.699 −0.979717 −0.489859 0.871802i \(-0.662952\pi\)
−0.489859 + 0.871802i \(0.662952\pi\)
\(854\) 0 0
\(855\) 25.1918 87.0743i 0.0294641 0.101841i
\(856\) 0 0
\(857\) 1339.06i 1.56249i 0.624222 + 0.781247i \(0.285416\pi\)
−0.624222 + 0.781247i \(0.714584\pi\)
\(858\) 0 0
\(859\) 334.667 0.389600 0.194800 0.980843i \(-0.437594\pi\)
0.194800 + 0.980843i \(0.437594\pi\)
\(860\) 0 0
\(861\) −181.397 25.7131i −0.210682 0.0298642i
\(862\) 0 0
\(863\) 995.095i 1.15306i 0.817074 + 0.576532i \(0.195594\pi\)
−0.817074 + 0.576532i \(0.804406\pi\)
\(864\) 0 0
\(865\) 743.769 0.859849
\(866\) 0 0
\(867\) −209.961 + 1481.20i −0.242170 + 1.70842i
\(868\) 0 0
\(869\) 444.952i 0.512027i
\(870\) 0 0
\(871\) −39.1937 −0.0449985
\(872\) 0 0
\(873\) −1019.66 295.003i −1.16800 0.337918i
\(874\) 0 0
\(875\) 29.5804i 0.0338062i
\(876\) 0 0
\(877\) 1095.18 1.24878 0.624391 0.781112i \(-0.285347\pi\)
0.624391 + 0.781112i \(0.285347\pi\)
\(878\) 0 0
\(879\) −292.282 41.4311i −0.332516 0.0471344i
\(880\) 0 0
\(881\) 1219.05i 1.38371i 0.722036 + 0.691855i \(0.243206\pi\)
−0.722036 + 0.691855i \(0.756794\pi\)
\(882\) 0 0
\(883\) −1339.04 −1.51646 −0.758232 0.651985i \(-0.773936\pi\)
−0.758232 + 0.651985i \(0.773936\pi\)
\(884\) 0 0
\(885\) 34.2344 241.512i 0.0386829 0.272894i
\(886\) 0 0
\(887\) 938.587i 1.05816i 0.848572 + 0.529079i \(0.177463\pi\)
−0.848572 + 0.529079i \(0.822537\pi\)
\(888\) 0 0
\(889\) −183.954 −0.206922
\(890\) 0 0
\(891\) 353.113 559.178i 0.396311 0.627585i
\(892\) 0 0
\(893\) 19.6153i 0.0219656i
\(894\) 0 0
\(895\) −33.8584 −0.0378306
\(896\) 0 0
\(897\) −234.106 33.1846i −0.260987 0.0369951i
\(898\) 0 0
\(899\) 867.178i 0.964602i
\(900\) 0 0
\(901\) 643.543 0.714255
\(902\) 0 0
\(903\) −36.9438 + 260.626i −0.0409123 + 0.288622i
\(904\) 0 0
\(905\) 545.999i 0.603313i
\(906\) 0 0
\(907\) 1575.14 1.73665 0.868326 0.495994i \(-0.165196\pi\)
0.868326 + 0.495994i \(0.165196\pi\)
\(908\) 0 0
\(909\) 351.258 1214.11i 0.386423 1.33565i
\(910\) 0 0
\(911\) 566.329i 0.621656i −0.950466 0.310828i \(-0.899394\pi\)
0.950466 0.310828i \(-0.100606\pi\)
\(912\) 0 0
\(913\) 467.805 0.512383
\(914\) 0 0
\(915\) −151.482 21.4727i −0.165554 0.0234674i
\(916\) 0 0
\(917\) 302.551i 0.329935i
\(918\) 0 0
\(919\) −276.281 −0.300632 −0.150316 0.988638i \(-0.548029\pi\)
−0.150316 + 0.988638i \(0.548029\pi\)
\(920\) 0 0
\(921\) 72.4850 511.356i 0.0787025 0.555219i
\(922\) 0 0
\(923\) 466.507i 0.505425i
\(924\) 0 0
\(925\) 46.1672 0.0499105
\(926\) 0 0
\(927\) 87.4464 + 25.2995i 0.0943327 + 0.0272918i
\(928\) 0 0
\(929\) 160.080i 0.172314i 0.996282 + 0.0861571i \(0.0274587\pi\)
−0.996282 + 0.0861571i \(0.972541\pi\)
\(930\) 0 0
\(931\) 31.5294 0.0338662
\(932\) 0 0
\(933\) 1377.82 + 195.306i 1.47676 + 0.209332i
\(934\) 0 0
\(935\) 512.385i 0.548005i
\(936\) 0 0
\(937\) −1084.01 −1.15689 −0.578446 0.815720i \(-0.696341\pi\)
−0.578446 + 0.815720i \(0.696341\pi\)
\(938\) 0 0
\(939\) −149.344 + 1053.57i −0.159046 + 1.12201i
\(940\) 0 0
\(941\) 692.493i 0.735912i −0.929843 0.367956i \(-0.880058\pi\)
0.929843 0.367956i \(-0.119942\pi\)
\(942\) 0 0
\(943\) −314.860 −0.333892
\(944\) 0 0
\(945\) 145.692 + 65.4885i 0.154172 + 0.0693000i
\(946\) 0 0
\(947\) 1795.10i 1.89556i 0.318923 + 0.947781i \(0.396679\pi\)
−0.318923 + 0.947781i \(0.603321\pi\)
\(948\) 0 0
\(949\) −696.636 −0.734074
\(950\) 0 0
\(951\) −133.463 18.9184i −0.140339 0.0198932i
\(952\) 0 0
\(953\) 789.199i 0.828121i 0.910249 + 0.414060i \(0.135890\pi\)
−0.910249 + 0.414060i \(0.864110\pi\)
\(954\) 0 0
\(955\) 735.496 0.770153
\(956\) 0 0
\(957\) −51.9523 + 366.505i −0.0542867 + 0.382973i
\(958\) 0 0
\(959\) 437.361i 0.456059i
\(960\) 0 0
\(961\) 2331.58 2.42620
\(962\) 0 0
\(963\) 137.836 476.423i 0.143132 0.494728i
\(964\) 0 0
\(965\) 681.164i 0.705870i
\(966\) 0 0
\(967\) −1464.86 −1.51485 −0.757426 0.652921i \(-0.773543\pi\)
−0.757426 + 0.652921i \(0.773543\pi\)
\(968\) 0 0
\(969\) 375.484 + 53.2250i 0.387496 + 0.0549277i
\(970\) 0 0
\(971\) 1278.47i 1.31665i 0.752733 + 0.658326i \(0.228735\pi\)
−0.752733 + 0.658326i \(0.771265\pi\)
\(972\) 0 0
\(973\) 550.160 0.565426
\(974\) 0 0
\(975\) 12.1637 85.8110i 0.0124756 0.0880113i
\(976\) 0 0
\(977\) 403.422i 0.412919i −0.978455 0.206460i \(-0.933806\pi\)
0.978455 0.206460i \(-0.0661942\pi\)
\(978\) 0 0
\(979\) 1231.02 1.25743
\(980\) 0 0
\(981\) −549.841 159.077i −0.560491 0.162158i
\(982\) 0 0
\(983\) 1086.01i 1.10479i −0.833583 0.552394i \(-0.813714\pi\)
0.833583 0.552394i \(-0.186286\pi\)
\(984\) 0 0
\(985\) −525.583 −0.533586
\(986\) 0 0
\(987\) 34.2237 + 4.85123i 0.0346745 + 0.00491512i
\(988\) 0 0
\(989\) 452.382i 0.457414i
\(990\) 0 0
\(991\) −70.0427 −0.0706788 −0.0353394 0.999375i \(-0.511251\pi\)
−0.0353394 + 0.999375i \(0.511251\pi\)
\(992\) 0 0
\(993\) 13.2460 93.4457i 0.0133393 0.0941044i
\(994\) 0 0
\(995\) 666.515i 0.669865i
\(996\) 0 0
\(997\) 719.365 0.721529 0.360765 0.932657i \(-0.382516\pi\)
0.360765 + 0.932657i \(0.382516\pi\)
\(998\) 0 0
\(999\) 102.210 227.387i 0.102313 0.227615i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.l.b.1121.7 16
3.2 odd 2 inner 1680.3.l.b.1121.8 16
4.3 odd 2 420.3.g.a.281.10 yes 16
12.11 even 2 420.3.g.a.281.9 16
20.3 even 4 2100.3.e.c.449.1 32
20.7 even 4 2100.3.e.c.449.32 32
20.19 odd 2 2100.3.g.d.701.7 16
60.23 odd 4 2100.3.e.c.449.31 32
60.47 odd 4 2100.3.e.c.449.2 32
60.59 even 2 2100.3.g.d.701.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.g.a.281.9 16 12.11 even 2
420.3.g.a.281.10 yes 16 4.3 odd 2
1680.3.l.b.1121.7 16 1.1 even 1 trivial
1680.3.l.b.1121.8 16 3.2 odd 2 inner
2100.3.e.c.449.1 32 20.3 even 4
2100.3.e.c.449.2 32 60.47 odd 4
2100.3.e.c.449.31 32 60.23 odd 4
2100.3.e.c.449.32 32 20.7 even 4
2100.3.g.d.701.7 16 20.19 odd 2
2100.3.g.d.701.8 16 60.59 even 2