Properties

Label 21.18
Level 21
Weight 18
Dimension 192
Nonzero newspaces 4
Newform subspaces 9
Sturm bound 576
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 21 = 3 \cdot 7 \)
Weight: \( k \) = \( 18 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 9 \)
Sturm bound: \(576\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(21))\).

Total New Old
Modular forms 284 204 80
Cusp forms 260 192 68
Eisenstein series 24 12 12

Trace form

\( 192 q - 1596 q^{2} - 6564 q^{3} - 698414 q^{4} - 2289906 q^{5} + 4960116 q^{6} - 50397326 q^{7} + 238954278 q^{8} + 40710972 q^{9} + 1551745296 q^{10} + 899235402 q^{11} - 6841812504 q^{12} + 8579855326 q^{13}+ \cdots + 23\!\cdots\!96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(21))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
21.18.a \(\chi_{21}(1, \cdot)\) 21.18.a.a 3 1
21.18.a.b 4
21.18.a.c 4
21.18.a.d 5
21.18.c \(\chi_{21}(20, \cdot)\) 21.18.c.a 44 1
21.18.e \(\chi_{21}(4, \cdot)\) 21.18.e.a 22 2
21.18.e.b 24
21.18.g \(\chi_{21}(5, \cdot)\) 21.18.g.a 2 2
21.18.g.b 84

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(21))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_1(21)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)