Properties

Label 63.18.a.d.1.2
Level $63$
Weight $18$
Character 63.1
Self dual yes
Analytic conductor $115.430$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,18,Mod(1,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 18, names="a")
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 63.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,375] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.429915027\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 401750x^{2} - 42202572x + 5013099432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(71.1690\) of defining polynomial
Character \(\chi\) \(=\) 63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.8310 q^{2} -130551. q^{4} -632611. q^{5} -5.76480e6 q^{7} -5.97310e6 q^{8} -1.44431e7 q^{10} +2.15066e8 q^{11} +3.03827e9 q^{13} -1.31616e8 q^{14} +1.69752e10 q^{16} -5.45123e10 q^{17} -1.24821e11 q^{19} +8.25879e10 q^{20} +4.91016e9 q^{22} -1.14102e11 q^{23} -3.62743e11 q^{25} +6.93665e10 q^{26} +7.52599e11 q^{28} -3.39139e12 q^{29} -7.84404e12 q^{31} +1.17047e12 q^{32} -1.24457e12 q^{34} +3.64688e12 q^{35} -1.41235e13 q^{37} -2.84979e12 q^{38} +3.77865e12 q^{40} -2.48174e13 q^{41} -9.60227e13 q^{43} -2.80770e13 q^{44} -2.60506e12 q^{46} +2.94778e14 q^{47} +3.32329e13 q^{49} -8.28176e12 q^{50} -3.96648e14 q^{52} +4.16239e14 q^{53} -1.36053e14 q^{55} +3.44337e13 q^{56} -7.74287e13 q^{58} +1.54226e15 q^{59} +1.78601e15 q^{61} -1.79087e14 q^{62} -2.19825e15 q^{64} -1.92204e15 q^{65} +8.00135e14 q^{67} +7.11662e15 q^{68} +8.32617e13 q^{70} -8.31181e15 q^{71} -1.03998e16 q^{73} -3.22453e14 q^{74} +1.62955e16 q^{76} -1.23981e15 q^{77} +9.94360e15 q^{79} -1.07387e16 q^{80} -5.66605e14 q^{82} -1.61457e16 q^{83} +3.44851e16 q^{85} -2.19229e15 q^{86} -1.28461e15 q^{88} -2.80887e16 q^{89} -1.75150e16 q^{91} +1.48961e16 q^{92} +6.73005e15 q^{94} +7.89633e16 q^{95} -2.34017e16 q^{97} +7.58740e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 375 q^{2} + 314369 q^{4} + 154140 q^{5} - 23059204 q^{7} + 3766143 q^{8} + 23352830 q^{10} + 1452022884 q^{11} + 1793559040 q^{13} - 2161800375 q^{14} + 36719981057 q^{16} - 68581449948 q^{17} - 2578000592 q^{19}+ \cdots + 12\!\cdots\!75 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.8310 0.0630622 0.0315311 0.999503i \(-0.489962\pi\)
0.0315311 + 0.999503i \(0.489962\pi\)
\(3\) 0 0
\(4\) −130551. −0.996023
\(5\) −632611. −0.724256 −0.362128 0.932128i \(-0.617950\pi\)
−0.362128 + 0.932128i \(0.617950\pi\)
\(6\) 0 0
\(7\) −5.76480e6 −0.377964
\(8\) −5.97310e6 −0.125874
\(9\) 0 0
\(10\) −1.44431e7 −0.0456732
\(11\) 2.15066e8 0.302506 0.151253 0.988495i \(-0.451669\pi\)
0.151253 + 0.988495i \(0.451669\pi\)
\(12\) 0 0
\(13\) 3.03827e9 1.03302 0.516508 0.856282i \(-0.327231\pi\)
0.516508 + 0.856282i \(0.327231\pi\)
\(14\) −1.31616e8 −0.0238353
\(15\) 0 0
\(16\) 1.69752e10 0.988085
\(17\) −5.45123e10 −1.89530 −0.947652 0.319305i \(-0.896551\pi\)
−0.947652 + 0.319305i \(0.896551\pi\)
\(18\) 0 0
\(19\) −1.24821e11 −1.68610 −0.843048 0.537838i \(-0.819241\pi\)
−0.843048 + 0.537838i \(0.819241\pi\)
\(20\) 8.25879e10 0.721375
\(21\) 0 0
\(22\) 4.91016e9 0.0190767
\(23\) −1.14102e11 −0.303813 −0.151907 0.988395i \(-0.548541\pi\)
−0.151907 + 0.988395i \(0.548541\pi\)
\(24\) 0 0
\(25\) −3.62743e11 −0.475454
\(26\) 6.93665e10 0.0651443
\(27\) 0 0
\(28\) 7.52599e11 0.376461
\(29\) −3.39139e12 −1.25891 −0.629455 0.777037i \(-0.716722\pi\)
−0.629455 + 0.777037i \(0.716722\pi\)
\(30\) 0 0
\(31\) −7.84404e12 −1.65183 −0.825915 0.563795i \(-0.809341\pi\)
−0.825915 + 0.563795i \(0.809341\pi\)
\(32\) 1.17047e12 0.188184
\(33\) 0 0
\(34\) −1.24457e12 −0.119522
\(35\) 3.64688e12 0.273743
\(36\) 0 0
\(37\) −1.41235e13 −0.661039 −0.330519 0.943799i \(-0.607224\pi\)
−0.330519 + 0.943799i \(0.607224\pi\)
\(38\) −2.84979e12 −0.106329
\(39\) 0 0
\(40\) 3.77865e12 0.0911647
\(41\) −2.48174e13 −0.485393 −0.242696 0.970102i \(-0.578032\pi\)
−0.242696 + 0.970102i \(0.578032\pi\)
\(42\) 0 0
\(43\) −9.60227e13 −1.25283 −0.626415 0.779490i \(-0.715478\pi\)
−0.626415 + 0.779490i \(0.715478\pi\)
\(44\) −2.80770e13 −0.301303
\(45\) 0 0
\(46\) −2.60506e12 −0.0191591
\(47\) 2.94778e14 1.80577 0.902885 0.429881i \(-0.141445\pi\)
0.902885 + 0.429881i \(0.141445\pi\)
\(48\) 0 0
\(49\) 3.32329e13 0.142857
\(50\) −8.28176e12 −0.0299832
\(51\) 0 0
\(52\) −3.96648e14 −1.02891
\(53\) 4.16239e14 0.918328 0.459164 0.888352i \(-0.348149\pi\)
0.459164 + 0.888352i \(0.348149\pi\)
\(54\) 0 0
\(55\) −1.36053e14 −0.219092
\(56\) 3.44337e13 0.0475758
\(57\) 0 0
\(58\) −7.74287e13 −0.0793897
\(59\) 1.54226e15 1.36746 0.683729 0.729736i \(-0.260357\pi\)
0.683729 + 0.729736i \(0.260357\pi\)
\(60\) 0 0
\(61\) 1.78601e15 1.19284 0.596418 0.802674i \(-0.296590\pi\)
0.596418 + 0.802674i \(0.296590\pi\)
\(62\) −1.79087e14 −0.104168
\(63\) 0 0
\(64\) −2.19825e15 −0.976218
\(65\) −1.92204e15 −0.748168
\(66\) 0 0
\(67\) 8.00135e14 0.240728 0.120364 0.992730i \(-0.461594\pi\)
0.120364 + 0.992730i \(0.461594\pi\)
\(68\) 7.11662e15 1.88777
\(69\) 0 0
\(70\) 8.32617e13 0.0172628
\(71\) −8.31181e15 −1.52756 −0.763782 0.645474i \(-0.776660\pi\)
−0.763782 + 0.645474i \(0.776660\pi\)
\(72\) 0 0
\(73\) −1.03998e16 −1.50932 −0.754659 0.656117i \(-0.772198\pi\)
−0.754659 + 0.656117i \(0.772198\pi\)
\(74\) −3.22453e14 −0.0416866
\(75\) 0 0
\(76\) 1.62955e16 1.67939
\(77\) −1.23981e15 −0.114336
\(78\) 0 0
\(79\) 9.94360e15 0.737418 0.368709 0.929545i \(-0.379800\pi\)
0.368709 + 0.929545i \(0.379800\pi\)
\(80\) −1.07387e16 −0.715626
\(81\) 0 0
\(82\) −5.66605e14 −0.0306099
\(83\) −1.61457e16 −0.786854 −0.393427 0.919356i \(-0.628711\pi\)
−0.393427 + 0.919356i \(0.628711\pi\)
\(84\) 0 0
\(85\) 3.44851e16 1.37268
\(86\) −2.19229e15 −0.0790062
\(87\) 0 0
\(88\) −1.28461e15 −0.0380775
\(89\) −2.80887e16 −0.756340 −0.378170 0.925736i \(-0.623447\pi\)
−0.378170 + 0.925736i \(0.623447\pi\)
\(90\) 0 0
\(91\) −1.75150e16 −0.390444
\(92\) 1.48961e16 0.302605
\(93\) 0 0
\(94\) 6.73005e15 0.113876
\(95\) 7.89633e16 1.22117
\(96\) 0 0
\(97\) −2.34017e16 −0.303171 −0.151586 0.988444i \(-0.548438\pi\)
−0.151586 + 0.988444i \(0.548438\pi\)
\(98\) 7.58740e14 0.00900889
\(99\) 0 0
\(100\) 4.73563e16 0.473563
\(101\) 1.47193e17 1.35255 0.676276 0.736648i \(-0.263592\pi\)
0.676276 + 0.736648i \(0.263592\pi\)
\(102\) 0 0
\(103\) −9.97084e16 −0.775560 −0.387780 0.921752i \(-0.626758\pi\)
−0.387780 + 0.921752i \(0.626758\pi\)
\(104\) −1.81479e16 −0.130030
\(105\) 0 0
\(106\) 9.50313e15 0.0579118
\(107\) 8.56145e16 0.481710 0.240855 0.970561i \(-0.422572\pi\)
0.240855 + 0.970561i \(0.422572\pi\)
\(108\) 0 0
\(109\) −4.92382e15 −0.0236688 −0.0118344 0.999930i \(-0.503767\pi\)
−0.0118344 + 0.999930i \(0.503767\pi\)
\(110\) −3.10622e15 −0.0138164
\(111\) 0 0
\(112\) −9.78585e16 −0.373461
\(113\) 8.04913e16 0.284828 0.142414 0.989807i \(-0.454514\pi\)
0.142414 + 0.989807i \(0.454514\pi\)
\(114\) 0 0
\(115\) 7.21822e16 0.220039
\(116\) 4.42749e17 1.25390
\(117\) 0 0
\(118\) 3.52112e16 0.0862350
\(119\) 3.14253e17 0.716358
\(120\) 0 0
\(121\) −4.59194e17 −0.908490
\(122\) 4.07763e16 0.0752228
\(123\) 0 0
\(124\) 1.02404e18 1.64526
\(125\) 7.12119e17 1.06861
\(126\) 0 0
\(127\) −1.81476e17 −0.237951 −0.118975 0.992897i \(-0.537961\pi\)
−0.118975 + 0.992897i \(0.537961\pi\)
\(128\) −2.03603e17 −0.249747
\(129\) 0 0
\(130\) −4.38821e16 −0.0471811
\(131\) −5.17043e16 −0.0520860 −0.0260430 0.999661i \(-0.508291\pi\)
−0.0260430 + 0.999661i \(0.508291\pi\)
\(132\) 0 0
\(133\) 7.19569e17 0.637285
\(134\) 1.82678e16 0.0151809
\(135\) 0 0
\(136\) 3.25607e17 0.238569
\(137\) −1.39158e18 −0.958038 −0.479019 0.877804i \(-0.659008\pi\)
−0.479019 + 0.877804i \(0.659008\pi\)
\(138\) 0 0
\(139\) 9.31425e17 0.566920 0.283460 0.958984i \(-0.408518\pi\)
0.283460 + 0.958984i \(0.408518\pi\)
\(140\) −4.76103e17 −0.272654
\(141\) 0 0
\(142\) −1.89766e17 −0.0963316
\(143\) 6.53428e17 0.312494
\(144\) 0 0
\(145\) 2.14543e18 0.911773
\(146\) −2.37437e17 −0.0951809
\(147\) 0 0
\(148\) 1.84383e18 0.658410
\(149\) 5.44442e18 1.83598 0.917991 0.396601i \(-0.129810\pi\)
0.917991 + 0.396601i \(0.129810\pi\)
\(150\) 0 0
\(151\) 8.94329e16 0.0269273 0.0134637 0.999909i \(-0.495714\pi\)
0.0134637 + 0.999909i \(0.495714\pi\)
\(152\) 7.45569e17 0.212235
\(153\) 0 0
\(154\) −2.83061e16 −0.00721031
\(155\) 4.96223e18 1.19635
\(156\) 0 0
\(157\) 1.44620e18 0.312665 0.156333 0.987704i \(-0.450033\pi\)
0.156333 + 0.987704i \(0.450033\pi\)
\(158\) 2.27022e17 0.0465032
\(159\) 0 0
\(160\) −7.40449e17 −0.136294
\(161\) 6.57776e17 0.114831
\(162\) 0 0
\(163\) −4.82679e17 −0.0758690 −0.0379345 0.999280i \(-0.512078\pi\)
−0.0379345 + 0.999280i \(0.512078\pi\)
\(164\) 3.23993e18 0.483463
\(165\) 0 0
\(166\) −3.68623e17 −0.0496207
\(167\) 6.19189e18 0.792015 0.396007 0.918247i \(-0.370395\pi\)
0.396007 + 0.918247i \(0.370395\pi\)
\(168\) 0 0
\(169\) 5.80650e17 0.0671240
\(170\) 7.87328e17 0.0865645
\(171\) 0 0
\(172\) 1.25358e19 1.24785
\(173\) 1.36734e19 1.29564 0.647822 0.761792i \(-0.275680\pi\)
0.647822 + 0.761792i \(0.275680\pi\)
\(174\) 0 0
\(175\) 2.09114e18 0.179705
\(176\) 3.65078e18 0.298902
\(177\) 0 0
\(178\) −6.41293e17 −0.0476965
\(179\) 1.95585e19 1.38703 0.693513 0.720444i \(-0.256062\pi\)
0.693513 + 0.720444i \(0.256062\pi\)
\(180\) 0 0
\(181\) −1.87533e19 −1.21007 −0.605034 0.796200i \(-0.706840\pi\)
−0.605034 + 0.796200i \(0.706840\pi\)
\(182\) −3.99884e17 −0.0246222
\(183\) 0 0
\(184\) 6.81543e17 0.0382421
\(185\) 8.93467e18 0.478761
\(186\) 0 0
\(187\) −1.17237e19 −0.573341
\(188\) −3.84834e19 −1.79859
\(189\) 0 0
\(190\) 1.80281e18 0.0770094
\(191\) −2.54663e19 −1.04036 −0.520178 0.854058i \(-0.674134\pi\)
−0.520178 + 0.854058i \(0.674134\pi\)
\(192\) 0 0
\(193\) −5.35805e18 −0.200341 −0.100170 0.994970i \(-0.531939\pi\)
−0.100170 + 0.994970i \(0.531939\pi\)
\(194\) −5.34284e17 −0.0191186
\(195\) 0 0
\(196\) −4.33858e18 −0.142289
\(197\) 1.09188e19 0.342934 0.171467 0.985190i \(-0.445149\pi\)
0.171467 + 0.985190i \(0.445149\pi\)
\(198\) 0 0
\(199\) 2.24150e19 0.646081 0.323040 0.946385i \(-0.395295\pi\)
0.323040 + 0.946385i \(0.395295\pi\)
\(200\) 2.16670e18 0.0598471
\(201\) 0 0
\(202\) 3.36055e18 0.0852950
\(203\) 1.95507e19 0.475823
\(204\) 0 0
\(205\) 1.56998e19 0.351548
\(206\) −2.27644e18 −0.0489085
\(207\) 0 0
\(208\) 5.15751e19 1.02071
\(209\) −2.68448e19 −0.510054
\(210\) 0 0
\(211\) −8.37629e19 −1.46775 −0.733873 0.679287i \(-0.762289\pi\)
−0.733873 + 0.679287i \(0.762289\pi\)
\(212\) −5.43403e19 −0.914675
\(213\) 0 0
\(214\) 1.95466e18 0.0303777
\(215\) 6.07450e19 0.907369
\(216\) 0 0
\(217\) 4.52193e19 0.624333
\(218\) −1.12416e17 −0.00149261
\(219\) 0 0
\(220\) 1.77618e19 0.218220
\(221\) −1.65623e20 −1.95788
\(222\) 0 0
\(223\) 4.25519e19 0.465938 0.232969 0.972484i \(-0.425156\pi\)
0.232969 + 0.972484i \(0.425156\pi\)
\(224\) −6.74750e18 −0.0711270
\(225\) 0 0
\(226\) 1.83769e18 0.0179619
\(227\) −5.72079e19 −0.538563 −0.269282 0.963062i \(-0.586786\pi\)
−0.269282 + 0.963062i \(0.586786\pi\)
\(228\) 0 0
\(229\) 6.95149e19 0.607402 0.303701 0.952767i \(-0.401778\pi\)
0.303701 + 0.952767i \(0.401778\pi\)
\(230\) 1.64799e18 0.0138761
\(231\) 0 0
\(232\) 2.02571e19 0.158464
\(233\) 1.65993e20 1.25189 0.625943 0.779869i \(-0.284714\pi\)
0.625943 + 0.779869i \(0.284714\pi\)
\(234\) 0 0
\(235\) −1.86480e20 −1.30784
\(236\) −2.01343e20 −1.36202
\(237\) 0 0
\(238\) 7.17469e18 0.0451751
\(239\) 9.53139e19 0.579127 0.289564 0.957159i \(-0.406490\pi\)
0.289564 + 0.957159i \(0.406490\pi\)
\(240\) 0 0
\(241\) −1.85793e20 −1.05168 −0.525842 0.850582i \(-0.676250\pi\)
−0.525842 + 0.850582i \(0.676250\pi\)
\(242\) −1.04838e19 −0.0572914
\(243\) 0 0
\(244\) −2.33165e20 −1.18809
\(245\) −2.10235e19 −0.103465
\(246\) 0 0
\(247\) −3.79240e20 −1.74177
\(248\) 4.68532e19 0.207922
\(249\) 0 0
\(250\) 1.62584e19 0.0673886
\(251\) −4.61913e20 −1.85069 −0.925345 0.379126i \(-0.876225\pi\)
−0.925345 + 0.379126i \(0.876225\pi\)
\(252\) 0 0
\(253\) −2.45395e19 −0.0919053
\(254\) −4.14327e18 −0.0150057
\(255\) 0 0
\(256\) 2.83480e20 0.960468
\(257\) −1.22729e20 −0.402267 −0.201134 0.979564i \(-0.564463\pi\)
−0.201134 + 0.979564i \(0.564463\pi\)
\(258\) 0 0
\(259\) 8.14190e19 0.249849
\(260\) 2.50924e20 0.745193
\(261\) 0 0
\(262\) −1.18046e18 −0.00328466
\(263\) −1.46641e20 −0.395030 −0.197515 0.980300i \(-0.563287\pi\)
−0.197515 + 0.980300i \(0.563287\pi\)
\(264\) 0 0
\(265\) −2.63317e20 −0.665104
\(266\) 1.64285e19 0.0401886
\(267\) 0 0
\(268\) −1.04458e20 −0.239771
\(269\) 2.05884e19 0.0457855 0.0228927 0.999738i \(-0.492712\pi\)
0.0228927 + 0.999738i \(0.492712\pi\)
\(270\) 0 0
\(271\) 2.90773e20 0.607177 0.303588 0.952803i \(-0.401815\pi\)
0.303588 + 0.952803i \(0.401815\pi\)
\(272\) −9.25356e20 −1.87272
\(273\) 0 0
\(274\) −3.17711e19 −0.0604160
\(275\) −7.80136e19 −0.143828
\(276\) 0 0
\(277\) −6.72880e20 −1.16643 −0.583216 0.812317i \(-0.698206\pi\)
−0.583216 + 0.812317i \(0.698206\pi\)
\(278\) 2.12653e19 0.0357512
\(279\) 0 0
\(280\) −2.17832e19 −0.0344570
\(281\) 4.87548e20 0.748193 0.374096 0.927390i \(-0.377953\pi\)
0.374096 + 0.927390i \(0.377953\pi\)
\(282\) 0 0
\(283\) 3.20008e20 0.462355 0.231178 0.972912i \(-0.425742\pi\)
0.231178 + 0.972912i \(0.425742\pi\)
\(284\) 1.08511e21 1.52149
\(285\) 0 0
\(286\) 1.49184e19 0.0197065
\(287\) 1.43067e20 0.183461
\(288\) 0 0
\(289\) 2.14435e21 2.59218
\(290\) 4.89823e19 0.0574984
\(291\) 0 0
\(292\) 1.35770e21 1.50332
\(293\) −5.49606e20 −0.591121 −0.295561 0.955324i \(-0.595506\pi\)
−0.295561 + 0.955324i \(0.595506\pi\)
\(294\) 0 0
\(295\) −9.75648e20 −0.990389
\(296\) 8.43609e19 0.0832074
\(297\) 0 0
\(298\) 1.24301e20 0.115781
\(299\) −3.46673e20 −0.313844
\(300\) 0 0
\(301\) 5.53552e20 0.473525
\(302\) 2.04184e18 0.00169810
\(303\) 0 0
\(304\) −2.11886e21 −1.66601
\(305\) −1.12985e21 −0.863918
\(306\) 0 0
\(307\) 2.37264e21 1.71615 0.858075 0.513524i \(-0.171660\pi\)
0.858075 + 0.513524i \(0.171660\pi\)
\(308\) 1.61858e20 0.113882
\(309\) 0 0
\(310\) 1.13292e20 0.0754443
\(311\) −3.09533e20 −0.200559 −0.100280 0.994959i \(-0.531974\pi\)
−0.100280 + 0.994959i \(0.531974\pi\)
\(312\) 0 0
\(313\) −1.45959e21 −0.895582 −0.447791 0.894138i \(-0.647789\pi\)
−0.447791 + 0.894138i \(0.647789\pi\)
\(314\) 3.30180e19 0.0197174
\(315\) 0 0
\(316\) −1.29814e21 −0.734485
\(317\) 6.93529e19 0.0381998 0.0190999 0.999818i \(-0.493920\pi\)
0.0190999 + 0.999818i \(0.493920\pi\)
\(318\) 0 0
\(319\) −7.29372e20 −0.380828
\(320\) 1.39064e21 0.707031
\(321\) 0 0
\(322\) 1.50176e19 0.00724148
\(323\) 6.80429e21 3.19567
\(324\) 0 0
\(325\) −1.10211e21 −0.491152
\(326\) −1.10200e19 −0.00478446
\(327\) 0 0
\(328\) 1.48237e20 0.0610982
\(329\) −1.69933e21 −0.682517
\(330\) 0 0
\(331\) 3.45866e21 1.31938 0.659690 0.751538i \(-0.270688\pi\)
0.659690 + 0.751538i \(0.270688\pi\)
\(332\) 2.10784e21 0.783724
\(333\) 0 0
\(334\) 1.41367e20 0.0499462
\(335\) −5.06174e20 −0.174349
\(336\) 0 0
\(337\) −1.53324e21 −0.502060 −0.251030 0.967979i \(-0.580769\pi\)
−0.251030 + 0.967979i \(0.580769\pi\)
\(338\) 1.32568e19 0.00423299
\(339\) 0 0
\(340\) −4.50206e21 −1.36723
\(341\) −1.68699e21 −0.499688
\(342\) 0 0
\(343\) −1.91581e20 −0.0539949
\(344\) 5.73553e20 0.157698
\(345\) 0 0
\(346\) 3.12178e20 0.0817062
\(347\) 1.30135e21 0.332349 0.166174 0.986096i \(-0.446859\pi\)
0.166174 + 0.986096i \(0.446859\pi\)
\(348\) 0 0
\(349\) 3.06887e21 0.746385 0.373193 0.927754i \(-0.378263\pi\)
0.373193 + 0.927754i \(0.378263\pi\)
\(350\) 4.77427e19 0.0113326
\(351\) 0 0
\(352\) 2.51727e20 0.0569269
\(353\) 6.07765e21 1.34169 0.670843 0.741599i \(-0.265932\pi\)
0.670843 + 0.741599i \(0.265932\pi\)
\(354\) 0 0
\(355\) 5.25814e21 1.10635
\(356\) 3.66701e21 0.753332
\(357\) 0 0
\(358\) 4.46539e20 0.0874689
\(359\) 4.15229e21 0.794301 0.397150 0.917754i \(-0.369999\pi\)
0.397150 + 0.917754i \(0.369999\pi\)
\(360\) 0 0
\(361\) 1.00999e22 1.84292
\(362\) −4.28156e20 −0.0763095
\(363\) 0 0
\(364\) 2.28660e21 0.388891
\(365\) 6.57903e21 1.09313
\(366\) 0 0
\(367\) −1.61653e21 −0.256403 −0.128202 0.991748i \(-0.540920\pi\)
−0.128202 + 0.991748i \(0.540920\pi\)
\(368\) −1.93690e21 −0.300194
\(369\) 0 0
\(370\) 2.03987e20 0.0301917
\(371\) −2.39953e21 −0.347095
\(372\) 0 0
\(373\) −1.36639e21 −0.188820 −0.0944101 0.995533i \(-0.530097\pi\)
−0.0944101 + 0.995533i \(0.530097\pi\)
\(374\) −2.67664e20 −0.0361561
\(375\) 0 0
\(376\) −1.76074e21 −0.227299
\(377\) −1.03039e22 −1.30048
\(378\) 0 0
\(379\) −1.13977e22 −1.37525 −0.687627 0.726064i \(-0.741348\pi\)
−0.687627 + 0.726064i \(0.741348\pi\)
\(380\) −1.03087e22 −1.21631
\(381\) 0 0
\(382\) −5.81420e20 −0.0656071
\(383\) −1.65483e22 −1.82627 −0.913134 0.407659i \(-0.866345\pi\)
−0.913134 + 0.407659i \(0.866345\pi\)
\(384\) 0 0
\(385\) 7.84319e20 0.0828088
\(386\) −1.22329e20 −0.0126339
\(387\) 0 0
\(388\) 3.05511e21 0.301966
\(389\) 1.18214e22 1.14313 0.571566 0.820556i \(-0.306336\pi\)
0.571566 + 0.820556i \(0.306336\pi\)
\(390\) 0 0
\(391\) 6.21997e21 0.575819
\(392\) −1.98504e20 −0.0179819
\(393\) 0 0
\(394\) 2.49286e20 0.0216262
\(395\) −6.29043e21 −0.534079
\(396\) 0 0
\(397\) 1.51153e22 1.22941 0.614706 0.788757i \(-0.289275\pi\)
0.614706 + 0.788757i \(0.289275\pi\)
\(398\) 5.11755e20 0.0407433
\(399\) 0 0
\(400\) −6.15762e21 −0.469789
\(401\) −5.07171e21 −0.378815 −0.189408 0.981899i \(-0.560657\pi\)
−0.189408 + 0.981899i \(0.560657\pi\)
\(402\) 0 0
\(403\) −2.38323e22 −1.70637
\(404\) −1.92161e22 −1.34717
\(405\) 0 0
\(406\) 4.46361e20 0.0300065
\(407\) −3.03748e21 −0.199968
\(408\) 0 0
\(409\) −2.16376e22 −1.36635 −0.683175 0.730255i \(-0.739401\pi\)
−0.683175 + 0.730255i \(0.739401\pi\)
\(410\) 3.58441e20 0.0221694
\(411\) 0 0
\(412\) 1.30170e22 0.772475
\(413\) −8.89080e21 −0.516851
\(414\) 0 0
\(415\) 1.02140e22 0.569883
\(416\) 3.55619e21 0.194398
\(417\) 0 0
\(418\) −6.12892e20 −0.0321651
\(419\) 1.30411e22 0.670650 0.335325 0.942103i \(-0.391154\pi\)
0.335325 + 0.942103i \(0.391154\pi\)
\(420\) 0 0
\(421\) −3.30097e22 −1.63021 −0.815107 0.579311i \(-0.803322\pi\)
−0.815107 + 0.579311i \(0.803322\pi\)
\(422\) −1.91239e21 −0.0925593
\(423\) 0 0
\(424\) −2.48623e21 −0.115593
\(425\) 1.97739e22 0.901130
\(426\) 0 0
\(427\) −1.02960e22 −0.450849
\(428\) −1.11770e22 −0.479794
\(429\) 0 0
\(430\) 1.38687e21 0.0572207
\(431\) 1.16277e22 0.470367 0.235184 0.971951i \(-0.424431\pi\)
0.235184 + 0.971951i \(0.424431\pi\)
\(432\) 0 0
\(433\) −3.00470e21 −0.116857 −0.0584283 0.998292i \(-0.518609\pi\)
−0.0584283 + 0.998292i \(0.518609\pi\)
\(434\) 1.03240e21 0.0393718
\(435\) 0 0
\(436\) 6.42809e20 0.0235747
\(437\) 1.42424e22 0.512259
\(438\) 0 0
\(439\) 7.56531e21 0.261745 0.130872 0.991399i \(-0.458222\pi\)
0.130872 + 0.991399i \(0.458222\pi\)
\(440\) 8.12658e20 0.0275778
\(441\) 0 0
\(442\) −3.78133e21 −0.123468
\(443\) −3.71990e22 −1.19151 −0.595757 0.803165i \(-0.703148\pi\)
−0.595757 + 0.803165i \(0.703148\pi\)
\(444\) 0 0
\(445\) 1.77692e22 0.547784
\(446\) 9.71501e20 0.0293831
\(447\) 0 0
\(448\) 1.26725e22 0.368976
\(449\) 8.54040e21 0.243997 0.121998 0.992530i \(-0.461070\pi\)
0.121998 + 0.992530i \(0.461070\pi\)
\(450\) 0 0
\(451\) −5.33738e21 −0.146834
\(452\) −1.05082e22 −0.283695
\(453\) 0 0
\(454\) −1.30611e21 −0.0339630
\(455\) 1.10802e22 0.282781
\(456\) 0 0
\(457\) −7.46991e22 −1.83666 −0.918328 0.395821i \(-0.870460\pi\)
−0.918328 + 0.395821i \(0.870460\pi\)
\(458\) 1.58709e21 0.0383041
\(459\) 0 0
\(460\) −9.42345e21 −0.219163
\(461\) −2.06905e22 −0.472404 −0.236202 0.971704i \(-0.575903\pi\)
−0.236202 + 0.971704i \(0.575903\pi\)
\(462\) 0 0
\(463\) 4.05941e22 0.893357 0.446678 0.894695i \(-0.352607\pi\)
0.446678 + 0.894695i \(0.352607\pi\)
\(464\) −5.75694e22 −1.24391
\(465\) 0 0
\(466\) 3.78978e21 0.0789466
\(467\) −2.89680e22 −0.592550 −0.296275 0.955103i \(-0.595744\pi\)
−0.296275 + 0.955103i \(0.595744\pi\)
\(468\) 0 0
\(469\) −4.61262e21 −0.0909868
\(470\) −4.25751e21 −0.0824752
\(471\) 0 0
\(472\) −9.21204e21 −0.172127
\(473\) −2.06512e22 −0.378988
\(474\) 0 0
\(475\) 4.52779e22 0.801661
\(476\) −4.10259e22 −0.713509
\(477\) 0 0
\(478\) 2.17611e21 0.0365211
\(479\) 8.74483e22 1.44178 0.720891 0.693048i \(-0.243733\pi\)
0.720891 + 0.693048i \(0.243733\pi\)
\(480\) 0 0
\(481\) −4.29109e22 −0.682864
\(482\) −4.24184e21 −0.0663215
\(483\) 0 0
\(484\) 5.99481e22 0.904877
\(485\) 1.48042e22 0.219573
\(486\) 0 0
\(487\) 6.80544e22 0.974675 0.487337 0.873214i \(-0.337968\pi\)
0.487337 + 0.873214i \(0.337968\pi\)
\(488\) −1.06680e22 −0.150146
\(489\) 0 0
\(490\) −4.79987e20 −0.00652474
\(491\) −5.62422e22 −0.751398 −0.375699 0.926742i \(-0.622597\pi\)
−0.375699 + 0.926742i \(0.622597\pi\)
\(492\) 0 0
\(493\) 1.84873e23 2.38602
\(494\) −8.65841e21 −0.109840
\(495\) 0 0
\(496\) −1.33154e23 −1.63215
\(497\) 4.79159e22 0.577365
\(498\) 0 0
\(499\) −2.44206e22 −0.284382 −0.142191 0.989839i \(-0.545415\pi\)
−0.142191 + 0.989839i \(0.545415\pi\)
\(500\) −9.29677e22 −1.06436
\(501\) 0 0
\(502\) −1.05459e22 −0.116709
\(503\) 1.47102e23 1.60063 0.800316 0.599579i \(-0.204665\pi\)
0.800316 + 0.599579i \(0.204665\pi\)
\(504\) 0 0
\(505\) −9.31157e22 −0.979594
\(506\) −5.60259e20 −0.00579575
\(507\) 0 0
\(508\) 2.36918e22 0.237005
\(509\) 1.49402e23 1.46979 0.734895 0.678181i \(-0.237231\pi\)
0.734895 + 0.678181i \(0.237231\pi\)
\(510\) 0 0
\(511\) 5.99528e22 0.570469
\(512\) 3.31588e22 0.310316
\(513\) 0 0
\(514\) −2.80201e21 −0.0253679
\(515\) 6.30766e22 0.561703
\(516\) 0 0
\(517\) 6.33966e22 0.546256
\(518\) 1.85887e21 0.0157560
\(519\) 0 0
\(520\) 1.14805e22 0.0941746
\(521\) −9.28095e22 −0.748983 −0.374491 0.927230i \(-0.622183\pi\)
−0.374491 + 0.927230i \(0.622183\pi\)
\(522\) 0 0
\(523\) 1.12343e23 0.877567 0.438784 0.898593i \(-0.355409\pi\)
0.438784 + 0.898593i \(0.355409\pi\)
\(524\) 6.75004e21 0.0518788
\(525\) 0 0
\(526\) −3.34794e21 −0.0249115
\(527\) 4.27597e23 3.13072
\(528\) 0 0
\(529\) −1.28031e23 −0.907697
\(530\) −6.01179e21 −0.0419429
\(531\) 0 0
\(532\) −9.39403e22 −0.634750
\(533\) −7.54019e22 −0.501419
\(534\) 0 0
\(535\) −5.41607e22 −0.348881
\(536\) −4.77928e21 −0.0303014
\(537\) 0 0
\(538\) 4.70053e20 0.00288733
\(539\) 7.14727e21 0.0432151
\(540\) 0 0
\(541\) 9.57428e22 0.560957 0.280478 0.959860i \(-0.409507\pi\)
0.280478 + 0.959860i \(0.409507\pi\)
\(542\) 6.63863e21 0.0382899
\(543\) 0 0
\(544\) −6.38048e22 −0.356667
\(545\) 3.11487e21 0.0171423
\(546\) 0 0
\(547\) 2.89093e23 1.54222 0.771109 0.636703i \(-0.219702\pi\)
0.771109 + 0.636703i \(0.219702\pi\)
\(548\) 1.81672e23 0.954228
\(549\) 0 0
\(550\) −1.78112e21 −0.00907008
\(551\) 4.23317e23 2.12264
\(552\) 0 0
\(553\) −5.73229e22 −0.278718
\(554\) −1.53625e22 −0.0735578
\(555\) 0 0
\(556\) −1.21598e23 −0.564666
\(557\) −1.50045e23 −0.686202 −0.343101 0.939299i \(-0.611477\pi\)
−0.343101 + 0.939299i \(0.611477\pi\)
\(558\) 0 0
\(559\) −2.91743e23 −1.29419
\(560\) 6.19064e22 0.270481
\(561\) 0 0
\(562\) 1.11312e22 0.0471827
\(563\) −1.09521e23 −0.457274 −0.228637 0.973512i \(-0.573427\pi\)
−0.228637 + 0.973512i \(0.573427\pi\)
\(564\) 0 0
\(565\) −5.09197e22 −0.206288
\(566\) 7.30609e21 0.0291572
\(567\) 0 0
\(568\) 4.96472e22 0.192280
\(569\) −5.09552e23 −1.94417 −0.972085 0.234629i \(-0.924612\pi\)
−0.972085 + 0.234629i \(0.924612\pi\)
\(570\) 0 0
\(571\) 1.87057e23 0.692736 0.346368 0.938099i \(-0.387415\pi\)
0.346368 + 0.938099i \(0.387415\pi\)
\(572\) −8.53055e22 −0.311251
\(573\) 0 0
\(574\) 3.26636e21 0.0115695
\(575\) 4.13897e22 0.144449
\(576\) 0 0
\(577\) 2.15129e23 0.728963 0.364481 0.931211i \(-0.381246\pi\)
0.364481 + 0.931211i \(0.381246\pi\)
\(578\) 4.89576e22 0.163468
\(579\) 0 0
\(580\) −2.80088e23 −0.908147
\(581\) 9.30769e22 0.297403
\(582\) 0 0
\(583\) 8.95188e22 0.277799
\(584\) 6.21190e22 0.189983
\(585\) 0 0
\(586\) −1.25480e22 −0.0372774
\(587\) −6.14319e23 −1.79875 −0.899374 0.437180i \(-0.855977\pi\)
−0.899374 + 0.437180i \(0.855977\pi\)
\(588\) 0 0
\(589\) 9.79102e23 2.78514
\(590\) −2.22750e22 −0.0624561
\(591\) 0 0
\(592\) −2.39749e23 −0.653163
\(593\) −1.42058e23 −0.381505 −0.190753 0.981638i \(-0.561093\pi\)
−0.190753 + 0.981638i \(0.561093\pi\)
\(594\) 0 0
\(595\) −1.98800e23 −0.518826
\(596\) −7.10773e23 −1.82868
\(597\) 0 0
\(598\) −7.91487e21 −0.0197917
\(599\) −3.29790e23 −0.813036 −0.406518 0.913643i \(-0.633257\pi\)
−0.406518 + 0.913643i \(0.633257\pi\)
\(600\) 0 0
\(601\) 4.90531e23 1.17553 0.587765 0.809032i \(-0.300008\pi\)
0.587765 + 0.809032i \(0.300008\pi\)
\(602\) 1.26381e22 0.0298615
\(603\) 0 0
\(604\) −1.16755e22 −0.0268202
\(605\) 2.90491e23 0.657979
\(606\) 0 0
\(607\) −6.11981e23 −1.34783 −0.673914 0.738810i \(-0.735388\pi\)
−0.673914 + 0.738810i \(0.735388\pi\)
\(608\) −1.46099e23 −0.317297
\(609\) 0 0
\(610\) −2.57956e22 −0.0544805
\(611\) 8.95613e23 1.86539
\(612\) 0 0
\(613\) −2.98524e23 −0.604735 −0.302368 0.953191i \(-0.597777\pi\)
−0.302368 + 0.953191i \(0.597777\pi\)
\(614\) 5.41696e22 0.108224
\(615\) 0 0
\(616\) 7.40552e21 0.0143919
\(617\) −1.98952e23 −0.381351 −0.190675 0.981653i \(-0.561068\pi\)
−0.190675 + 0.981653i \(0.561068\pi\)
\(618\) 0 0
\(619\) −9.02032e22 −0.168210 −0.0841049 0.996457i \(-0.526803\pi\)
−0.0841049 + 0.996457i \(0.526803\pi\)
\(620\) −6.47822e23 −1.19159
\(621\) 0 0
\(622\) −7.06692e21 −0.0126477
\(623\) 1.61926e23 0.285870
\(624\) 0 0
\(625\) −1.73744e23 −0.298490
\(626\) −3.33239e22 −0.0564774
\(627\) 0 0
\(628\) −1.88802e23 −0.311422
\(629\) 7.69904e23 1.25287
\(630\) 0 0
\(631\) −5.31284e23 −0.841545 −0.420772 0.907166i \(-0.638241\pi\)
−0.420772 + 0.907166i \(0.638241\pi\)
\(632\) −5.93941e22 −0.0928214
\(633\) 0 0
\(634\) 1.58339e21 0.00240896
\(635\) 1.14804e23 0.172337
\(636\) 0 0
\(637\) 1.00971e23 0.147574
\(638\) −1.66523e22 −0.0240158
\(639\) 0 0
\(640\) 1.28802e23 0.180881
\(641\) −3.16452e23 −0.438545 −0.219273 0.975664i \(-0.570368\pi\)
−0.219273 + 0.975664i \(0.570368\pi\)
\(642\) 0 0
\(643\) −1.13986e24 −1.53836 −0.769178 0.639034i \(-0.779334\pi\)
−0.769178 + 0.639034i \(0.779334\pi\)
\(644\) −8.58731e22 −0.114374
\(645\) 0 0
\(646\) 1.55348e23 0.201526
\(647\) −8.52628e23 −1.09162 −0.545812 0.837908i \(-0.683779\pi\)
−0.545812 + 0.837908i \(0.683779\pi\)
\(648\) 0 0
\(649\) 3.31687e23 0.413664
\(650\) −2.51622e22 −0.0309731
\(651\) 0 0
\(652\) 6.30142e22 0.0755673
\(653\) 3.70205e23 0.438208 0.219104 0.975701i \(-0.429687\pi\)
0.219104 + 0.975701i \(0.429687\pi\)
\(654\) 0 0
\(655\) 3.27087e22 0.0377235
\(656\) −4.21280e23 −0.479610
\(657\) 0 0
\(658\) −3.87974e22 −0.0430410
\(659\) 4.91109e23 0.537839 0.268919 0.963163i \(-0.413333\pi\)
0.268919 + 0.963163i \(0.413333\pi\)
\(660\) 0 0
\(661\) −2.79560e23 −0.298375 −0.149188 0.988809i \(-0.547666\pi\)
−0.149188 + 0.988809i \(0.547666\pi\)
\(662\) 7.89645e22 0.0832030
\(663\) 0 0
\(664\) 9.64400e22 0.0990441
\(665\) −4.55207e23 −0.461557
\(666\) 0 0
\(667\) 3.86965e23 0.382474
\(668\) −8.08356e23 −0.788865
\(669\) 0 0
\(670\) −1.15564e22 −0.0109948
\(671\) 3.84110e23 0.360840
\(672\) 0 0
\(673\) −1.66622e24 −1.52618 −0.763089 0.646293i \(-0.776318\pi\)
−0.763089 + 0.646293i \(0.776318\pi\)
\(674\) −3.50053e22 −0.0316610
\(675\) 0 0
\(676\) −7.58043e22 −0.0668570
\(677\) 2.01718e23 0.175687 0.0878437 0.996134i \(-0.472002\pi\)
0.0878437 + 0.996134i \(0.472002\pi\)
\(678\) 0 0
\(679\) 1.34906e23 0.114588
\(680\) −2.05983e23 −0.172785
\(681\) 0 0
\(682\) −3.85155e22 −0.0315114
\(683\) 7.42953e23 0.600323 0.300162 0.953888i \(-0.402959\pi\)
0.300162 + 0.953888i \(0.402959\pi\)
\(684\) 0 0
\(685\) 8.80328e23 0.693864
\(686\) −4.37398e21 −0.00340504
\(687\) 0 0
\(688\) −1.63000e24 −1.23790
\(689\) 1.26464e24 0.948648
\(690\) 0 0
\(691\) 9.47125e23 0.693177 0.346588 0.938017i \(-0.387340\pi\)
0.346588 + 0.938017i \(0.387340\pi\)
\(692\) −1.78508e24 −1.29049
\(693\) 0 0
\(694\) 2.97111e22 0.0209586
\(695\) −5.89230e23 −0.410595
\(696\) 0 0
\(697\) 1.35285e24 0.919967
\(698\) 7.00653e22 0.0470687
\(699\) 0 0
\(700\) −2.73000e23 −0.178990
\(701\) −1.00735e24 −0.652498 −0.326249 0.945284i \(-0.605785\pi\)
−0.326249 + 0.945284i \(0.605785\pi\)
\(702\) 0 0
\(703\) 1.76291e24 1.11458
\(704\) −4.72768e23 −0.295312
\(705\) 0 0
\(706\) 1.38759e23 0.0846097
\(707\) −8.48536e23 −0.511217
\(708\) 0 0
\(709\) 1.54511e24 0.908793 0.454397 0.890799i \(-0.349855\pi\)
0.454397 + 0.890799i \(0.349855\pi\)
\(710\) 1.20048e23 0.0697687
\(711\) 0 0
\(712\) 1.67777e23 0.0952033
\(713\) 8.95021e23 0.501848
\(714\) 0 0
\(715\) −4.13366e23 −0.226325
\(716\) −2.55338e24 −1.38151
\(717\) 0 0
\(718\) 9.48008e22 0.0500903
\(719\) 2.63001e24 1.37329 0.686644 0.726994i \(-0.259083\pi\)
0.686644 + 0.726994i \(0.259083\pi\)
\(720\) 0 0
\(721\) 5.74799e23 0.293134
\(722\) 2.30591e23 0.116219
\(723\) 0 0
\(724\) 2.44826e24 1.20526
\(725\) 1.23020e24 0.598554
\(726\) 0 0
\(727\) −8.10454e23 −0.385200 −0.192600 0.981277i \(-0.561692\pi\)
−0.192600 + 0.981277i \(0.561692\pi\)
\(728\) 1.04619e23 0.0491466
\(729\) 0 0
\(730\) 1.50206e23 0.0689353
\(731\) 5.23442e24 2.37449
\(732\) 0 0
\(733\) 1.02146e24 0.452730 0.226365 0.974043i \(-0.427316\pi\)
0.226365 + 0.974043i \(0.427316\pi\)
\(734\) −3.69070e22 −0.0161694
\(735\) 0 0
\(736\) −1.33553e23 −0.0571730
\(737\) 1.72082e23 0.0728218
\(738\) 0 0
\(739\) −1.46607e24 −0.606286 −0.303143 0.952945i \(-0.598036\pi\)
−0.303143 + 0.952945i \(0.598036\pi\)
\(740\) −1.16643e24 −0.476857
\(741\) 0 0
\(742\) −5.47836e22 −0.0218886
\(743\) 7.21717e23 0.285077 0.142538 0.989789i \(-0.454474\pi\)
0.142538 + 0.989789i \(0.454474\pi\)
\(744\) 0 0
\(745\) −3.44420e24 −1.32972
\(746\) −3.11959e22 −0.0119074
\(747\) 0 0
\(748\) 1.53054e24 0.571060
\(749\) −4.93551e23 −0.182069
\(750\) 0 0
\(751\) −1.69381e24 −0.610835 −0.305418 0.952219i \(-0.598796\pi\)
−0.305418 + 0.952219i \(0.598796\pi\)
\(752\) 5.00390e24 1.78426
\(753\) 0 0
\(754\) −2.35249e23 −0.0820109
\(755\) −5.65762e22 −0.0195023
\(756\) 0 0
\(757\) −4.95241e23 −0.166917 −0.0834587 0.996511i \(-0.526597\pi\)
−0.0834587 + 0.996511i \(0.526597\pi\)
\(758\) −2.60220e23 −0.0867266
\(759\) 0 0
\(760\) −4.71655e23 −0.153712
\(761\) −4.97441e24 −1.60314 −0.801571 0.597900i \(-0.796002\pi\)
−0.801571 + 0.597900i \(0.796002\pi\)
\(762\) 0 0
\(763\) 2.83849e22 0.00894598
\(764\) 3.32464e24 1.03622
\(765\) 0 0
\(766\) −3.77814e23 −0.115169
\(767\) 4.68578e24 1.41261
\(768\) 0 0
\(769\) 4.76740e24 1.40575 0.702875 0.711313i \(-0.251899\pi\)
0.702875 + 0.711313i \(0.251899\pi\)
\(770\) 1.79068e22 0.00522211
\(771\) 0 0
\(772\) 6.99497e23 0.199544
\(773\) 2.99309e24 0.844489 0.422244 0.906482i \(-0.361242\pi\)
0.422244 + 0.906482i \(0.361242\pi\)
\(774\) 0 0
\(775\) 2.84537e24 0.785369
\(776\) 1.39781e23 0.0381613
\(777\) 0 0
\(778\) 2.69893e23 0.0720884
\(779\) 3.09774e24 0.818419
\(780\) 0 0
\(781\) −1.78759e24 −0.462097
\(782\) 1.42008e23 0.0363124
\(783\) 0 0
\(784\) 5.64135e23 0.141155
\(785\) −9.14879e23 −0.226450
\(786\) 0 0
\(787\) 7.61086e23 0.184352 0.0921762 0.995743i \(-0.470618\pi\)
0.0921762 + 0.995743i \(0.470618\pi\)
\(788\) −1.42545e24 −0.341570
\(789\) 0 0
\(790\) −1.43617e23 −0.0336802
\(791\) −4.64016e23 −0.107655
\(792\) 0 0
\(793\) 5.42638e24 1.23222
\(794\) 3.45096e23 0.0775294
\(795\) 0 0
\(796\) −2.92629e24 −0.643511
\(797\) 7.11328e23 0.154766 0.0773828 0.997001i \(-0.475344\pi\)
0.0773828 + 0.997001i \(0.475344\pi\)
\(798\) 0 0
\(799\) −1.60690e25 −3.42248
\(800\) −4.24578e23 −0.0894730
\(801\) 0 0
\(802\) −1.15792e23 −0.0238889
\(803\) −2.23664e24 −0.456578
\(804\) 0 0
\(805\) −4.16116e23 −0.0831667
\(806\) −5.44114e23 −0.107607
\(807\) 0 0
\(808\) −8.79196e23 −0.170251
\(809\) −7.09657e24 −1.35984 −0.679918 0.733288i \(-0.737984\pi\)
−0.679918 + 0.733288i \(0.737984\pi\)
\(810\) 0 0
\(811\) 3.32935e24 0.624715 0.312357 0.949965i \(-0.398881\pi\)
0.312357 + 0.949965i \(0.398881\pi\)
\(812\) −2.55236e24 −0.473931
\(813\) 0 0
\(814\) −6.93486e22 −0.0126104
\(815\) 3.05348e23 0.0549485
\(816\) 0 0
\(817\) 1.19857e25 2.11239
\(818\) −4.94008e23 −0.0861650
\(819\) 0 0
\(820\) −2.04962e24 −0.350150
\(821\) 3.86094e24 0.652794 0.326397 0.945233i \(-0.394165\pi\)
0.326397 + 0.945233i \(0.394165\pi\)
\(822\) 0 0
\(823\) −6.16918e24 −1.02171 −0.510856 0.859666i \(-0.670672\pi\)
−0.510856 + 0.859666i \(0.670672\pi\)
\(824\) 5.95568e23 0.0976225
\(825\) 0 0
\(826\) −2.02985e23 −0.0325937
\(827\) −9.38348e24 −1.49131 −0.745654 0.666334i \(-0.767863\pi\)
−0.745654 + 0.666334i \(0.767863\pi\)
\(828\) 0 0
\(829\) 7.02298e24 1.09347 0.546736 0.837305i \(-0.315870\pi\)
0.546736 + 0.837305i \(0.315870\pi\)
\(830\) 2.33195e23 0.0359381
\(831\) 0 0
\(832\) −6.67886e24 −1.00845
\(833\) −1.81160e24 −0.270758
\(834\) 0 0
\(835\) −3.91706e24 −0.573621
\(836\) 3.50461e24 0.508026
\(837\) 0 0
\(838\) 2.97741e23 0.0422927
\(839\) −6.14770e24 −0.864442 −0.432221 0.901768i \(-0.642270\pi\)
−0.432221 + 0.901768i \(0.642270\pi\)
\(840\) 0 0
\(841\) 4.24438e24 0.584855
\(842\) −7.53644e23 −0.102805
\(843\) 0 0
\(844\) 1.09353e25 1.46191
\(845\) −3.67326e23 −0.0486149
\(846\) 0 0
\(847\) 2.64716e24 0.343377
\(848\) 7.06573e24 0.907386
\(849\) 0 0
\(850\) 4.51458e23 0.0568272
\(851\) 1.61152e24 0.200832
\(852\) 0 0
\(853\) −1.87599e24 −0.229174 −0.114587 0.993413i \(-0.536554\pi\)
−0.114587 + 0.993413i \(0.536554\pi\)
\(854\) −2.35067e23 −0.0284316
\(855\) 0 0
\(856\) −5.11384e23 −0.0606345
\(857\) −5.85280e24 −0.687110 −0.343555 0.939132i \(-0.611631\pi\)
−0.343555 + 0.939132i \(0.611631\pi\)
\(858\) 0 0
\(859\) −5.70291e24 −0.656379 −0.328189 0.944612i \(-0.606438\pi\)
−0.328189 + 0.944612i \(0.606438\pi\)
\(860\) −7.93031e24 −0.903760
\(861\) 0 0
\(862\) 2.65471e23 0.0296624
\(863\) −1.44974e25 −1.60398 −0.801991 0.597336i \(-0.796226\pi\)
−0.801991 + 0.597336i \(0.796226\pi\)
\(864\) 0 0
\(865\) −8.64997e24 −0.938378
\(866\) −6.86001e22 −0.00736924
\(867\) 0 0
\(868\) −5.90342e24 −0.621850
\(869\) 2.13853e24 0.223073
\(870\) 0 0
\(871\) 2.43102e24 0.248677
\(872\) 2.94105e22 0.00297928
\(873\) 0 0
\(874\) 3.25166e23 0.0323042
\(875\) −4.10522e24 −0.403895
\(876\) 0 0
\(877\) 1.53001e25 1.47638 0.738191 0.674592i \(-0.235680\pi\)
0.738191 + 0.674592i \(0.235680\pi\)
\(878\) 1.72723e23 0.0165062
\(879\) 0 0
\(880\) −2.30953e24 −0.216481
\(881\) −9.68780e24 −0.899352 −0.449676 0.893192i \(-0.648461\pi\)
−0.449676 + 0.893192i \(0.648461\pi\)
\(882\) 0 0
\(883\) 5.45095e24 0.496371 0.248185 0.968713i \(-0.420166\pi\)
0.248185 + 0.968713i \(0.420166\pi\)
\(884\) 2.16222e25 1.95009
\(885\) 0 0
\(886\) −8.49288e23 −0.0751395
\(887\) 8.37406e24 0.733813 0.366907 0.930258i \(-0.380417\pi\)
0.366907 + 0.930258i \(0.380417\pi\)
\(888\) 0 0
\(889\) 1.04617e24 0.0899370
\(890\) 4.05689e23 0.0345444
\(891\) 0 0
\(892\) −5.55518e24 −0.464085
\(893\) −3.67945e25 −3.04470
\(894\) 0 0
\(895\) −1.23729e25 −1.00456
\(896\) 1.17373e24 0.0943955
\(897\) 0 0
\(898\) 1.94985e23 0.0153870
\(899\) 2.66022e25 2.07951
\(900\) 0 0
\(901\) −2.26901e25 −1.74051
\(902\) −1.21857e23 −0.00925969
\(903\) 0 0
\(904\) −4.80782e23 −0.0358523
\(905\) 1.18635e25 0.876398
\(906\) 0 0
\(907\) −2.07998e24 −0.150798 −0.0753992 0.997153i \(-0.524023\pi\)
−0.0753992 + 0.997153i \(0.524023\pi\)
\(908\) 7.46854e24 0.536421
\(909\) 0 0
\(910\) 2.52971e23 0.0178328
\(911\) −1.50752e25 −1.05283 −0.526413 0.850229i \(-0.676463\pi\)
−0.526413 + 0.850229i \(0.676463\pi\)
\(912\) 0 0
\(913\) −3.47240e24 −0.238028
\(914\) −1.70545e24 −0.115824
\(915\) 0 0
\(916\) −9.07523e24 −0.604987
\(917\) 2.98065e23 0.0196866
\(918\) 0 0
\(919\) −8.40599e24 −0.545013 −0.272506 0.962154i \(-0.587853\pi\)
−0.272506 + 0.962154i \(0.587853\pi\)
\(920\) −4.31152e23 −0.0276970
\(921\) 0 0
\(922\) −4.72384e23 −0.0297908
\(923\) −2.52535e25 −1.57800
\(924\) 0 0
\(925\) 5.12319e24 0.314294
\(926\) 9.26803e23 0.0563370
\(927\) 0 0
\(928\) −3.96951e24 −0.236907
\(929\) −2.49512e23 −0.0147557 −0.00737783 0.999973i \(-0.502348\pi\)
−0.00737783 + 0.999973i \(0.502348\pi\)
\(930\) 0 0
\(931\) −4.14817e24 −0.240871
\(932\) −2.16705e25 −1.24691
\(933\) 0 0
\(934\) −6.61367e23 −0.0373675
\(935\) 7.41657e24 0.415245
\(936\) 0 0
\(937\) 4.52595e24 0.248842 0.124421 0.992230i \(-0.460293\pi\)
0.124421 + 0.992230i \(0.460293\pi\)
\(938\) −1.05311e23 −0.00573783
\(939\) 0 0
\(940\) 2.43450e25 1.30264
\(941\) 8.41772e24 0.446357 0.223179 0.974778i \(-0.428357\pi\)
0.223179 + 0.974778i \(0.428357\pi\)
\(942\) 0 0
\(943\) 2.83172e24 0.147469
\(944\) 2.61801e25 1.35117
\(945\) 0 0
\(946\) −4.71487e23 −0.0238998
\(947\) 3.41158e25 1.71388 0.856941 0.515414i \(-0.172362\pi\)
0.856941 + 0.515414i \(0.172362\pi\)
\(948\) 0 0
\(949\) −3.15974e25 −1.55915
\(950\) 1.03374e24 0.0505545
\(951\) 0 0
\(952\) −1.87706e24 −0.0901705
\(953\) −2.42458e25 −1.15437 −0.577187 0.816612i \(-0.695850\pi\)
−0.577187 + 0.816612i \(0.695850\pi\)
\(954\) 0 0
\(955\) 1.61103e25 0.753484
\(956\) −1.24433e25 −0.576824
\(957\) 0 0
\(958\) 1.99653e24 0.0909220
\(959\) 8.02217e24 0.362104
\(960\) 0 0
\(961\) 3.89788e25 1.72854
\(962\) −9.79697e23 −0.0430629
\(963\) 0 0
\(964\) 2.42555e25 1.04750
\(965\) 3.38956e24 0.145098
\(966\) 0 0
\(967\) −2.29517e25 −0.965363 −0.482681 0.875796i \(-0.660337\pi\)
−0.482681 + 0.875796i \(0.660337\pi\)
\(968\) 2.74281e24 0.114355
\(969\) 0 0
\(970\) 3.37994e23 0.0138468
\(971\) 4.54882e25 1.84729 0.923646 0.383246i \(-0.125194\pi\)
0.923646 + 0.383246i \(0.125194\pi\)
\(972\) 0 0
\(973\) −5.36948e24 −0.214276
\(974\) 1.55375e24 0.0614651
\(975\) 0 0
\(976\) 3.03178e25 1.17862
\(977\) −2.56796e25 −0.989655 −0.494827 0.868991i \(-0.664769\pi\)
−0.494827 + 0.868991i \(0.664769\pi\)
\(978\) 0 0
\(979\) −6.04093e24 −0.228797
\(980\) 2.74464e24 0.103054
\(981\) 0 0
\(982\) −1.28406e24 −0.0473848
\(983\) 1.97584e25 0.722848 0.361424 0.932402i \(-0.382291\pi\)
0.361424 + 0.932402i \(0.382291\pi\)
\(984\) 0 0
\(985\) −6.90733e24 −0.248372
\(986\) 4.22082e24 0.150468
\(987\) 0 0
\(988\) 4.95101e25 1.73484
\(989\) 1.09564e25 0.380626
\(990\) 0 0
\(991\) 5.45422e25 1.86254 0.931271 0.364326i \(-0.118701\pi\)
0.931271 + 0.364326i \(0.118701\pi\)
\(992\) −9.18117e24 −0.310849
\(993\) 0 0
\(994\) 1.09397e24 0.0364099
\(995\) −1.41800e25 −0.467928
\(996\) 0 0
\(997\) 5.43418e25 1.76289 0.881445 0.472287i \(-0.156571\pi\)
0.881445 + 0.472287i \(0.156571\pi\)
\(998\) −5.57546e23 −0.0179338
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.18.a.d.1.2 4
3.2 odd 2 21.18.a.b.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.18.a.b.1.3 4 3.2 odd 2
63.18.a.d.1.2 4 1.1 even 1 trivial