sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(21, base_ring=CyclotomicField(2))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([1,1]))
sage: chi.galois_orbit()
pari: [g,chi] = znchar(Mod(20,21))
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Kronecker symbol representation
sage: kronecker_character(21)
pari: znchartokronecker(g,chi)
\(\displaystyle\left(\frac{21}{\bullet}\right)\)
Basic properties
Modulus: | \(21\) | |
Conductor: | \(21\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(2\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q\) |
Fixed field: | \(\Q(\sqrt{21}) \) |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{21}(20,\cdot)\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |