Defining parameters
| Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 18 \) |
| Character orbit: | \([\chi]\) | \(=\) | 21.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(21))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 16 | 32 |
| Cusp forms | 44 | 16 | 28 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(11\) | \(4\) | \(7\) | \(10\) | \(4\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(12\) | \(4\) | \(8\) | \(11\) | \(4\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(13\) | \(5\) | \(8\) | \(12\) | \(5\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(12\) | \(3\) | \(9\) | \(11\) | \(3\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(23\) | \(7\) | \(16\) | \(21\) | \(7\) | \(14\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(25\) | \(9\) | \(16\) | \(23\) | \(9\) | \(14\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(21))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
| 21.18.a.a | $3$ | $38.477$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-408\) | \(19683\) | \(-1463514\) | \(17294403\) | $-$ | $-$ | \(q+(-136+\beta _{1})q^{2}+3^{8}q^{3}+(9984+\cdots)q^{4}+\cdots\) | |
| 21.18.a.b | $4$ | $38.477$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-375\) | \(-26244\) | \(-154140\) | \(-23059204\) | $+$ | $+$ | \(q+(-94+\beta _{1})q^{2}-3^{8}q^{3}+(78600+\cdots)q^{4}+\cdots\) | |
| 21.18.a.c | $4$ | $38.477$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-18\) | \(-26244\) | \(851508\) | \(23059204\) | $+$ | $-$ | \(q+(-4-\beta _{1})q^{2}-3^{8}q^{3}+(73952+59\beta _{1}+\cdots)q^{4}+\cdots\) | |
| 21.18.a.d | $5$ | $38.477$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-253\) | \(32805\) | \(-906662\) | \(-28824005\) | $-$ | $+$ | \(q+(-51+\beta _{1})q^{2}+3^{8}q^{3}+(88394+\cdots)q^{4}+\cdots\) | |
Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(21))\) into lower level spaces
\( S_{18}^{\mathrm{old}}(\Gamma_0(21)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)