Properties

Label 21.18.a
Level $21$
Weight $18$
Character orbit 21.a
Rep. character $\chi_{21}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(21))\).

Total New Old
Modular forms 48 16 32
Cusp forms 44 16 28
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(11\)\(4\)\(7\)\(10\)\(4\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(12\)\(4\)\(8\)\(11\)\(4\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(13\)\(5\)\(8\)\(12\)\(5\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(12\)\(3\)\(9\)\(11\)\(3\)\(8\)\(1\)\(0\)\(1\)
Plus space\(+\)\(23\)\(7\)\(16\)\(21\)\(7\)\(14\)\(2\)\(0\)\(2\)
Minus space\(-\)\(25\)\(9\)\(16\)\(23\)\(9\)\(14\)\(2\)\(0\)\(2\)

Trace form

\( 16 q - 1054 q^{2} + 1081858 q^{4} - 1672808 q^{5} - 1758348 q^{6} - 11529602 q^{7} - 237216402 q^{8} + 688747536 q^{9} + 1686014508 q^{10} + 721831288 q^{11} - 910194408 q^{12} + 6865298144 q^{13} + 1164489802 q^{14}+ \cdots + 31\!\cdots\!48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(21))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
21.18.a.a 21.a 1.a $3$ $38.477$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 21.18.a.a \(-408\) \(19683\) \(-1463514\) \(17294403\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-136+\beta _{1})q^{2}+3^{8}q^{3}+(9984+\cdots)q^{4}+\cdots\)
21.18.a.b 21.a 1.a $4$ $38.477$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 21.18.a.b \(-375\) \(-26244\) \(-154140\) \(-23059204\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-94+\beta _{1})q^{2}-3^{8}q^{3}+(78600+\cdots)q^{4}+\cdots\)
21.18.a.c 21.a 1.a $4$ $38.477$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 21.18.a.c \(-18\) \(-26244\) \(851508\) \(23059204\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta _{1})q^{2}-3^{8}q^{3}+(73952+59\beta _{1}+\cdots)q^{4}+\cdots\)
21.18.a.d 21.a 1.a $5$ $38.477$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 21.18.a.d \(-253\) \(32805\) \(-906662\) \(-28824005\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-51+\beta _{1})q^{2}+3^{8}q^{3}+(88394+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(21))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_0(21)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)