Properties

Label 21.18.a.b.1.3
Level $21$
Weight $18$
Character 21.1
Self dual yes
Analytic conductor $38.477$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [21,18,Mod(1,21)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("21.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(21, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 18, names="a")
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-375] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.4766383424\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 401750x^{2} - 42202572x + 5013099432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(71.1690\) of defining polynomial
Character \(\chi\) \(=\) 21.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.8310 q^{2} -6561.00 q^{3} -130551. q^{4} +632611. q^{5} +149794. q^{6} -5.76480e6 q^{7} +5.97310e6 q^{8} +4.30467e7 q^{9} -1.44431e7 q^{10} -2.15066e8 q^{11} +8.56543e8 q^{12} +3.03827e9 q^{13} +1.31616e8 q^{14} -4.15056e9 q^{15} +1.69752e10 q^{16} +5.45123e10 q^{17} -9.82798e8 q^{18} -1.24821e11 q^{19} -8.25879e10 q^{20} +3.78229e10 q^{21} +4.91016e9 q^{22} +1.14102e11 q^{23} -3.91895e10 q^{24} -3.62743e11 q^{25} -6.93665e10 q^{26} -2.82430e11 q^{27} +7.52599e11 q^{28} +3.39139e12 q^{29} +9.47613e10 q^{30} -7.84404e12 q^{31} -1.17047e12 q^{32} +1.41105e12 q^{33} -1.24457e12 q^{34} -3.64688e12 q^{35} -5.61978e12 q^{36} -1.41235e13 q^{37} +2.84979e12 q^{38} -1.99341e13 q^{39} +3.77865e12 q^{40} +2.48174e13 q^{41} -8.63532e11 q^{42} -9.60227e13 q^{43} +2.80770e13 q^{44} +2.72318e13 q^{45} -2.60506e12 q^{46} -2.94778e14 q^{47} -1.11374e14 q^{48} +3.32329e13 q^{49} +8.28176e12 q^{50} -3.57655e14 q^{51} -3.96648e14 q^{52} -4.16239e14 q^{53} +6.44814e12 q^{54} -1.36053e14 q^{55} -3.44337e13 q^{56} +8.18952e14 q^{57} -7.74287e13 q^{58} -1.54226e15 q^{59} +5.41859e14 q^{60} +1.78601e15 q^{61} +1.79087e14 q^{62} -2.48156e14 q^{63} -2.19825e15 q^{64} +1.92204e15 q^{65} -3.22156e13 q^{66} +8.00135e14 q^{67} -7.11662e15 q^{68} -7.48624e14 q^{69} +8.32617e13 q^{70} +8.31181e15 q^{71} +2.57122e14 q^{72} -1.03998e16 q^{73} +3.22453e14 q^{74} +2.37995e15 q^{75} +1.62955e16 q^{76} +1.23981e15 q^{77} +4.55114e14 q^{78} +9.94360e15 q^{79} +1.07387e16 q^{80} +1.85302e15 q^{81} -5.66605e14 q^{82} +1.61457e16 q^{83} -4.93780e15 q^{84} +3.44851e16 q^{85} +2.19229e15 q^{86} -2.22509e16 q^{87} -1.28461e15 q^{88} +2.80887e16 q^{89} -6.21729e14 q^{90} -1.75150e16 q^{91} -1.48961e16 q^{92} +5.14647e16 q^{93} +6.73005e15 q^{94} -7.89633e16 q^{95} +7.67942e15 q^{96} -2.34017e16 q^{97} -7.58740e14 q^{98} -9.25788e15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 375 q^{2} - 26244 q^{3} + 314369 q^{4} - 154140 q^{5} + 2460375 q^{6} - 23059204 q^{7} - 3766143 q^{8} + 172186884 q^{9} + 23352830 q^{10} - 1452022884 q^{11} - 2062575009 q^{12} + 1793559040 q^{13}+ \cdots - 62\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −22.8310 −0.0630622 −0.0315311 0.999503i \(-0.510038\pi\)
−0.0315311 + 0.999503i \(0.510038\pi\)
\(3\) −6561.00 −0.577350
\(4\) −130551. −0.996023
\(5\) 632611. 0.724256 0.362128 0.932128i \(-0.382050\pi\)
0.362128 + 0.932128i \(0.382050\pi\)
\(6\) 149794. 0.0364090
\(7\) −5.76480e6 −0.377964
\(8\) 5.97310e6 0.125874
\(9\) 4.30467e7 0.333333
\(10\) −1.44431e7 −0.0456732
\(11\) −2.15066e8 −0.302506 −0.151253 0.988495i \(-0.548331\pi\)
−0.151253 + 0.988495i \(0.548331\pi\)
\(12\) 8.56543e8 0.575054
\(13\) 3.03827e9 1.03302 0.516508 0.856282i \(-0.327231\pi\)
0.516508 + 0.856282i \(0.327231\pi\)
\(14\) 1.31616e8 0.0238353
\(15\) −4.15056e9 −0.418149
\(16\) 1.69752e10 0.988085
\(17\) 5.45123e10 1.89530 0.947652 0.319305i \(-0.103449\pi\)
0.947652 + 0.319305i \(0.103449\pi\)
\(18\) −9.82798e8 −0.0210207
\(19\) −1.24821e11 −1.68610 −0.843048 0.537838i \(-0.819241\pi\)
−0.843048 + 0.537838i \(0.819241\pi\)
\(20\) −8.25879e10 −0.721375
\(21\) 3.78229e10 0.218218
\(22\) 4.91016e9 0.0190767
\(23\) 1.14102e11 0.303813 0.151907 0.988395i \(-0.451459\pi\)
0.151907 + 0.988395i \(0.451459\pi\)
\(24\) −3.91895e10 −0.0726732
\(25\) −3.62743e11 −0.475454
\(26\) −6.93665e10 −0.0651443
\(27\) −2.82430e11 −0.192450
\(28\) 7.52599e11 0.376461
\(29\) 3.39139e12 1.25891 0.629455 0.777037i \(-0.283278\pi\)
0.629455 + 0.777037i \(0.283278\pi\)
\(30\) 9.47613e10 0.0263694
\(31\) −7.84404e12 −1.65183 −0.825915 0.563795i \(-0.809341\pi\)
−0.825915 + 0.563795i \(0.809341\pi\)
\(32\) −1.17047e12 −0.188184
\(33\) 1.41105e12 0.174652
\(34\) −1.24457e12 −0.119522
\(35\) −3.64688e12 −0.273743
\(36\) −5.61978e12 −0.332008
\(37\) −1.41235e13 −0.661039 −0.330519 0.943799i \(-0.607224\pi\)
−0.330519 + 0.943799i \(0.607224\pi\)
\(38\) 2.84979e12 0.106329
\(39\) −1.99341e13 −0.596413
\(40\) 3.77865e12 0.0911647
\(41\) 2.48174e13 0.485393 0.242696 0.970102i \(-0.421968\pi\)
0.242696 + 0.970102i \(0.421968\pi\)
\(42\) −8.63532e11 −0.0137613
\(43\) −9.60227e13 −1.25283 −0.626415 0.779490i \(-0.715478\pi\)
−0.626415 + 0.779490i \(0.715478\pi\)
\(44\) 2.80770e13 0.301303
\(45\) 2.72318e13 0.241419
\(46\) −2.60506e12 −0.0191591
\(47\) −2.94778e14 −1.80577 −0.902885 0.429881i \(-0.858555\pi\)
−0.902885 + 0.429881i \(0.858555\pi\)
\(48\) −1.11374e14 −0.570471
\(49\) 3.32329e13 0.142857
\(50\) 8.28176e12 0.0299832
\(51\) −3.57655e14 −1.09425
\(52\) −3.96648e14 −1.02891
\(53\) −4.16239e14 −0.918328 −0.459164 0.888352i \(-0.651851\pi\)
−0.459164 + 0.888352i \(0.651851\pi\)
\(54\) 6.44814e12 0.0121363
\(55\) −1.36053e14 −0.219092
\(56\) −3.44337e13 −0.0475758
\(57\) 8.18952e14 0.973469
\(58\) −7.74287e13 −0.0793897
\(59\) −1.54226e15 −1.36746 −0.683729 0.729736i \(-0.739643\pi\)
−0.683729 + 0.729736i \(0.739643\pi\)
\(60\) 5.41859e14 0.416486
\(61\) 1.78601e15 1.19284 0.596418 0.802674i \(-0.296590\pi\)
0.596418 + 0.802674i \(0.296590\pi\)
\(62\) 1.79087e14 0.104168
\(63\) −2.48156e14 −0.125988
\(64\) −2.19825e15 −0.976218
\(65\) 1.92204e15 0.748168
\(66\) −3.22156e13 −0.0110139
\(67\) 8.00135e14 0.240728 0.120364 0.992730i \(-0.461594\pi\)
0.120364 + 0.992730i \(0.461594\pi\)
\(68\) −7.11662e15 −1.88777
\(69\) −7.48624e14 −0.175407
\(70\) 8.32617e13 0.0172628
\(71\) 8.31181e15 1.52756 0.763782 0.645474i \(-0.223340\pi\)
0.763782 + 0.645474i \(0.223340\pi\)
\(72\) 2.57122e14 0.0419579
\(73\) −1.03998e16 −1.50932 −0.754659 0.656117i \(-0.772198\pi\)
−0.754659 + 0.656117i \(0.772198\pi\)
\(74\) 3.22453e14 0.0416866
\(75\) 2.37995e15 0.274503
\(76\) 1.62955e16 1.67939
\(77\) 1.23981e15 0.114336
\(78\) 4.55114e14 0.0376111
\(79\) 9.94360e15 0.737418 0.368709 0.929545i \(-0.379800\pi\)
0.368709 + 0.929545i \(0.379800\pi\)
\(80\) 1.07387e16 0.715626
\(81\) 1.85302e15 0.111111
\(82\) −5.66605e14 −0.0306099
\(83\) 1.61457e16 0.786854 0.393427 0.919356i \(-0.371289\pi\)
0.393427 + 0.919356i \(0.371289\pi\)
\(84\) −4.93780e15 −0.217350
\(85\) 3.44851e16 1.37268
\(86\) 2.19229e15 0.0790062
\(87\) −2.22509e16 −0.726832
\(88\) −1.28461e15 −0.0380775
\(89\) 2.80887e16 0.756340 0.378170 0.925736i \(-0.376553\pi\)
0.378170 + 0.925736i \(0.376553\pi\)
\(90\) −6.21729e14 −0.0152244
\(91\) −1.75150e16 −0.390444
\(92\) −1.48961e16 −0.302605
\(93\) 5.14647e16 0.953684
\(94\) 6.73005e15 0.113876
\(95\) −7.89633e16 −1.22117
\(96\) 7.67942e15 0.108648
\(97\) −2.34017e16 −0.303171 −0.151586 0.988444i \(-0.548438\pi\)
−0.151586 + 0.988444i \(0.548438\pi\)
\(98\) −7.58740e14 −0.00900889
\(99\) −9.25788e15 −0.100835
\(100\) 4.73563e16 0.473563
\(101\) −1.47193e17 −1.35255 −0.676276 0.736648i \(-0.736408\pi\)
−0.676276 + 0.736648i \(0.736408\pi\)
\(102\) 8.16561e15 0.0690061
\(103\) −9.97084e16 −0.775560 −0.387780 0.921752i \(-0.626758\pi\)
−0.387780 + 0.921752i \(0.626758\pi\)
\(104\) 1.81479e16 0.130030
\(105\) 2.39272e16 0.158046
\(106\) 9.50313e15 0.0579118
\(107\) −8.56145e16 −0.481710 −0.240855 0.970561i \(-0.577428\pi\)
−0.240855 + 0.970561i \(0.577428\pi\)
\(108\) 3.68714e16 0.191685
\(109\) −4.92382e15 −0.0236688 −0.0118344 0.999930i \(-0.503767\pi\)
−0.0118344 + 0.999930i \(0.503767\pi\)
\(110\) 3.10622e15 0.0138164
\(111\) 9.26641e16 0.381651
\(112\) −9.78585e16 −0.373461
\(113\) −8.04913e16 −0.284828 −0.142414 0.989807i \(-0.545486\pi\)
−0.142414 + 0.989807i \(0.545486\pi\)
\(114\) −1.86974e16 −0.0613891
\(115\) 7.21822e16 0.220039
\(116\) −4.42749e17 −1.25390
\(117\) 1.30787e17 0.344339
\(118\) 3.52112e16 0.0862350
\(119\) −3.14253e17 −0.716358
\(120\) −2.47917e16 −0.0526339
\(121\) −4.59194e17 −0.908490
\(122\) −4.07763e16 −0.0752228
\(123\) −1.62827e17 −0.280242
\(124\) 1.02404e18 1.64526
\(125\) −7.12119e17 −1.06861
\(126\) 5.66563e15 0.00794509
\(127\) −1.81476e17 −0.237951 −0.118975 0.992897i \(-0.537961\pi\)
−0.118975 + 0.992897i \(0.537961\pi\)
\(128\) 2.03603e17 0.249747
\(129\) 6.30005e17 0.723322
\(130\) −4.38821e16 −0.0471811
\(131\) 5.17043e16 0.0520860 0.0260430 0.999661i \(-0.491709\pi\)
0.0260430 + 0.999661i \(0.491709\pi\)
\(132\) −1.84213e17 −0.173957
\(133\) 7.19569e17 0.637285
\(134\) −1.82678e16 −0.0151809
\(135\) −1.78668e17 −0.139383
\(136\) 3.25607e17 0.238569
\(137\) 1.39158e18 0.958038 0.479019 0.877804i \(-0.340992\pi\)
0.479019 + 0.877804i \(0.340992\pi\)
\(138\) 1.70918e16 0.0110615
\(139\) 9.31425e17 0.566920 0.283460 0.958984i \(-0.408518\pi\)
0.283460 + 0.958984i \(0.408518\pi\)
\(140\) 4.76103e17 0.272654
\(141\) 1.93404e18 1.04256
\(142\) −1.89766e17 −0.0963316
\(143\) −6.53428e17 −0.312494
\(144\) 7.30726e17 0.329362
\(145\) 2.14543e18 0.911773
\(146\) 2.37437e17 0.0951809
\(147\) −2.18041e17 −0.0824786
\(148\) 1.84383e18 0.658410
\(149\) −5.44442e18 −1.83598 −0.917991 0.396601i \(-0.870190\pi\)
−0.917991 + 0.396601i \(0.870190\pi\)
\(150\) −5.43366e16 −0.0173108
\(151\) 8.94329e16 0.0269273 0.0134637 0.999909i \(-0.495714\pi\)
0.0134637 + 0.999909i \(0.495714\pi\)
\(152\) −7.45569e17 −0.212235
\(153\) 2.34658e18 0.631768
\(154\) −2.83061e16 −0.00721031
\(155\) −4.96223e18 −1.19635
\(156\) 2.60241e18 0.594041
\(157\) 1.44620e18 0.312665 0.156333 0.987704i \(-0.450033\pi\)
0.156333 + 0.987704i \(0.450033\pi\)
\(158\) −2.27022e17 −0.0465032
\(159\) 2.73094e18 0.530197
\(160\) −7.40449e17 −0.136294
\(161\) −6.57776e17 −0.114831
\(162\) −4.23062e16 −0.00700691
\(163\) −4.82679e17 −0.0758690 −0.0379345 0.999280i \(-0.512078\pi\)
−0.0379345 + 0.999280i \(0.512078\pi\)
\(164\) −3.23993e18 −0.483463
\(165\) 8.92644e17 0.126493
\(166\) −3.68623e17 −0.0496207
\(167\) −6.19189e18 −0.792015 −0.396007 0.918247i \(-0.629605\pi\)
−0.396007 + 0.918247i \(0.629605\pi\)
\(168\) 2.25920e17 0.0274679
\(169\) 5.80650e17 0.0671240
\(170\) −7.87328e17 −0.0865645
\(171\) −5.37314e18 −0.562032
\(172\) 1.25358e19 1.24785
\(173\) −1.36734e19 −1.29564 −0.647822 0.761792i \(-0.724320\pi\)
−0.647822 + 0.761792i \(0.724320\pi\)
\(174\) 5.08010e17 0.0458356
\(175\) 2.09114e18 0.179705
\(176\) −3.65078e18 −0.298902
\(177\) 1.01187e19 0.789503
\(178\) −6.41293e17 −0.0476965
\(179\) −1.95585e19 −1.38703 −0.693513 0.720444i \(-0.743938\pi\)
−0.693513 + 0.720444i \(0.743938\pi\)
\(180\) −3.55514e18 −0.240458
\(181\) −1.87533e19 −1.21007 −0.605034 0.796200i \(-0.706840\pi\)
−0.605034 + 0.796200i \(0.706840\pi\)
\(182\) 3.99884e17 0.0246222
\(183\) −1.17180e19 −0.688684
\(184\) 6.81543e17 0.0382421
\(185\) −8.93467e18 −0.478761
\(186\) −1.17499e18 −0.0601414
\(187\) −1.17237e19 −0.573341
\(188\) 3.84834e19 1.79859
\(189\) 1.62815e18 0.0727393
\(190\) 1.80281e18 0.0770094
\(191\) 2.54663e19 1.04036 0.520178 0.854058i \(-0.325866\pi\)
0.520178 + 0.854058i \(0.325866\pi\)
\(192\) 1.44227e19 0.563620
\(193\) −5.35805e18 −0.200341 −0.100170 0.994970i \(-0.531939\pi\)
−0.100170 + 0.994970i \(0.531939\pi\)
\(194\) 5.34284e17 0.0191186
\(195\) −1.26105e19 −0.431955
\(196\) −4.33858e18 −0.142289
\(197\) −1.09188e19 −0.342934 −0.171467 0.985190i \(-0.554851\pi\)
−0.171467 + 0.985190i \(0.554851\pi\)
\(198\) 2.11366e17 0.00635890
\(199\) 2.24150e19 0.646081 0.323040 0.946385i \(-0.395295\pi\)
0.323040 + 0.946385i \(0.395295\pi\)
\(200\) −2.16670e18 −0.0598471
\(201\) −5.24969e18 −0.138985
\(202\) 3.36055e18 0.0852950
\(203\) −1.95507e19 −0.475823
\(204\) 4.66922e19 1.08990
\(205\) 1.56998e19 0.351548
\(206\) 2.27644e18 0.0489085
\(207\) 4.91172e18 0.101271
\(208\) 5.15751e19 1.02071
\(209\) 2.68448e19 0.510054
\(210\) −5.46280e17 −0.00996670
\(211\) −8.37629e19 −1.46775 −0.733873 0.679287i \(-0.762289\pi\)
−0.733873 + 0.679287i \(0.762289\pi\)
\(212\) 5.43403e19 0.914675
\(213\) −5.45338e19 −0.881939
\(214\) 1.95466e18 0.0303777
\(215\) −6.07450e19 −0.907369
\(216\) −1.68698e18 −0.0242244
\(217\) 4.52193e19 0.624333
\(218\) 1.12416e17 0.00149261
\(219\) 6.82331e19 0.871405
\(220\) 1.77618e19 0.218220
\(221\) 1.65623e20 1.95788
\(222\) −2.11561e18 −0.0240678
\(223\) 4.25519e19 0.465938 0.232969 0.972484i \(-0.425156\pi\)
0.232969 + 0.972484i \(0.425156\pi\)
\(224\) 6.74750e18 0.0711270
\(225\) −1.56149e19 −0.158485
\(226\) 1.83769e18 0.0179619
\(227\) 5.72079e19 0.538563 0.269282 0.963062i \(-0.413214\pi\)
0.269282 + 0.963062i \(0.413214\pi\)
\(228\) −1.06915e20 −0.969597
\(229\) 6.95149e19 0.607402 0.303701 0.952767i \(-0.401778\pi\)
0.303701 + 0.952767i \(0.401778\pi\)
\(230\) −1.64799e18 −0.0138761
\(231\) −8.13441e18 −0.0660122
\(232\) 2.02571e19 0.158464
\(233\) −1.65993e20 −1.25189 −0.625943 0.779869i \(-0.715286\pi\)
−0.625943 + 0.779869i \(0.715286\pi\)
\(234\) −2.98600e18 −0.0217148
\(235\) −1.86480e20 −1.30784
\(236\) 2.01343e20 1.36202
\(237\) −6.52400e19 −0.425748
\(238\) 7.17469e18 0.0451751
\(239\) −9.53139e19 −0.579127 −0.289564 0.957159i \(-0.593510\pi\)
−0.289564 + 0.957159i \(0.593510\pi\)
\(240\) −7.04565e19 −0.413167
\(241\) −1.85793e20 −1.05168 −0.525842 0.850582i \(-0.676250\pi\)
−0.525842 + 0.850582i \(0.676250\pi\)
\(242\) 1.04838e19 0.0572914
\(243\) −1.21577e19 −0.0641500
\(244\) −2.33165e20 −1.18809
\(245\) 2.10235e19 0.103465
\(246\) 3.71749e18 0.0176727
\(247\) −3.79240e20 −1.74177
\(248\) −4.68532e19 −0.207922
\(249\) −1.05932e20 −0.454290
\(250\) 1.62584e19 0.0673886
\(251\) 4.61913e20 1.85069 0.925345 0.379126i \(-0.123775\pi\)
0.925345 + 0.379126i \(0.123775\pi\)
\(252\) 3.23969e19 0.125487
\(253\) −2.45395e19 −0.0919053
\(254\) 4.14327e18 0.0150057
\(255\) −2.26257e20 −0.792520
\(256\) 2.83480e20 0.960468
\(257\) 1.22729e20 0.402267 0.201134 0.979564i \(-0.435537\pi\)
0.201134 + 0.979564i \(0.435537\pi\)
\(258\) −1.43836e19 −0.0456143
\(259\) 8.14190e19 0.249849
\(260\) −2.50924e20 −0.745193
\(261\) 1.45988e20 0.419637
\(262\) −1.18046e18 −0.00328466
\(263\) 1.46641e20 0.395030 0.197515 0.980300i \(-0.436713\pi\)
0.197515 + 0.980300i \(0.436713\pi\)
\(264\) 8.42832e18 0.0219841
\(265\) −2.63317e20 −0.665104
\(266\) −1.64285e19 −0.0401886
\(267\) −1.84290e20 −0.436673
\(268\) −1.04458e20 −0.239771
\(269\) −2.05884e19 −0.0457855 −0.0228927 0.999738i \(-0.507288\pi\)
−0.0228927 + 0.999738i \(0.507288\pi\)
\(270\) 4.07916e18 0.00878980
\(271\) 2.90773e20 0.607177 0.303588 0.952803i \(-0.401815\pi\)
0.303588 + 0.952803i \(0.401815\pi\)
\(272\) 9.25356e20 1.87272
\(273\) 1.14916e20 0.225423
\(274\) −3.17711e19 −0.0604160
\(275\) 7.80136e19 0.143828
\(276\) 9.77334e19 0.174709
\(277\) −6.72880e20 −1.16643 −0.583216 0.812317i \(-0.698206\pi\)
−0.583216 + 0.812317i \(0.698206\pi\)
\(278\) −2.12653e19 −0.0357512
\(279\) −3.37660e20 −0.550610
\(280\) −2.17832e19 −0.0344570
\(281\) −4.87548e20 −0.748193 −0.374096 0.927390i \(-0.622047\pi\)
−0.374096 + 0.927390i \(0.622047\pi\)
\(282\) −4.41559e19 −0.0657463
\(283\) 3.20008e20 0.462355 0.231178 0.972912i \(-0.425742\pi\)
0.231178 + 0.972912i \(0.425742\pi\)
\(284\) −1.08511e21 −1.52149
\(285\) 5.18078e20 0.705040
\(286\) 1.49184e19 0.0197065
\(287\) −1.43067e20 −0.183461
\(288\) −5.03847e19 −0.0627282
\(289\) 2.14435e21 2.59218
\(290\) −4.89823e19 −0.0574984
\(291\) 1.53539e20 0.175036
\(292\) 1.35770e21 1.50332
\(293\) 5.49606e20 0.591121 0.295561 0.955324i \(-0.404494\pi\)
0.295561 + 0.955324i \(0.404494\pi\)
\(294\) 4.97809e18 0.00520128
\(295\) −9.75648e20 −0.990389
\(296\) −8.43609e19 −0.0832074
\(297\) 6.07410e19 0.0582173
\(298\) 1.24301e20 0.115781
\(299\) 3.46673e20 0.313844
\(300\) −3.10705e20 −0.273412
\(301\) 5.53552e20 0.473525
\(302\) −2.04184e18 −0.00169810
\(303\) 9.65731e20 0.780897
\(304\) −2.11886e21 −1.66601
\(305\) 1.12985e21 0.863918
\(306\) −5.35746e19 −0.0398407
\(307\) 2.37264e21 1.71615 0.858075 0.513524i \(-0.171660\pi\)
0.858075 + 0.513524i \(0.171660\pi\)
\(308\) −1.61858e20 −0.113882
\(309\) 6.54187e20 0.447770
\(310\) 1.13292e20 0.0754443
\(311\) 3.09533e20 0.200559 0.100280 0.994959i \(-0.468026\pi\)
0.100280 + 0.994959i \(0.468026\pi\)
\(312\) −1.19068e20 −0.0750726
\(313\) −1.45959e21 −0.895582 −0.447791 0.894138i \(-0.647789\pi\)
−0.447791 + 0.894138i \(0.647789\pi\)
\(314\) −3.30180e19 −0.0197174
\(315\) −1.56986e20 −0.0912476
\(316\) −1.29814e21 −0.734485
\(317\) −6.93529e19 −0.0381998 −0.0190999 0.999818i \(-0.506080\pi\)
−0.0190999 + 0.999818i \(0.506080\pi\)
\(318\) −6.23500e19 −0.0334354
\(319\) −7.29372e20 −0.380828
\(320\) −1.39064e21 −0.707031
\(321\) 5.61717e20 0.278115
\(322\) 1.50176e19 0.00724148
\(323\) −6.80429e21 −3.19567
\(324\) −2.41913e20 −0.110669
\(325\) −1.10211e21 −0.491152
\(326\) 1.10200e19 0.00478446
\(327\) 3.23052e19 0.0136652
\(328\) 1.48237e20 0.0610982
\(329\) 1.69933e21 0.682517
\(330\) −2.03799e19 −0.00797690
\(331\) 3.45866e21 1.31938 0.659690 0.751538i \(-0.270688\pi\)
0.659690 + 0.751538i \(0.270688\pi\)
\(332\) −2.10784e21 −0.783724
\(333\) −6.07969e20 −0.220346
\(334\) 1.41367e20 0.0499462
\(335\) 5.06174e20 0.174349
\(336\) 6.42050e20 0.215618
\(337\) −1.53324e21 −0.502060 −0.251030 0.967979i \(-0.580769\pi\)
−0.251030 + 0.967979i \(0.580769\pi\)
\(338\) −1.32568e19 −0.00423299
\(339\) 5.28103e20 0.164445
\(340\) −4.50206e21 −1.36723
\(341\) 1.68699e21 0.499688
\(342\) 1.22674e20 0.0354430
\(343\) −1.91581e20 −0.0539949
\(344\) −5.73553e20 −0.157698
\(345\) −4.73588e20 −0.127039
\(346\) 3.12178e20 0.0817062
\(347\) −1.30135e21 −0.332349 −0.166174 0.986096i \(-0.553141\pi\)
−0.166174 + 0.986096i \(0.553141\pi\)
\(348\) 2.90487e21 0.723942
\(349\) 3.06887e21 0.746385 0.373193 0.927754i \(-0.378263\pi\)
0.373193 + 0.927754i \(0.378263\pi\)
\(350\) −4.77427e19 −0.0113326
\(351\) −8.58096e20 −0.198804
\(352\) 2.51727e20 0.0569269
\(353\) −6.07765e21 −1.34169 −0.670843 0.741599i \(-0.734068\pi\)
−0.670843 + 0.741599i \(0.734068\pi\)
\(354\) −2.31020e20 −0.0497878
\(355\) 5.25814e21 1.10635
\(356\) −3.66701e21 −0.753332
\(357\) 2.06181e21 0.413589
\(358\) 4.46539e20 0.0874689
\(359\) −4.15229e21 −0.794301 −0.397150 0.917754i \(-0.630001\pi\)
−0.397150 + 0.917754i \(0.630001\pi\)
\(360\) 1.62658e20 0.0303882
\(361\) 1.00999e22 1.84292
\(362\) 4.28156e20 0.0763095
\(363\) 3.01277e21 0.524517
\(364\) 2.28660e21 0.388891
\(365\) −6.57903e21 −1.09313
\(366\) 2.67534e20 0.0434299
\(367\) −1.61653e21 −0.256403 −0.128202 0.991748i \(-0.540920\pi\)
−0.128202 + 0.991748i \(0.540920\pi\)
\(368\) 1.93690e21 0.300194
\(369\) 1.06831e21 0.161798
\(370\) 2.03987e20 0.0301917
\(371\) 2.39953e21 0.347095
\(372\) −6.71876e21 −0.949892
\(373\) −1.36639e21 −0.188820 −0.0944101 0.995533i \(-0.530097\pi\)
−0.0944101 + 0.995533i \(0.530097\pi\)
\(374\) 2.67664e20 0.0361561
\(375\) 4.67221e21 0.616960
\(376\) −1.76074e21 −0.227299
\(377\) 1.03039e22 1.30048
\(378\) −3.71722e19 −0.00458710
\(379\) −1.13977e22 −1.37525 −0.687627 0.726064i \(-0.741348\pi\)
−0.687627 + 0.726064i \(0.741348\pi\)
\(380\) 1.03087e22 1.21631
\(381\) 1.19066e21 0.137381
\(382\) −5.81420e20 −0.0656071
\(383\) 1.65483e22 1.82627 0.913134 0.407659i \(-0.133655\pi\)
0.913134 + 0.407659i \(0.133655\pi\)
\(384\) −1.33584e21 −0.144191
\(385\) 7.84319e20 0.0828088
\(386\) 1.22329e20 0.0126339
\(387\) −4.13346e21 −0.417610
\(388\) 3.05511e21 0.301966
\(389\) −1.18214e22 −1.14313 −0.571566 0.820556i \(-0.693664\pi\)
−0.571566 + 0.820556i \(0.693664\pi\)
\(390\) 2.87910e20 0.0272400
\(391\) 6.21997e21 0.575819
\(392\) 1.98504e20 0.0179819
\(393\) −3.39232e20 −0.0300718
\(394\) 2.49286e20 0.0216262
\(395\) 6.29043e21 0.534079
\(396\) 1.20862e21 0.100434
\(397\) 1.51153e22 1.22941 0.614706 0.788757i \(-0.289275\pi\)
0.614706 + 0.788757i \(0.289275\pi\)
\(398\) −5.11755e20 −0.0407433
\(399\) −4.72109e21 −0.367937
\(400\) −6.15762e21 −0.469789
\(401\) 5.07171e21 0.378815 0.189408 0.981899i \(-0.439343\pi\)
0.189408 + 0.981899i \(0.439343\pi\)
\(402\) 1.19855e20 0.00876468
\(403\) −2.38323e22 −1.70637
\(404\) 1.92161e22 1.34717
\(405\) 1.17224e21 0.0804728
\(406\) 4.46361e20 0.0300065
\(407\) 3.03748e21 0.199968
\(408\) −2.13631e21 −0.137738
\(409\) −2.16376e22 −1.36635 −0.683175 0.730255i \(-0.739401\pi\)
−0.683175 + 0.730255i \(0.739401\pi\)
\(410\) −3.58441e20 −0.0221694
\(411\) −9.13014e21 −0.553124
\(412\) 1.30170e22 0.772475
\(413\) 8.89080e21 0.516851
\(414\) −1.12139e20 −0.00638638
\(415\) 1.02140e22 0.569883
\(416\) −3.55619e21 −0.194398
\(417\) −6.11108e21 −0.327312
\(418\) −6.12892e20 −0.0321651
\(419\) −1.30411e22 −0.670650 −0.335325 0.942103i \(-0.608846\pi\)
−0.335325 + 0.942103i \(0.608846\pi\)
\(420\) −3.12371e21 −0.157417
\(421\) −3.30097e22 −1.63021 −0.815107 0.579311i \(-0.803322\pi\)
−0.815107 + 0.579311i \(0.803322\pi\)
\(422\) 1.91239e21 0.0925593
\(423\) −1.26892e22 −0.601924
\(424\) −2.48623e21 −0.115593
\(425\) −1.97739e22 −0.901130
\(426\) 1.24506e21 0.0556170
\(427\) −1.02960e22 −0.450849
\(428\) 1.11770e22 0.479794
\(429\) 4.28714e21 0.180418
\(430\) 1.38687e21 0.0572207
\(431\) −1.16277e22 −0.470367 −0.235184 0.971951i \(-0.575569\pi\)
−0.235184 + 0.971951i \(0.575569\pi\)
\(432\) −4.79429e21 −0.190157
\(433\) −3.00470e21 −0.116857 −0.0584283 0.998292i \(-0.518609\pi\)
−0.0584283 + 0.998292i \(0.518609\pi\)
\(434\) −1.03240e21 −0.0393718
\(435\) −1.40762e22 −0.526412
\(436\) 6.42809e20 0.0235747
\(437\) −1.42424e22 −0.512259
\(438\) −1.55783e21 −0.0549527
\(439\) 7.56531e21 0.261745 0.130872 0.991399i \(-0.458222\pi\)
0.130872 + 0.991399i \(0.458222\pi\)
\(440\) −8.12658e20 −0.0275778
\(441\) 1.43057e21 0.0476190
\(442\) −3.78133e21 −0.123468
\(443\) 3.71990e22 1.19151 0.595757 0.803165i \(-0.296852\pi\)
0.595757 + 0.803165i \(0.296852\pi\)
\(444\) −1.20974e22 −0.380133
\(445\) 1.77692e22 0.547784
\(446\) −9.71501e20 −0.0293831
\(447\) 3.57208e22 1.06000
\(448\) 1.26725e22 0.368976
\(449\) −8.54040e21 −0.243997 −0.121998 0.992530i \(-0.538930\pi\)
−0.121998 + 0.992530i \(0.538930\pi\)
\(450\) 3.56503e20 0.00999439
\(451\) −5.33738e21 −0.146834
\(452\) 1.05082e22 0.283695
\(453\) −5.86769e20 −0.0155465
\(454\) −1.30611e21 −0.0339630
\(455\) −1.10802e22 −0.282781
\(456\) 4.89168e21 0.122534
\(457\) −7.46991e22 −1.83666 −0.918328 0.395821i \(-0.870460\pi\)
−0.918328 + 0.395821i \(0.870460\pi\)
\(458\) −1.58709e21 −0.0383041
\(459\) −1.53959e22 −0.364751
\(460\) −9.42345e21 −0.219163
\(461\) 2.06905e22 0.472404 0.236202 0.971704i \(-0.424097\pi\)
0.236202 + 0.971704i \(0.424097\pi\)
\(462\) 1.85716e20 0.00416287
\(463\) 4.05941e22 0.893357 0.446678 0.894695i \(-0.352607\pi\)
0.446678 + 0.894695i \(0.352607\pi\)
\(464\) 5.75694e22 1.24391
\(465\) 3.25572e22 0.690711
\(466\) 3.78978e21 0.0789466
\(467\) 2.89680e22 0.592550 0.296275 0.955103i \(-0.404256\pi\)
0.296275 + 0.955103i \(0.404256\pi\)
\(468\) −1.70744e22 −0.342970
\(469\) −4.61262e21 −0.0909868
\(470\) 4.25751e21 0.0824752
\(471\) −9.48849e21 −0.180517
\(472\) −9.21204e21 −0.172127
\(473\) 2.06512e22 0.378988
\(474\) 1.48949e21 0.0268486
\(475\) 4.52779e22 0.801661
\(476\) 4.10259e22 0.713509
\(477\) −1.79177e22 −0.306109
\(478\) 2.17611e21 0.0365211
\(479\) −8.74483e22 −1.44178 −0.720891 0.693048i \(-0.756267\pi\)
−0.720891 + 0.693048i \(0.756267\pi\)
\(480\) 4.85809e21 0.0786892
\(481\) −4.29109e22 −0.682864
\(482\) 4.24184e21 0.0663215
\(483\) 4.31567e21 0.0662975
\(484\) 5.99481e22 0.904877
\(485\) −1.48042e22 −0.219573
\(486\) 2.77571e20 0.00404544
\(487\) 6.80544e22 0.974675 0.487337 0.873214i \(-0.337968\pi\)
0.487337 + 0.873214i \(0.337968\pi\)
\(488\) 1.06680e22 0.150146
\(489\) 3.16686e21 0.0438030
\(490\) −4.79987e20 −0.00652474
\(491\) 5.62422e22 0.751398 0.375699 0.926742i \(-0.377403\pi\)
0.375699 + 0.926742i \(0.377403\pi\)
\(492\) 2.12572e22 0.279127
\(493\) 1.84873e23 2.38602
\(494\) 8.65841e21 0.109840
\(495\) −5.85664e21 −0.0730305
\(496\) −1.33154e23 −1.63215
\(497\) −4.79159e22 −0.577365
\(498\) 2.41853e21 0.0286485
\(499\) −2.44206e22 −0.284382 −0.142191 0.989839i \(-0.545415\pi\)
−0.142191 + 0.989839i \(0.545415\pi\)
\(500\) 9.29677e22 1.06436
\(501\) 4.06250e22 0.457270
\(502\) −1.05459e22 −0.116709
\(503\) −1.47102e23 −1.60063 −0.800316 0.599579i \(-0.795335\pi\)
−0.800316 + 0.599579i \(0.795335\pi\)
\(504\) −1.48226e21 −0.0158586
\(505\) −9.31157e22 −0.979594
\(506\) 5.60259e20 0.00579575
\(507\) −3.80965e21 −0.0387540
\(508\) 2.36918e22 0.237005
\(509\) −1.49402e23 −1.46979 −0.734895 0.678181i \(-0.762769\pi\)
−0.734895 + 0.678181i \(0.762769\pi\)
\(510\) 5.16566e21 0.0499780
\(511\) 5.99528e22 0.570469
\(512\) −3.31588e22 −0.310316
\(513\) 3.52532e22 0.324490
\(514\) −2.80201e21 −0.0253679
\(515\) −6.30766e22 −0.561703
\(516\) −8.22476e22 −0.720445
\(517\) 6.33966e22 0.546256
\(518\) −1.85887e21 −0.0157560
\(519\) 8.97114e22 0.748041
\(520\) 1.14805e22 0.0941746
\(521\) 9.28095e22 0.748983 0.374491 0.927230i \(-0.377817\pi\)
0.374491 + 0.927230i \(0.377817\pi\)
\(522\) −3.33305e21 −0.0264632
\(523\) 1.12343e23 0.877567 0.438784 0.898593i \(-0.355409\pi\)
0.438784 + 0.898593i \(0.355409\pi\)
\(524\) −6.75004e21 −0.0518788
\(525\) −1.37200e22 −0.103753
\(526\) −3.34794e21 −0.0249115
\(527\) −4.27597e23 −3.13072
\(528\) 2.39528e22 0.172571
\(529\) −1.28031e23 −0.907697
\(530\) 6.01179e21 0.0419429
\(531\) −6.63890e22 −0.455820
\(532\) −9.39403e22 −0.634750
\(533\) 7.54019e22 0.501419
\(534\) 4.20752e21 0.0275376
\(535\) −5.41607e22 −0.348881
\(536\) 4.77928e21 0.0303014
\(537\) 1.28323e23 0.800800
\(538\) 4.70053e20 0.00288733
\(539\) −7.14727e21 −0.0432151
\(540\) 2.33253e22 0.138829
\(541\) 9.57428e22 0.560957 0.280478 0.959860i \(-0.409507\pi\)
0.280478 + 0.959860i \(0.409507\pi\)
\(542\) −6.63863e21 −0.0382899
\(543\) 1.23040e23 0.698633
\(544\) −6.38048e22 −0.356667
\(545\) −3.11487e21 −0.0171423
\(546\) −2.62364e21 −0.0142157
\(547\) 2.89093e23 1.54222 0.771109 0.636703i \(-0.219702\pi\)
0.771109 + 0.636703i \(0.219702\pi\)
\(548\) −1.81672e23 −0.954228
\(549\) 7.68819e22 0.397612
\(550\) −1.78112e21 −0.00907008
\(551\) −4.23317e23 −2.12264
\(552\) −4.47160e21 −0.0220791
\(553\) −5.73229e22 −0.278718
\(554\) 1.53625e22 0.0735578
\(555\) 5.86204e22 0.276413
\(556\) −1.21598e23 −0.564666
\(557\) 1.50045e23 0.686202 0.343101 0.939299i \(-0.388523\pi\)
0.343101 + 0.939299i \(0.388523\pi\)
\(558\) 7.70910e21 0.0347227
\(559\) −2.91743e23 −1.29419
\(560\) −6.19064e22 −0.270481
\(561\) 7.69195e22 0.331018
\(562\) 1.11312e22 0.0471827
\(563\) 1.09521e23 0.457274 0.228637 0.973512i \(-0.426573\pi\)
0.228637 + 0.973512i \(0.426573\pi\)
\(564\) −2.52490e23 −1.03842
\(565\) −5.09197e22 −0.206288
\(566\) −7.30609e21 −0.0291572
\(567\) −1.06823e22 −0.0419961
\(568\) 4.96472e22 0.192280
\(569\) 5.09552e23 1.94417 0.972085 0.234629i \(-0.0753875\pi\)
0.972085 + 0.234629i \(0.0753875\pi\)
\(570\) −1.18282e22 −0.0444614
\(571\) 1.87057e23 0.692736 0.346368 0.938099i \(-0.387415\pi\)
0.346368 + 0.938099i \(0.387415\pi\)
\(572\) 8.53055e22 0.311251
\(573\) −1.67084e23 −0.600650
\(574\) 3.26636e21 0.0115695
\(575\) −4.13897e22 −0.144449
\(576\) −9.46273e22 −0.325406
\(577\) 2.15129e23 0.728963 0.364481 0.931211i \(-0.381246\pi\)
0.364481 + 0.931211i \(0.381246\pi\)
\(578\) −4.89576e22 −0.163468
\(579\) 3.51541e22 0.115667
\(580\) −2.80088e23 −0.908147
\(581\) −9.30769e22 −0.297403
\(582\) −3.50543e21 −0.0110382
\(583\) 8.95188e22 0.277799
\(584\) −6.21190e22 −0.189983
\(585\) 8.27376e22 0.249389
\(586\) −1.25480e22 −0.0372774
\(587\) 6.14319e23 1.79875 0.899374 0.437180i \(-0.144023\pi\)
0.899374 + 0.437180i \(0.144023\pi\)
\(588\) 2.84654e22 0.0821506
\(589\) 9.79102e23 2.78514
\(590\) 2.22750e22 0.0624561
\(591\) 7.16379e22 0.197993
\(592\) −2.39749e23 −0.653163
\(593\) 1.42058e23 0.381505 0.190753 0.981638i \(-0.438907\pi\)
0.190753 + 0.981638i \(0.438907\pi\)
\(594\) −1.38677e21 −0.00367131
\(595\) −1.98800e23 −0.518826
\(596\) 7.10773e23 1.82868
\(597\) −1.47065e23 −0.373015
\(598\) −7.91487e21 −0.0197917
\(599\) 3.29790e23 0.813036 0.406518 0.913643i \(-0.366743\pi\)
0.406518 + 0.913643i \(0.366743\pi\)
\(600\) 1.42157e22 0.0345527
\(601\) 4.90531e23 1.17553 0.587765 0.809032i \(-0.300008\pi\)
0.587765 + 0.809032i \(0.300008\pi\)
\(602\) −1.26381e22 −0.0298615
\(603\) 3.44432e22 0.0802428
\(604\) −1.16755e22 −0.0268202
\(605\) −2.90491e23 −0.657979
\(606\) −2.20486e22 −0.0492451
\(607\) −6.11981e23 −1.34783 −0.673914 0.738810i \(-0.735388\pi\)
−0.673914 + 0.738810i \(0.735388\pi\)
\(608\) 1.46099e23 0.317297
\(609\) 1.28272e23 0.274717
\(610\) −2.57956e22 −0.0544805
\(611\) −8.95613e23 −1.86539
\(612\) −3.06347e23 −0.629256
\(613\) −2.98524e23 −0.604735 −0.302368 0.953191i \(-0.597777\pi\)
−0.302368 + 0.953191i \(0.597777\pi\)
\(614\) −5.41696e22 −0.108224
\(615\) −1.03006e23 −0.202967
\(616\) 7.40552e21 0.0143919
\(617\) 1.98952e23 0.381351 0.190675 0.981653i \(-0.438932\pi\)
0.190675 + 0.981653i \(0.438932\pi\)
\(618\) −1.49357e22 −0.0282373
\(619\) −9.02032e22 −0.168210 −0.0841049 0.996457i \(-0.526803\pi\)
−0.0841049 + 0.996457i \(0.526803\pi\)
\(620\) 6.47822e23 1.19159
\(621\) −3.22258e22 −0.0584689
\(622\) −7.06692e21 −0.0126477
\(623\) −1.61926e23 −0.285870
\(624\) −3.38384e23 −0.589307
\(625\) −1.73744e23 −0.298490
\(626\) 3.33239e22 0.0564774
\(627\) −1.76129e23 −0.294480
\(628\) −1.88802e23 −0.311422
\(629\) −7.69904e23 −1.25287
\(630\) 3.58414e21 0.00575428
\(631\) −5.31284e23 −0.841545 −0.420772 0.907166i \(-0.638241\pi\)
−0.420772 + 0.907166i \(0.638241\pi\)
\(632\) 5.93941e22 0.0928214
\(633\) 5.49568e23 0.847403
\(634\) 1.58339e21 0.00240896
\(635\) −1.14804e23 −0.172337
\(636\) −3.56527e23 −0.528088
\(637\) 1.00971e23 0.147574
\(638\) 1.66523e22 0.0240158
\(639\) 3.57796e23 0.509188
\(640\) 1.28802e23 0.180881
\(641\) 3.16452e23 0.438545 0.219273 0.975664i \(-0.429632\pi\)
0.219273 + 0.975664i \(0.429632\pi\)
\(642\) −1.28245e22 −0.0175386
\(643\) −1.13986e24 −1.53836 −0.769178 0.639034i \(-0.779334\pi\)
−0.769178 + 0.639034i \(0.779334\pi\)
\(644\) 8.58731e22 0.114374
\(645\) 3.98548e23 0.523870
\(646\) 1.55348e23 0.201526
\(647\) 8.52628e23 1.09162 0.545812 0.837908i \(-0.316221\pi\)
0.545812 + 0.837908i \(0.316221\pi\)
\(648\) 1.10683e22 0.0139860
\(649\) 3.31687e23 0.413664
\(650\) 2.51622e22 0.0309731
\(651\) −2.96684e23 −0.360459
\(652\) 6.30142e22 0.0755673
\(653\) −3.70205e23 −0.438208 −0.219104 0.975701i \(-0.570313\pi\)
−0.219104 + 0.975701i \(0.570313\pi\)
\(654\) −7.37559e20 −0.000861759 0
\(655\) 3.27087e22 0.0377235
\(656\) 4.21280e23 0.479610
\(657\) −4.47677e23 −0.503106
\(658\) −3.87974e22 −0.0430410
\(659\) −4.91109e23 −0.537839 −0.268919 0.963163i \(-0.586667\pi\)
−0.268919 + 0.963163i \(0.586667\pi\)
\(660\) −1.16535e23 −0.125990
\(661\) −2.79560e23 −0.298375 −0.149188 0.988809i \(-0.547666\pi\)
−0.149188 + 0.988809i \(0.547666\pi\)
\(662\) −7.89645e22 −0.0832030
\(663\) −1.08665e24 −1.13038
\(664\) 9.64400e22 0.0990441
\(665\) 4.55207e23 0.461557
\(666\) 1.38805e22 0.0138955
\(667\) 3.86965e23 0.382474
\(668\) 8.08356e23 0.788865
\(669\) −2.79183e23 −0.269009
\(670\) −1.15564e22 −0.0109948
\(671\) −3.84110e23 −0.360840
\(672\) −4.42703e22 −0.0410652
\(673\) −1.66622e24 −1.52618 −0.763089 0.646293i \(-0.776318\pi\)
−0.763089 + 0.646293i \(0.776318\pi\)
\(674\) 3.50053e22 0.0316610
\(675\) 1.02449e23 0.0915011
\(676\) −7.58043e22 −0.0668570
\(677\) −2.01718e23 −0.175687 −0.0878437 0.996134i \(-0.527998\pi\)
−0.0878437 + 0.996134i \(0.527998\pi\)
\(678\) −1.20571e22 −0.0103703
\(679\) 1.34906e23 0.114588
\(680\) 2.05983e23 0.172785
\(681\) −3.75341e23 −0.310940
\(682\) −3.85155e22 −0.0315114
\(683\) −7.42953e23 −0.600323 −0.300162 0.953888i \(-0.597041\pi\)
−0.300162 + 0.953888i \(0.597041\pi\)
\(684\) 7.01468e23 0.559797
\(685\) 8.80328e23 0.693864
\(686\) 4.37398e21 0.00340504
\(687\) −4.56088e23 −0.350684
\(688\) −1.63000e24 −1.23790
\(689\) −1.26464e24 −0.948648
\(690\) 1.08125e22 0.00801138
\(691\) 9.47125e23 0.693177 0.346588 0.938017i \(-0.387340\pi\)
0.346588 + 0.938017i \(0.387340\pi\)
\(692\) 1.78508e24 1.29049
\(693\) 5.33699e22 0.0381122
\(694\) 2.97111e22 0.0209586
\(695\) 5.89230e23 0.410595
\(696\) −1.32907e23 −0.0914890
\(697\) 1.35285e24 0.919967
\(698\) −7.00653e22 −0.0470687
\(699\) 1.08908e24 0.722776
\(700\) −2.73000e23 −0.178990
\(701\) 1.00735e24 0.652498 0.326249 0.945284i \(-0.394215\pi\)
0.326249 + 0.945284i \(0.394215\pi\)
\(702\) 1.95912e22 0.0125370
\(703\) 1.76291e24 1.11458
\(704\) 4.72768e23 0.295312
\(705\) 1.22349e24 0.755081
\(706\) 1.38759e23 0.0846097
\(707\) 8.48536e23 0.511217
\(708\) −1.32101e24 −0.786363
\(709\) 1.54511e24 0.908793 0.454397 0.890799i \(-0.349855\pi\)
0.454397 + 0.890799i \(0.349855\pi\)
\(710\) −1.20048e23 −0.0697687
\(711\) 4.28040e23 0.245806
\(712\) 1.67777e23 0.0952033
\(713\) −8.95021e23 −0.501848
\(714\) −4.70731e22 −0.0260818
\(715\) −4.13366e23 −0.226325
\(716\) 2.55338e24 1.38151
\(717\) 6.25355e23 0.334359
\(718\) 9.48008e22 0.0500903
\(719\) −2.63001e24 −1.37329 −0.686644 0.726994i \(-0.740917\pi\)
−0.686644 + 0.726994i \(0.740917\pi\)
\(720\) 4.62265e23 0.238542
\(721\) 5.74799e23 0.293134
\(722\) −2.30591e23 −0.116219
\(723\) 1.21899e24 0.607190
\(724\) 2.44826e24 1.20526
\(725\) −1.23020e24 −0.598554
\(726\) −6.87844e22 −0.0330772
\(727\) −8.10454e23 −0.385200 −0.192600 0.981277i \(-0.561692\pi\)
−0.192600 + 0.981277i \(0.561692\pi\)
\(728\) −1.04619e23 −0.0491466
\(729\) 7.97664e22 0.0370370
\(730\) 1.50206e23 0.0689353
\(731\) −5.23442e24 −2.37449
\(732\) 1.52980e24 0.685945
\(733\) 1.02146e24 0.452730 0.226365 0.974043i \(-0.427316\pi\)
0.226365 + 0.974043i \(0.427316\pi\)
\(734\) 3.69070e22 0.0161694
\(735\) −1.37935e23 −0.0597356
\(736\) −1.33553e23 −0.0571730
\(737\) −1.72082e23 −0.0728218
\(738\) −2.43905e22 −0.0102033
\(739\) −1.46607e24 −0.606286 −0.303143 0.952945i \(-0.598036\pi\)
−0.303143 + 0.952945i \(0.598036\pi\)
\(740\) 1.16643e24 0.476857
\(741\) 2.48819e24 1.00561
\(742\) −5.47836e22 −0.0218886
\(743\) −7.21717e23 −0.285077 −0.142538 0.989789i \(-0.545526\pi\)
−0.142538 + 0.989789i \(0.545526\pi\)
\(744\) 3.07404e23 0.120044
\(745\) −3.44420e24 −1.32972
\(746\) 3.11959e22 0.0119074
\(747\) 6.95021e23 0.262285
\(748\) 1.53054e24 0.571060
\(749\) 4.93551e23 0.182069
\(750\) −1.06671e23 −0.0389068
\(751\) −1.69381e24 −0.610835 −0.305418 0.952219i \(-0.598796\pi\)
−0.305418 + 0.952219i \(0.598796\pi\)
\(752\) −5.00390e24 −1.78426
\(753\) −3.03061e24 −1.06850
\(754\) −2.35249e23 −0.0820109
\(755\) 5.65762e22 0.0195023
\(756\) −2.12556e23 −0.0724500
\(757\) −4.95241e23 −0.166917 −0.0834587 0.996511i \(-0.526597\pi\)
−0.0834587 + 0.996511i \(0.526597\pi\)
\(758\) 2.60220e23 0.0867266
\(759\) 1.61003e23 0.0530616
\(760\) −4.71655e23 −0.153712
\(761\) 4.97441e24 1.60314 0.801571 0.597900i \(-0.203998\pi\)
0.801571 + 0.597900i \(0.203998\pi\)
\(762\) −2.71840e22 −0.00866355
\(763\) 2.83849e22 0.00894598
\(764\) −3.32464e24 −1.03622
\(765\) 1.48447e24 0.457561
\(766\) −3.77814e23 −0.115169
\(767\) −4.68578e24 −1.41261
\(768\) −1.85991e24 −0.554527
\(769\) 4.76740e24 1.40575 0.702875 0.711313i \(-0.251899\pi\)
0.702875 + 0.711313i \(0.251899\pi\)
\(770\) −1.79068e22 −0.00522211
\(771\) −8.05223e23 −0.232249
\(772\) 6.99497e23 0.199544
\(773\) −2.99309e24 −0.844489 −0.422244 0.906482i \(-0.638758\pi\)
−0.422244 + 0.906482i \(0.638758\pi\)
\(774\) 9.43709e22 0.0263354
\(775\) 2.84537e24 0.785369
\(776\) −1.39781e23 −0.0381613
\(777\) −5.34190e23 −0.144251
\(778\) 2.69893e23 0.0720884
\(779\) −3.09774e24 −0.818419
\(780\) 1.64631e24 0.430237
\(781\) −1.78759e24 −0.462097
\(782\) −1.42008e23 −0.0363124
\(783\) −9.57829e23 −0.242277
\(784\) 5.64135e23 0.141155
\(785\) 9.14879e23 0.226450
\(786\) 7.74499e21 0.00189640
\(787\) 7.61086e23 0.184352 0.0921762 0.995743i \(-0.470618\pi\)
0.0921762 + 0.995743i \(0.470618\pi\)
\(788\) 1.42545e24 0.341570
\(789\) −9.62109e23 −0.228071
\(790\) −1.43617e23 −0.0336802
\(791\) 4.64016e23 0.107655
\(792\) −5.52982e22 −0.0126925
\(793\) 5.42638e24 1.23222
\(794\) −3.45096e23 −0.0775294
\(795\) 1.72762e24 0.383998
\(796\) −2.92629e24 −0.643511
\(797\) −7.11328e23 −0.154766 −0.0773828 0.997001i \(-0.524656\pi\)
−0.0773828 + 0.997001i \(0.524656\pi\)
\(798\) 1.07787e23 0.0232029
\(799\) −1.60690e25 −3.42248
\(800\) 4.24578e23 0.0894730
\(801\) 1.20913e24 0.252113
\(802\) −1.15792e23 −0.0238889
\(803\) 2.23664e24 0.456578
\(804\) 6.85350e23 0.138432
\(805\) −4.16116e23 −0.0831667
\(806\) 5.44114e23 0.107607
\(807\) 1.35080e23 0.0264343
\(808\) −8.79196e23 −0.170251
\(809\) 7.09657e24 1.35984 0.679918 0.733288i \(-0.262016\pi\)
0.679918 + 0.733288i \(0.262016\pi\)
\(810\) −2.67634e22 −0.00507479
\(811\) 3.32935e24 0.624715 0.312357 0.949965i \(-0.398881\pi\)
0.312357 + 0.949965i \(0.398881\pi\)
\(812\) 2.55236e24 0.473931
\(813\) −1.90776e24 −0.350554
\(814\) −6.93486e22 −0.0126104
\(815\) −3.05348e23 −0.0549485
\(816\) −6.07126e24 −1.08122
\(817\) 1.19857e25 2.11239
\(818\) 4.94008e23 0.0861650
\(819\) −7.53964e23 −0.130148
\(820\) −2.04962e24 −0.350150
\(821\) −3.86094e24 −0.652794 −0.326397 0.945233i \(-0.605835\pi\)
−0.326397 + 0.945233i \(0.605835\pi\)
\(822\) 2.08450e23 0.0348812
\(823\) −6.16918e24 −1.02171 −0.510856 0.859666i \(-0.670672\pi\)
−0.510856 + 0.859666i \(0.670672\pi\)
\(824\) −5.95568e23 −0.0976225
\(825\) −5.11847e23 −0.0830389
\(826\) −2.02985e23 −0.0325937
\(827\) 9.38348e24 1.49131 0.745654 0.666334i \(-0.232137\pi\)
0.745654 + 0.666334i \(0.232137\pi\)
\(828\) −6.41229e23 −0.100868
\(829\) 7.02298e24 1.09347 0.546736 0.837305i \(-0.315870\pi\)
0.546736 + 0.837305i \(0.315870\pi\)
\(830\) −2.33195e23 −0.0359381
\(831\) 4.41477e24 0.673440
\(832\) −6.67886e24 −1.00845
\(833\) 1.81160e24 0.270758
\(834\) 1.39522e23 0.0206410
\(835\) −3.91706e24 −0.573621
\(836\) −3.50461e24 −0.508026
\(837\) 2.21539e24 0.317895
\(838\) 2.97741e23 0.0422927
\(839\) 6.14770e24 0.864442 0.432221 0.901768i \(-0.357730\pi\)
0.432221 + 0.901768i \(0.357730\pi\)
\(840\) 1.42919e23 0.0198938
\(841\) 4.24438e24 0.584855
\(842\) 7.53644e23 0.102805
\(843\) 3.19880e24 0.431969
\(844\) 1.09353e25 1.46191
\(845\) 3.67326e23 0.0486149
\(846\) 2.89707e23 0.0379586
\(847\) 2.64716e24 0.343377
\(848\) −7.06573e24 −0.907386
\(849\) −2.09957e24 −0.266941
\(850\) 4.51458e23 0.0568272
\(851\) −1.61152e24 −0.200832
\(852\) 7.11942e24 0.878432
\(853\) −1.87599e24 −0.229174 −0.114587 0.993413i \(-0.536554\pi\)
−0.114587 + 0.993413i \(0.536554\pi\)
\(854\) 2.35067e23 0.0284316
\(855\) −3.39911e24 −0.407055
\(856\) −5.11384e23 −0.0606345
\(857\) 5.85280e24 0.687110 0.343555 0.939132i \(-0.388369\pi\)
0.343555 + 0.939132i \(0.388369\pi\)
\(858\) −9.78795e22 −0.0113776
\(859\) −5.70291e24 −0.656379 −0.328189 0.944612i \(-0.606438\pi\)
−0.328189 + 0.944612i \(0.606438\pi\)
\(860\) 7.93031e24 0.903760
\(861\) 9.38665e23 0.105921
\(862\) 2.65471e23 0.0296624
\(863\) 1.44974e25 1.60398 0.801991 0.597336i \(-0.203774\pi\)
0.801991 + 0.597336i \(0.203774\pi\)
\(864\) 3.30574e23 0.0362161
\(865\) −8.64997e24 −0.938378
\(866\) 6.86001e22 0.00736924
\(867\) −1.40691e25 −1.49659
\(868\) −5.90342e24 −0.621850
\(869\) −2.13853e24 −0.223073
\(870\) 3.21373e23 0.0331967
\(871\) 2.43102e24 0.248677
\(872\) −2.94105e22 −0.00297928
\(873\) −1.00737e24 −0.101057
\(874\) 3.25166e23 0.0323042
\(875\) 4.10522e24 0.403895
\(876\) −8.90788e24 −0.867940
\(877\) 1.53001e25 1.47638 0.738191 0.674592i \(-0.235680\pi\)
0.738191 + 0.674592i \(0.235680\pi\)
\(878\) −1.72723e23 −0.0165062
\(879\) −3.60596e24 −0.341284
\(880\) −2.30953e24 −0.216481
\(881\) 9.68780e24 0.899352 0.449676 0.893192i \(-0.351539\pi\)
0.449676 + 0.893192i \(0.351539\pi\)
\(882\) −3.26613e22 −0.00300296
\(883\) 5.45095e24 0.496371 0.248185 0.968713i \(-0.420166\pi\)
0.248185 + 0.968713i \(0.420166\pi\)
\(884\) −2.16222e25 −1.95009
\(885\) 6.40123e24 0.571802
\(886\) −8.49288e23 −0.0751395
\(887\) −8.37406e24 −0.733813 −0.366907 0.930258i \(-0.619583\pi\)
−0.366907 + 0.930258i \(0.619583\pi\)
\(888\) 5.53492e23 0.0480398
\(889\) 1.04617e24 0.0899370
\(890\) −4.05689e23 −0.0345444
\(891\) −3.98521e23 −0.0336118
\(892\) −5.55518e24 −0.464085
\(893\) 3.67945e25 3.04470
\(894\) −8.15541e23 −0.0668462
\(895\) −1.23729e25 −1.00456
\(896\) −1.17373e24 −0.0943955
\(897\) −2.27452e24 −0.181198
\(898\) 1.94985e23 0.0153870
\(899\) −2.66022e25 −2.07951
\(900\) 2.03853e24 0.157854
\(901\) −2.26901e25 −1.74051
\(902\) 1.21857e23 0.00925969
\(903\) −3.63185e24 −0.273390
\(904\) −4.80782e23 −0.0358523
\(905\) −1.18635e25 −0.876398
\(906\) 1.33965e22 0.000980396 0
\(907\) −2.07998e24 −0.150798 −0.0753992 0.997153i \(-0.524023\pi\)
−0.0753992 + 0.997153i \(0.524023\pi\)
\(908\) −7.46854e24 −0.536421
\(909\) −6.33616e24 −0.450851
\(910\) 2.52971e23 0.0178328
\(911\) 1.50752e25 1.05283 0.526413 0.850229i \(-0.323537\pi\)
0.526413 + 0.850229i \(0.323537\pi\)
\(912\) 1.39018e25 0.961870
\(913\) −3.47240e24 −0.238028
\(914\) 1.70545e24 0.115824
\(915\) −7.41295e24 −0.498783
\(916\) −9.07523e24 −0.604987
\(917\) −2.98065e23 −0.0196866
\(918\) 3.51503e23 0.0230020
\(919\) −8.40599e24 −0.545013 −0.272506 0.962154i \(-0.587853\pi\)
−0.272506 + 0.962154i \(0.587853\pi\)
\(920\) 4.31152e23 0.0276970
\(921\) −1.55669e25 −0.990820
\(922\) −4.72384e23 −0.0297908
\(923\) 2.52535e25 1.57800
\(924\) 1.06195e24 0.0657497
\(925\) 5.12319e24 0.314294
\(926\) −9.26803e23 −0.0563370
\(927\) −4.29212e24 −0.258520
\(928\) −3.96951e24 −0.236907
\(929\) 2.49512e23 0.0147557 0.00737783 0.999973i \(-0.497652\pi\)
0.00737783 + 0.999973i \(0.497652\pi\)
\(930\) −7.43311e23 −0.0435578
\(931\) −4.14817e24 −0.240871
\(932\) 2.16705e25 1.24691
\(933\) −2.03084e24 −0.115793
\(934\) −6.61367e23 −0.0373675
\(935\) −7.41657e24 −0.415245
\(936\) 7.81206e23 0.0433432
\(937\) 4.52595e24 0.248842 0.124421 0.992230i \(-0.460293\pi\)
0.124421 + 0.992230i \(0.460293\pi\)
\(938\) 1.05311e23 0.00573783
\(939\) 9.57640e24 0.517064
\(940\) 2.43450e25 1.30264
\(941\) −8.41772e24 −0.446357 −0.223179 0.974778i \(-0.571643\pi\)
−0.223179 + 0.974778i \(0.571643\pi\)
\(942\) 2.16631e23 0.0113838
\(943\) 2.83172e24 0.147469
\(944\) −2.61801e25 −1.35117
\(945\) 1.02999e24 0.0526818
\(946\) −4.71487e23 −0.0238998
\(947\) −3.41158e25 −1.71388 −0.856941 0.515414i \(-0.827638\pi\)
−0.856941 + 0.515414i \(0.827638\pi\)
\(948\) 8.51713e24 0.424055
\(949\) −3.15974e25 −1.55915
\(950\) −1.03374e24 −0.0505545
\(951\) 4.55024e23 0.0220547
\(952\) −1.87706e24 −0.0901705
\(953\) 2.42458e25 1.15437 0.577187 0.816612i \(-0.304150\pi\)
0.577187 + 0.816612i \(0.304150\pi\)
\(954\) 4.09079e23 0.0193039
\(955\) 1.61103e25 0.753484
\(956\) 1.24433e25 0.576824
\(957\) 4.78541e24 0.219871
\(958\) 1.99653e24 0.0909220
\(959\) −8.02217e24 −0.362104
\(960\) 9.12396e24 0.408205
\(961\) 3.89788e25 1.72854
\(962\) 9.79697e23 0.0430629
\(963\) −3.68542e24 −0.160570
\(964\) 2.42555e25 1.04750
\(965\) −3.38956e24 −0.145098
\(966\) −9.85308e22 −0.00418087
\(967\) −2.29517e25 −0.965363 −0.482681 0.875796i \(-0.660337\pi\)
−0.482681 + 0.875796i \(0.660337\pi\)
\(968\) −2.74281e24 −0.114355
\(969\) 4.46430e25 1.84502
\(970\) 3.37994e23 0.0138468
\(971\) −4.54882e25 −1.84729 −0.923646 0.383246i \(-0.874806\pi\)
−0.923646 + 0.383246i \(0.874806\pi\)
\(972\) 1.58719e24 0.0638949
\(973\) −5.36948e24 −0.214276
\(974\) −1.55375e24 −0.0614651
\(975\) 7.23094e24 0.283567
\(976\) 3.03178e25 1.17862
\(977\) 2.56796e25 0.989655 0.494827 0.868991i \(-0.335231\pi\)
0.494827 + 0.868991i \(0.335231\pi\)
\(978\) −7.23024e22 −0.00276231
\(979\) −6.04093e24 −0.228797
\(980\) −2.74464e24 −0.103054
\(981\) −2.11954e23 −0.00788962
\(982\) −1.28406e24 −0.0473848
\(983\) −1.97584e25 −0.722848 −0.361424 0.932402i \(-0.617709\pi\)
−0.361424 + 0.932402i \(0.617709\pi\)
\(984\) −9.72581e23 −0.0352750
\(985\) −6.90733e24 −0.248372
\(986\) −4.22082e24 −0.150468
\(987\) −1.11493e25 −0.394051
\(988\) 4.95101e25 1.73484
\(989\) −1.09564e25 −0.380626
\(990\) 1.33713e23 0.00460547
\(991\) 5.45422e25 1.86254 0.931271 0.364326i \(-0.118701\pi\)
0.931271 + 0.364326i \(0.118701\pi\)
\(992\) 9.18117e24 0.310849
\(993\) −2.26923e25 −0.761744
\(994\) 1.09397e24 0.0364099
\(995\) 1.41800e25 0.467928
\(996\) 1.38295e25 0.452484
\(997\) 5.43418e25 1.76289 0.881445 0.472287i \(-0.156571\pi\)
0.881445 + 0.472287i \(0.156571\pi\)
\(998\) 5.57546e23 0.0179338
\(999\) 3.98889e24 0.127217
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 21.18.a.b.1.3 4
3.2 odd 2 63.18.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.18.a.b.1.3 4 1.1 even 1 trivial
63.18.a.d.1.2 4 3.2 odd 2