Properties

Label 1984.2.a.z.1.3
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,-2,0,-4,0,4,0,10,0,0,0,-2,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.27743\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{3} -3.27743 q^{5} -0.878184 q^{7} +4.46410 q^{9} +3.66719 q^{11} +4.06644 q^{13} -8.95410 q^{15} -2.15561 q^{17} -3.67667 q^{19} -2.39924 q^{21} +5.61971 q^{23} +5.74153 q^{25} +4.00000 q^{27} +7.28691 q^{29} -1.00000 q^{31} +10.0190 q^{33} +2.87818 q^{35} +10.3518 q^{37} +11.1097 q^{39} +3.52106 q^{41} -1.28691 q^{43} -14.6308 q^{45} -6.68457 q^{47} -6.22879 q^{49} -5.88924 q^{51} +0.462524 q^{53} -12.0190 q^{55} -10.0449 q^{57} +12.7674 q^{59} +4.06644 q^{61} -3.92030 q^{63} -13.3274 q^{65} +6.24363 q^{67} +15.3533 q^{69} -1.43304 q^{71} -4.92820 q^{73} +15.6861 q^{75} -3.22047 q^{77} +15.5090 q^{79} -2.46410 q^{81} +16.5985 q^{83} +7.06486 q^{85} +19.9082 q^{87} +1.37608 q^{89} -3.57108 q^{91} -2.73205 q^{93} +12.0500 q^{95} +12.6308 q^{97} +16.3707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{5} - 4 q^{7} + 4 q^{9} + 10 q^{11} - 2 q^{15} + 2 q^{17} + 8 q^{19} + 2 q^{21} - 2 q^{23} - 2 q^{25} + 16 q^{27} - 4 q^{31} + 4 q^{33} + 12 q^{35} + 10 q^{37} + 2 q^{41} + 24 q^{43}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.73205 1.57735 0.788675 0.614810i \(-0.210767\pi\)
0.788675 + 0.614810i \(0.210767\pi\)
\(4\) 0 0
\(5\) −3.27743 −1.46571 −0.732855 0.680385i \(-0.761813\pi\)
−0.732855 + 0.680385i \(0.761813\pi\)
\(6\) 0 0
\(7\) −0.878184 −0.331922 −0.165961 0.986132i \(-0.553073\pi\)
−0.165961 + 0.986132i \(0.553073\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) 3.66719 1.10570 0.552850 0.833281i \(-0.313540\pi\)
0.552850 + 0.833281i \(0.313540\pi\)
\(12\) 0 0
\(13\) 4.06644 1.12783 0.563913 0.825834i \(-0.309295\pi\)
0.563913 + 0.825834i \(0.309295\pi\)
\(14\) 0 0
\(15\) −8.95410 −2.31194
\(16\) 0 0
\(17\) −2.15561 −0.522812 −0.261406 0.965229i \(-0.584186\pi\)
−0.261406 + 0.965229i \(0.584186\pi\)
\(18\) 0 0
\(19\) −3.67667 −0.843486 −0.421743 0.906715i \(-0.638582\pi\)
−0.421743 + 0.906715i \(0.638582\pi\)
\(20\) 0 0
\(21\) −2.39924 −0.523558
\(22\) 0 0
\(23\) 5.61971 1.17179 0.585896 0.810387i \(-0.300743\pi\)
0.585896 + 0.810387i \(0.300743\pi\)
\(24\) 0 0
\(25\) 5.74153 1.14831
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 7.28691 1.35314 0.676572 0.736376i \(-0.263465\pi\)
0.676572 + 0.736376i \(0.263465\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) 10.0190 1.74408
\(34\) 0 0
\(35\) 2.87818 0.486502
\(36\) 0 0
\(37\) 10.3518 1.70182 0.850910 0.525312i \(-0.176051\pi\)
0.850910 + 0.525312i \(0.176051\pi\)
\(38\) 0 0
\(39\) 11.1097 1.77898
\(40\) 0 0
\(41\) 3.52106 0.549897 0.274949 0.961459i \(-0.411339\pi\)
0.274949 + 0.961459i \(0.411339\pi\)
\(42\) 0 0
\(43\) −1.28691 −0.196251 −0.0981256 0.995174i \(-0.531285\pi\)
−0.0981256 + 0.995174i \(0.531285\pi\)
\(44\) 0 0
\(45\) −14.6308 −2.18103
\(46\) 0 0
\(47\) −6.68457 −0.975045 −0.487522 0.873110i \(-0.662099\pi\)
−0.487522 + 0.873110i \(0.662099\pi\)
\(48\) 0 0
\(49\) −6.22879 −0.889828
\(50\) 0 0
\(51\) −5.88924 −0.824658
\(52\) 0 0
\(53\) 0.462524 0.0635326 0.0317663 0.999495i \(-0.489887\pi\)
0.0317663 + 0.999495i \(0.489887\pi\)
\(54\) 0 0
\(55\) −12.0190 −1.62064
\(56\) 0 0
\(57\) −10.0449 −1.33047
\(58\) 0 0
\(59\) 12.7674 1.66218 0.831088 0.556140i \(-0.187718\pi\)
0.831088 + 0.556140i \(0.187718\pi\)
\(60\) 0 0
\(61\) 4.06644 0.520654 0.260327 0.965521i \(-0.416170\pi\)
0.260327 + 0.965521i \(0.416170\pi\)
\(62\) 0 0
\(63\) −3.92030 −0.493912
\(64\) 0 0
\(65\) −13.3274 −1.65307
\(66\) 0 0
\(67\) 6.24363 0.762781 0.381391 0.924414i \(-0.375445\pi\)
0.381391 + 0.924414i \(0.375445\pi\)
\(68\) 0 0
\(69\) 15.3533 1.84833
\(70\) 0 0
\(71\) −1.43304 −0.170070 −0.0850352 0.996378i \(-0.527100\pi\)
−0.0850352 + 0.996378i \(0.527100\pi\)
\(72\) 0 0
\(73\) −4.92820 −0.576803 −0.288401 0.957510i \(-0.593124\pi\)
−0.288401 + 0.957510i \(0.593124\pi\)
\(74\) 0 0
\(75\) 15.6861 1.81128
\(76\) 0 0
\(77\) −3.22047 −0.367007
\(78\) 0 0
\(79\) 15.5090 1.74489 0.872447 0.488709i \(-0.162532\pi\)
0.872447 + 0.488709i \(0.162532\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) 16.5985 1.82193 0.910964 0.412486i \(-0.135340\pi\)
0.910964 + 0.412486i \(0.135340\pi\)
\(84\) 0 0
\(85\) 7.06486 0.766291
\(86\) 0 0
\(87\) 19.9082 2.13438
\(88\) 0 0
\(89\) 1.37608 0.145864 0.0729321 0.997337i \(-0.476764\pi\)
0.0729321 + 0.997337i \(0.476764\pi\)
\(90\) 0 0
\(91\) −3.57108 −0.374351
\(92\) 0 0
\(93\) −2.73205 −0.283300
\(94\) 0 0
\(95\) 12.0500 1.23631
\(96\) 0 0
\(97\) 12.6308 1.28246 0.641230 0.767349i \(-0.278424\pi\)
0.641230 + 0.767349i \(0.278424\pi\)
\(98\) 0 0
\(99\) 16.3707 1.64532
\(100\) 0 0
\(101\) −7.16351 −0.712796 −0.356398 0.934334i \(-0.615995\pi\)
−0.356398 + 0.934334i \(0.615995\pi\)
\(102\) 0 0
\(103\) −11.3033 −1.11375 −0.556875 0.830597i \(-0.688000\pi\)
−0.556875 + 0.830597i \(0.688000\pi\)
\(104\) 0 0
\(105\) 7.86334 0.767384
\(106\) 0 0
\(107\) 14.7832 1.42915 0.714574 0.699560i \(-0.246621\pi\)
0.714574 + 0.699560i \(0.246621\pi\)
\(108\) 0 0
\(109\) −20.0949 −1.92474 −0.962370 0.271744i \(-0.912400\pi\)
−0.962370 + 0.271744i \(0.912400\pi\)
\(110\) 0 0
\(111\) 28.2815 2.68437
\(112\) 0 0
\(113\) −16.0917 −1.51378 −0.756891 0.653542i \(-0.773282\pi\)
−0.756891 + 0.653542i \(0.773282\pi\)
\(114\) 0 0
\(115\) −18.4182 −1.71751
\(116\) 0 0
\(117\) 18.1530 1.67824
\(118\) 0 0
\(119\) 1.89302 0.173533
\(120\) 0 0
\(121\) 2.44830 0.222573
\(122\) 0 0
\(123\) 9.61971 0.867380
\(124\) 0 0
\(125\) −2.43031 −0.217373
\(126\) 0 0
\(127\) −17.6159 −1.56316 −0.781580 0.623804i \(-0.785586\pi\)
−0.781580 + 0.623804i \(0.785586\pi\)
\(128\) 0 0
\(129\) −3.51589 −0.309557
\(130\) 0 0
\(131\) −16.5252 −1.44381 −0.721906 0.691991i \(-0.756734\pi\)
−0.721906 + 0.691991i \(0.756734\pi\)
\(132\) 0 0
\(133\) 3.22879 0.279972
\(134\) 0 0
\(135\) −13.1097 −1.12830
\(136\) 0 0
\(137\) 22.6808 1.93775 0.968875 0.247550i \(-0.0796253\pi\)
0.968875 + 0.247550i \(0.0796253\pi\)
\(138\) 0 0
\(139\) 7.74828 0.657200 0.328600 0.944469i \(-0.393423\pi\)
0.328600 + 0.944469i \(0.393423\pi\)
\(140\) 0 0
\(141\) −18.2626 −1.53799
\(142\) 0 0
\(143\) 14.9124 1.24704
\(144\) 0 0
\(145\) −23.8823 −1.98332
\(146\) 0 0
\(147\) −17.0174 −1.40357
\(148\) 0 0
\(149\) 11.8892 0.974004 0.487002 0.873401i \(-0.338090\pi\)
0.487002 + 0.873401i \(0.338090\pi\)
\(150\) 0 0
\(151\) 0.0416959 0.00339316 0.00169658 0.999999i \(-0.499460\pi\)
0.00169658 + 0.999999i \(0.499460\pi\)
\(152\) 0 0
\(153\) −9.62287 −0.777963
\(154\) 0 0
\(155\) 3.27743 0.263249
\(156\) 0 0
\(157\) −11.3585 −0.906508 −0.453254 0.891381i \(-0.649737\pi\)
−0.453254 + 0.891381i \(0.649737\pi\)
\(158\) 0 0
\(159\) 1.26364 0.100213
\(160\) 0 0
\(161\) −4.93514 −0.388944
\(162\) 0 0
\(163\) 13.5141 1.05851 0.529254 0.848464i \(-0.322472\pi\)
0.529254 + 0.848464i \(0.322472\pi\)
\(164\) 0 0
\(165\) −32.8364 −2.55631
\(166\) 0 0
\(167\) −0.746698 −0.0577812 −0.0288906 0.999583i \(-0.509197\pi\)
−0.0288906 + 0.999583i \(0.509197\pi\)
\(168\) 0 0
\(169\) 3.53590 0.271992
\(170\) 0 0
\(171\) −16.4130 −1.25514
\(172\) 0 0
\(173\) −5.62665 −0.427786 −0.213893 0.976857i \(-0.568614\pi\)
−0.213893 + 0.976857i \(0.568614\pi\)
\(174\) 0 0
\(175\) −5.04212 −0.381148
\(176\) 0 0
\(177\) 34.8812 2.62184
\(178\) 0 0
\(179\) −18.3777 −1.37361 −0.686805 0.726841i \(-0.740988\pi\)
−0.686805 + 0.726841i \(0.740988\pi\)
\(180\) 0 0
\(181\) −20.0526 −1.49049 −0.745247 0.666788i \(-0.767669\pi\)
−0.745247 + 0.666788i \(0.767669\pi\)
\(182\) 0 0
\(183\) 11.1097 0.821253
\(184\) 0 0
\(185\) −33.9272 −2.49437
\(186\) 0 0
\(187\) −7.90504 −0.578074
\(188\) 0 0
\(189\) −3.51274 −0.255514
\(190\) 0 0
\(191\) 4.07970 0.295197 0.147598 0.989047i \(-0.452846\pi\)
0.147598 + 0.989047i \(0.452846\pi\)
\(192\) 0 0
\(193\) −21.1667 −1.52361 −0.761805 0.647806i \(-0.775687\pi\)
−0.761805 + 0.647806i \(0.775687\pi\)
\(194\) 0 0
\(195\) −36.4113 −2.60746
\(196\) 0 0
\(197\) −8.82554 −0.628793 −0.314397 0.949292i \(-0.601802\pi\)
−0.314397 + 0.949292i \(0.601802\pi\)
\(198\) 0 0
\(199\) −8.19731 −0.581092 −0.290546 0.956861i \(-0.593837\pi\)
−0.290546 + 0.956861i \(0.593837\pi\)
\(200\) 0 0
\(201\) 17.0579 1.20317
\(202\) 0 0
\(203\) −6.39924 −0.449139
\(204\) 0 0
\(205\) −11.5400 −0.805990
\(206\) 0 0
\(207\) 25.0870 1.74366
\(208\) 0 0
\(209\) −13.4831 −0.932643
\(210\) 0 0
\(211\) 7.20836 0.496244 0.248122 0.968729i \(-0.420187\pi\)
0.248122 + 0.968729i \(0.420187\pi\)
\(212\) 0 0
\(213\) −3.91513 −0.268261
\(214\) 0 0
\(215\) 4.21774 0.287647
\(216\) 0 0
\(217\) 0.878184 0.0596150
\(218\) 0 0
\(219\) −13.4641 −0.909820
\(220\) 0 0
\(221\) −8.76565 −0.589642
\(222\) 0 0
\(223\) −22.0348 −1.47556 −0.737778 0.675043i \(-0.764125\pi\)
−0.737778 + 0.675043i \(0.764125\pi\)
\(224\) 0 0
\(225\) 25.6308 1.70872
\(226\) 0 0
\(227\) −16.3923 −1.08800 −0.543998 0.839087i \(-0.683090\pi\)
−0.543998 + 0.839087i \(0.683090\pi\)
\(228\) 0 0
\(229\) 5.24205 0.346405 0.173202 0.984886i \(-0.444589\pi\)
0.173202 + 0.984886i \(0.444589\pi\)
\(230\) 0 0
\(231\) −8.79849 −0.578898
\(232\) 0 0
\(233\) −1.33955 −0.0877571 −0.0438785 0.999037i \(-0.513971\pi\)
−0.0438785 + 0.999037i \(0.513971\pi\)
\(234\) 0 0
\(235\) 21.9082 1.42913
\(236\) 0 0
\(237\) 42.3712 2.75231
\(238\) 0 0
\(239\) 24.8402 1.60678 0.803389 0.595455i \(-0.203028\pi\)
0.803389 + 0.595455i \(0.203028\pi\)
\(240\) 0 0
\(241\) −11.1908 −0.720862 −0.360431 0.932786i \(-0.617370\pi\)
−0.360431 + 0.932786i \(0.617370\pi\)
\(242\) 0 0
\(243\) −18.7321 −1.20166
\(244\) 0 0
\(245\) 20.4144 1.30423
\(246\) 0 0
\(247\) −14.9509 −0.951306
\(248\) 0 0
\(249\) 45.3481 2.87382
\(250\) 0 0
\(251\) −22.7078 −1.43331 −0.716653 0.697430i \(-0.754327\pi\)
−0.716653 + 0.697430i \(0.754327\pi\)
\(252\) 0 0
\(253\) 20.6086 1.29565
\(254\) 0 0
\(255\) 19.3016 1.20871
\(256\) 0 0
\(257\) 0.119084 0.00742827 0.00371414 0.999993i \(-0.498818\pi\)
0.00371414 + 0.999993i \(0.498818\pi\)
\(258\) 0 0
\(259\) −9.09075 −0.564872
\(260\) 0 0
\(261\) 32.5295 2.01352
\(262\) 0 0
\(263\) 9.21353 0.568131 0.284065 0.958805i \(-0.408317\pi\)
0.284065 + 0.958805i \(0.408317\pi\)
\(264\) 0 0
\(265\) −1.51589 −0.0931204
\(266\) 0 0
\(267\) 3.75952 0.230079
\(268\) 0 0
\(269\) 0.381442 0.0232569 0.0116285 0.999932i \(-0.496298\pi\)
0.0116285 + 0.999932i \(0.496298\pi\)
\(270\) 0 0
\(271\) 13.5869 0.825344 0.412672 0.910880i \(-0.364596\pi\)
0.412672 + 0.910880i \(0.364596\pi\)
\(272\) 0 0
\(273\) −9.75637 −0.590482
\(274\) 0 0
\(275\) 21.0553 1.26968
\(276\) 0 0
\(277\) −9.64445 −0.579479 −0.289739 0.957106i \(-0.593569\pi\)
−0.289739 + 0.957106i \(0.593569\pi\)
\(278\) 0 0
\(279\) −4.46410 −0.267259
\(280\) 0 0
\(281\) 7.88092 0.470136 0.235068 0.971979i \(-0.424469\pi\)
0.235068 + 0.971979i \(0.424469\pi\)
\(282\) 0 0
\(283\) −28.9693 −1.72204 −0.861022 0.508567i \(-0.830175\pi\)
−0.861022 + 0.508567i \(0.830175\pi\)
\(284\) 0 0
\(285\) 32.9213 1.95009
\(286\) 0 0
\(287\) −3.09214 −0.182523
\(288\) 0 0
\(289\) −12.3533 −0.726667
\(290\) 0 0
\(291\) 34.5079 2.02289
\(292\) 0 0
\(293\) −2.42514 −0.141678 −0.0708390 0.997488i \(-0.522568\pi\)
−0.0708390 + 0.997488i \(0.522568\pi\)
\(294\) 0 0
\(295\) −41.8443 −2.43627
\(296\) 0 0
\(297\) 14.6688 0.851168
\(298\) 0 0
\(299\) 22.8522 1.32158
\(300\) 0 0
\(301\) 1.13014 0.0651402
\(302\) 0 0
\(303\) −19.5711 −1.12433
\(304\) 0 0
\(305\) −13.3274 −0.763127
\(306\) 0 0
\(307\) 6.83501 0.390095 0.195047 0.980794i \(-0.437514\pi\)
0.195047 + 0.980794i \(0.437514\pi\)
\(308\) 0 0
\(309\) −30.8812 −1.75677
\(310\) 0 0
\(311\) −11.0921 −0.628977 −0.314489 0.949261i \(-0.601833\pi\)
−0.314489 + 0.949261i \(0.601833\pi\)
\(312\) 0 0
\(313\) −6.68836 −0.378048 −0.189024 0.981972i \(-0.560532\pi\)
−0.189024 + 0.981972i \(0.560532\pi\)
\(314\) 0 0
\(315\) 12.8485 0.723931
\(316\) 0 0
\(317\) −3.42925 −0.192606 −0.0963031 0.995352i \(-0.530702\pi\)
−0.0963031 + 0.995352i \(0.530702\pi\)
\(318\) 0 0
\(319\) 26.7225 1.49617
\(320\) 0 0
\(321\) 40.3885 2.25427
\(322\) 0 0
\(323\) 7.92547 0.440985
\(324\) 0 0
\(325\) 23.3476 1.29509
\(326\) 0 0
\(327\) −54.9002 −3.03599
\(328\) 0 0
\(329\) 5.87028 0.323639
\(330\) 0 0
\(331\) 7.74828 0.425884 0.212942 0.977065i \(-0.431696\pi\)
0.212942 + 0.977065i \(0.431696\pi\)
\(332\) 0 0
\(333\) 46.2113 2.53236
\(334\) 0 0
\(335\) −20.4630 −1.11802
\(336\) 0 0
\(337\) −32.3561 −1.76255 −0.881274 0.472606i \(-0.843313\pi\)
−0.881274 + 0.472606i \(0.843313\pi\)
\(338\) 0 0
\(339\) −43.9634 −2.38776
\(340\) 0 0
\(341\) −3.66719 −0.198590
\(342\) 0 0
\(343\) 11.6173 0.627276
\(344\) 0 0
\(345\) −50.3195 −2.70911
\(346\) 0 0
\(347\) −2.68888 −0.144347 −0.0721733 0.997392i \(-0.522993\pi\)
−0.0721733 + 0.997392i \(0.522993\pi\)
\(348\) 0 0
\(349\) −5.70773 −0.305528 −0.152764 0.988263i \(-0.548817\pi\)
−0.152764 + 0.988263i \(0.548817\pi\)
\(350\) 0 0
\(351\) 16.2657 0.868201
\(352\) 0 0
\(353\) 17.9240 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(354\) 0 0
\(355\) 4.69668 0.249274
\(356\) 0 0
\(357\) 5.17184 0.273723
\(358\) 0 0
\(359\) 33.7767 1.78267 0.891333 0.453349i \(-0.149771\pi\)
0.891333 + 0.453349i \(0.149771\pi\)
\(360\) 0 0
\(361\) −5.48210 −0.288531
\(362\) 0 0
\(363\) 6.68888 0.351075
\(364\) 0 0
\(365\) 16.1518 0.845425
\(366\) 0 0
\(367\) 11.9758 0.625131 0.312565 0.949896i \(-0.398812\pi\)
0.312565 + 0.949896i \(0.398812\pi\)
\(368\) 0 0
\(369\) 15.7184 0.818265
\(370\) 0 0
\(371\) −0.406182 −0.0210879
\(372\) 0 0
\(373\) 8.54422 0.442403 0.221202 0.975228i \(-0.429002\pi\)
0.221202 + 0.975228i \(0.429002\pi\)
\(374\) 0 0
\(375\) −6.63972 −0.342874
\(376\) 0 0
\(377\) 29.6317 1.52611
\(378\) 0 0
\(379\) 22.6256 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(380\) 0 0
\(381\) −48.1276 −2.46565
\(382\) 0 0
\(383\) 23.2129 1.18612 0.593062 0.805157i \(-0.297919\pi\)
0.593062 + 0.805157i \(0.297919\pi\)
\(384\) 0 0
\(385\) 10.5549 0.537925
\(386\) 0 0
\(387\) −5.74488 −0.292028
\(388\) 0 0
\(389\) 7.16921 0.363493 0.181747 0.983345i \(-0.441825\pi\)
0.181747 + 0.983345i \(0.441825\pi\)
\(390\) 0 0
\(391\) −12.1139 −0.612627
\(392\) 0 0
\(393\) −45.1476 −2.27740
\(394\) 0 0
\(395\) −50.8295 −2.55751
\(396\) 0 0
\(397\) 1.09592 0.0550027 0.0275014 0.999622i \(-0.491245\pi\)
0.0275014 + 0.999622i \(0.491245\pi\)
\(398\) 0 0
\(399\) 8.82123 0.441614
\(400\) 0 0
\(401\) −7.63867 −0.381457 −0.190728 0.981643i \(-0.561085\pi\)
−0.190728 + 0.981643i \(0.561085\pi\)
\(402\) 0 0
\(403\) −4.06644 −0.202564
\(404\) 0 0
\(405\) 8.07591 0.401295
\(406\) 0 0
\(407\) 37.9619 1.88170
\(408\) 0 0
\(409\) −1.89618 −0.0937599 −0.0468800 0.998901i \(-0.514928\pi\)
−0.0468800 + 0.998901i \(0.514928\pi\)
\(410\) 0 0
\(411\) 61.9651 3.05651
\(412\) 0 0
\(413\) −11.2121 −0.551714
\(414\) 0 0
\(415\) −54.4005 −2.67042
\(416\) 0 0
\(417\) 21.1687 1.03663
\(418\) 0 0
\(419\) 31.8475 1.55585 0.777925 0.628357i \(-0.216272\pi\)
0.777925 + 0.628357i \(0.216272\pi\)
\(420\) 0 0
\(421\) −26.0083 −1.26757 −0.633784 0.773510i \(-0.718499\pi\)
−0.633784 + 0.773510i \(0.718499\pi\)
\(422\) 0 0
\(423\) −29.8406 −1.45090
\(424\) 0 0
\(425\) −12.3765 −0.600349
\(426\) 0 0
\(427\) −3.57108 −0.172817
\(428\) 0 0
\(429\) 40.7414 1.96702
\(430\) 0 0
\(431\) −11.0579 −0.532641 −0.266321 0.963884i \(-0.585808\pi\)
−0.266321 + 0.963884i \(0.585808\pi\)
\(432\) 0 0
\(433\) 27.4171 1.31758 0.658792 0.752325i \(-0.271068\pi\)
0.658792 + 0.752325i \(0.271068\pi\)
\(434\) 0 0
\(435\) −65.2477 −3.12839
\(436\) 0 0
\(437\) −20.6618 −0.988389
\(438\) 0 0
\(439\) 9.82850 0.469089 0.234544 0.972105i \(-0.424640\pi\)
0.234544 + 0.972105i \(0.424640\pi\)
\(440\) 0 0
\(441\) −27.8060 −1.32409
\(442\) 0 0
\(443\) −27.3895 −1.30131 −0.650657 0.759372i \(-0.725506\pi\)
−0.650657 + 0.759372i \(0.725506\pi\)
\(444\) 0 0
\(445\) −4.51000 −0.213795
\(446\) 0 0
\(447\) 32.4820 1.53635
\(448\) 0 0
\(449\) 13.8216 0.652284 0.326142 0.945321i \(-0.394251\pi\)
0.326142 + 0.945321i \(0.394251\pi\)
\(450\) 0 0
\(451\) 12.9124 0.608021
\(452\) 0 0
\(453\) 0.113915 0.00535221
\(454\) 0 0
\(455\) 11.7039 0.548690
\(456\) 0 0
\(457\) 17.2584 0.807313 0.403657 0.914911i \(-0.367739\pi\)
0.403657 + 0.914911i \(0.367739\pi\)
\(458\) 0 0
\(459\) −8.62244 −0.402461
\(460\) 0 0
\(461\) −32.6523 −1.52077 −0.760384 0.649474i \(-0.774989\pi\)
−0.760384 + 0.649474i \(0.774989\pi\)
\(462\) 0 0
\(463\) −19.8406 −0.922071 −0.461036 0.887382i \(-0.652522\pi\)
−0.461036 + 0.887382i \(0.652522\pi\)
\(464\) 0 0
\(465\) 8.95410 0.415236
\(466\) 0 0
\(467\) −17.9847 −0.832234 −0.416117 0.909311i \(-0.636609\pi\)
−0.416117 + 0.909311i \(0.636609\pi\)
\(468\) 0 0
\(469\) −5.48306 −0.253184
\(470\) 0 0
\(471\) −31.0320 −1.42988
\(472\) 0 0
\(473\) −4.71933 −0.216995
\(474\) 0 0
\(475\) −21.1097 −0.968580
\(476\) 0 0
\(477\) 2.06476 0.0945387
\(478\) 0 0
\(479\) −0.163935 −0.00749036 −0.00374518 0.999993i \(-0.501192\pi\)
−0.00374518 + 0.999993i \(0.501192\pi\)
\(480\) 0 0
\(481\) 42.0948 1.91936
\(482\) 0 0
\(483\) −13.4831 −0.613500
\(484\) 0 0
\(485\) −41.3964 −1.87971
\(486\) 0 0
\(487\) −26.0777 −1.18169 −0.590846 0.806784i \(-0.701206\pi\)
−0.590846 + 0.806784i \(0.701206\pi\)
\(488\) 0 0
\(489\) 36.9213 1.66964
\(490\) 0 0
\(491\) 6.90154 0.311462 0.155731 0.987799i \(-0.450227\pi\)
0.155731 + 0.987799i \(0.450227\pi\)
\(492\) 0 0
\(493\) −15.7077 −0.707441
\(494\) 0 0
\(495\) −53.6538 −2.41156
\(496\) 0 0
\(497\) 1.25847 0.0564501
\(498\) 0 0
\(499\) 9.52360 0.426335 0.213167 0.977016i \(-0.431622\pi\)
0.213167 + 0.977016i \(0.431622\pi\)
\(500\) 0 0
\(501\) −2.04002 −0.0911412
\(502\) 0 0
\(503\) 4.32333 0.192768 0.0963839 0.995344i \(-0.469272\pi\)
0.0963839 + 0.995344i \(0.469272\pi\)
\(504\) 0 0
\(505\) 23.4779 1.04475
\(506\) 0 0
\(507\) 9.66025 0.429027
\(508\) 0 0
\(509\) 18.5718 0.823181 0.411591 0.911369i \(-0.364973\pi\)
0.411591 + 0.911369i \(0.364973\pi\)
\(510\) 0 0
\(511\) 4.32787 0.191454
\(512\) 0 0
\(513\) −14.7067 −0.649316
\(514\) 0 0
\(515\) 37.0458 1.63243
\(516\) 0 0
\(517\) −24.5136 −1.07811
\(518\) 0 0
\(519\) −15.3723 −0.674769
\(520\) 0 0
\(521\) −25.6267 −1.12272 −0.561362 0.827570i \(-0.689722\pi\)
−0.561362 + 0.827570i \(0.689722\pi\)
\(522\) 0 0
\(523\) 8.06328 0.352583 0.176291 0.984338i \(-0.443590\pi\)
0.176291 + 0.984338i \(0.443590\pi\)
\(524\) 0 0
\(525\) −13.7753 −0.601204
\(526\) 0 0
\(527\) 2.15561 0.0938999
\(528\) 0 0
\(529\) 8.58117 0.373094
\(530\) 0 0
\(531\) 56.9951 2.47338
\(532\) 0 0
\(533\) 14.3182 0.620188
\(534\) 0 0
\(535\) −48.4509 −2.09472
\(536\) 0 0
\(537\) −50.2087 −2.16667
\(538\) 0 0
\(539\) −22.8422 −0.983882
\(540\) 0 0
\(541\) 0.969359 0.0416760 0.0208380 0.999783i \(-0.493367\pi\)
0.0208380 + 0.999783i \(0.493367\pi\)
\(542\) 0 0
\(543\) −54.7846 −2.35103
\(544\) 0 0
\(545\) 65.8595 2.82111
\(546\) 0 0
\(547\) 43.4741 1.85882 0.929409 0.369051i \(-0.120317\pi\)
0.929409 + 0.369051i \(0.120317\pi\)
\(548\) 0 0
\(549\) 18.1530 0.774750
\(550\) 0 0
\(551\) −26.7915 −1.14136
\(552\) 0 0
\(553\) −13.6197 −0.579169
\(554\) 0 0
\(555\) −92.6907 −3.93450
\(556\) 0 0
\(557\) 18.6009 0.788144 0.394072 0.919080i \(-0.371066\pi\)
0.394072 + 0.919080i \(0.371066\pi\)
\(558\) 0 0
\(559\) −5.23312 −0.221337
\(560\) 0 0
\(561\) −21.5970 −0.911825
\(562\) 0 0
\(563\) 34.1037 1.43730 0.718650 0.695371i \(-0.244760\pi\)
0.718650 + 0.695371i \(0.244760\pi\)
\(564\) 0 0
\(565\) 52.7394 2.21876
\(566\) 0 0
\(567\) 2.16393 0.0908767
\(568\) 0 0
\(569\) 14.2923 0.599163 0.299581 0.954071i \(-0.403153\pi\)
0.299581 + 0.954071i \(0.403153\pi\)
\(570\) 0 0
\(571\) 43.6950 1.82858 0.914290 0.405061i \(-0.132750\pi\)
0.914290 + 0.405061i \(0.132750\pi\)
\(572\) 0 0
\(573\) 11.1459 0.465628
\(574\) 0 0
\(575\) 32.2657 1.34557
\(576\) 0 0
\(577\) −16.7098 −0.695640 −0.347820 0.937561i \(-0.613078\pi\)
−0.347820 + 0.937561i \(0.613078\pi\)
\(578\) 0 0
\(579\) −57.8284 −2.40327
\(580\) 0 0
\(581\) −14.5766 −0.604738
\(582\) 0 0
\(583\) 1.69617 0.0702480
\(584\) 0 0
\(585\) −59.4951 −2.45982
\(586\) 0 0
\(587\) −9.50464 −0.392299 −0.196149 0.980574i \(-0.562844\pi\)
−0.196149 + 0.980574i \(0.562844\pi\)
\(588\) 0 0
\(589\) 3.67667 0.151495
\(590\) 0 0
\(591\) −24.1118 −0.991827
\(592\) 0 0
\(593\) −18.1380 −0.744840 −0.372420 0.928064i \(-0.621472\pi\)
−0.372420 + 0.928064i \(0.621472\pi\)
\(594\) 0 0
\(595\) −6.20425 −0.254349
\(596\) 0 0
\(597\) −22.3955 −0.916585
\(598\) 0 0
\(599\) −5.72846 −0.234058 −0.117029 0.993128i \(-0.537337\pi\)
−0.117029 + 0.993128i \(0.537337\pi\)
\(600\) 0 0
\(601\) −5.63551 −0.229877 −0.114939 0.993373i \(-0.536667\pi\)
−0.114939 + 0.993373i \(0.536667\pi\)
\(602\) 0 0
\(603\) 27.8722 1.13504
\(604\) 0 0
\(605\) −8.02412 −0.326227
\(606\) 0 0
\(607\) −7.79235 −0.316282 −0.158141 0.987417i \(-0.550550\pi\)
−0.158141 + 0.987417i \(0.550550\pi\)
\(608\) 0 0
\(609\) −17.4831 −0.708449
\(610\) 0 0
\(611\) −27.1824 −1.09968
\(612\) 0 0
\(613\) −37.8051 −1.52694 −0.763468 0.645846i \(-0.776505\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(614\) 0 0
\(615\) −31.5279 −1.27133
\(616\) 0 0
\(617\) 21.1255 0.850481 0.425241 0.905080i \(-0.360190\pi\)
0.425241 + 0.905080i \(0.360190\pi\)
\(618\) 0 0
\(619\) −12.5718 −0.505304 −0.252652 0.967557i \(-0.581303\pi\)
−0.252652 + 0.967557i \(0.581303\pi\)
\(620\) 0 0
\(621\) 22.4789 0.902045
\(622\) 0 0
\(623\) −1.20845 −0.0484156
\(624\) 0 0
\(625\) −20.7425 −0.829700
\(626\) 0 0
\(627\) −36.8364 −1.47110
\(628\) 0 0
\(629\) −22.3144 −0.889732
\(630\) 0 0
\(631\) 4.60349 0.183262 0.0916310 0.995793i \(-0.470792\pi\)
0.0916310 + 0.995793i \(0.470792\pi\)
\(632\) 0 0
\(633\) 19.6936 0.782751
\(634\) 0 0
\(635\) 57.7349 2.29114
\(636\) 0 0
\(637\) −25.3290 −1.00357
\(638\) 0 0
\(639\) −6.39723 −0.253070
\(640\) 0 0
\(641\) −39.0832 −1.54369 −0.771846 0.635809i \(-0.780667\pi\)
−0.771846 + 0.635809i \(0.780667\pi\)
\(642\) 0 0
\(643\) 1.53978 0.0607232 0.0303616 0.999539i \(-0.490334\pi\)
0.0303616 + 0.999539i \(0.490334\pi\)
\(644\) 0 0
\(645\) 11.5231 0.453721
\(646\) 0 0
\(647\) 23.8216 0.936526 0.468263 0.883589i \(-0.344880\pi\)
0.468263 + 0.883589i \(0.344880\pi\)
\(648\) 0 0
\(649\) 46.8206 1.83787
\(650\) 0 0
\(651\) 2.39924 0.0940338
\(652\) 0 0
\(653\) 32.1032 1.25630 0.628148 0.778094i \(-0.283813\pi\)
0.628148 + 0.778094i \(0.283813\pi\)
\(654\) 0 0
\(655\) 54.1601 2.11621
\(656\) 0 0
\(657\) −22.0000 −0.858302
\(658\) 0 0
\(659\) −23.0818 −0.899139 −0.449570 0.893245i \(-0.648423\pi\)
−0.449570 + 0.893245i \(0.648423\pi\)
\(660\) 0 0
\(661\) −8.33027 −0.324010 −0.162005 0.986790i \(-0.551796\pi\)
−0.162005 + 0.986790i \(0.551796\pi\)
\(662\) 0 0
\(663\) −23.9482 −0.930071
\(664\) 0 0
\(665\) −10.5821 −0.410358
\(666\) 0 0
\(667\) 40.9503 1.58560
\(668\) 0 0
\(669\) −60.2001 −2.32747
\(670\) 0 0
\(671\) 14.9124 0.575687
\(672\) 0 0
\(673\) −19.9183 −0.767794 −0.383897 0.923376i \(-0.625418\pi\)
−0.383897 + 0.923376i \(0.625418\pi\)
\(674\) 0 0
\(675\) 22.9661 0.883966
\(676\) 0 0
\(677\) −25.3835 −0.975569 −0.487784 0.872964i \(-0.662195\pi\)
−0.487784 + 0.872964i \(0.662195\pi\)
\(678\) 0 0
\(679\) −11.0921 −0.425677
\(680\) 0 0
\(681\) −44.7846 −1.71615
\(682\) 0 0
\(683\) 31.2981 1.19759 0.598794 0.800903i \(-0.295647\pi\)
0.598794 + 0.800903i \(0.295647\pi\)
\(684\) 0 0
\(685\) −74.3346 −2.84018
\(686\) 0 0
\(687\) 14.3216 0.546402
\(688\) 0 0
\(689\) 1.88083 0.0716538
\(690\) 0 0
\(691\) −3.41093 −0.129758 −0.0648789 0.997893i \(-0.520666\pi\)
−0.0648789 + 0.997893i \(0.520666\pi\)
\(692\) 0 0
\(693\) −14.3765 −0.546118
\(694\) 0 0
\(695\) −25.3944 −0.963265
\(696\) 0 0
\(697\) −7.59003 −0.287493
\(698\) 0 0
\(699\) −3.65973 −0.138424
\(700\) 0 0
\(701\) 34.0485 1.28600 0.642998 0.765868i \(-0.277690\pi\)
0.642998 + 0.765868i \(0.277690\pi\)
\(702\) 0 0
\(703\) −38.0600 −1.43546
\(704\) 0 0
\(705\) 59.8543 2.25424
\(706\) 0 0
\(707\) 6.29088 0.236593
\(708\) 0 0
\(709\) 4.24626 0.159472 0.0797358 0.996816i \(-0.474592\pi\)
0.0797358 + 0.996816i \(0.474592\pi\)
\(710\) 0 0
\(711\) 69.2335 2.59646
\(712\) 0 0
\(713\) −5.61971 −0.210460
\(714\) 0 0
\(715\) −48.8743 −1.82780
\(716\) 0 0
\(717\) 67.8646 2.53445
\(718\) 0 0
\(719\) −31.3685 −1.16985 −0.584924 0.811088i \(-0.698876\pi\)
−0.584924 + 0.811088i \(0.698876\pi\)
\(720\) 0 0
\(721\) 9.92640 0.369678
\(722\) 0 0
\(723\) −30.5738 −1.13705
\(724\) 0 0
\(725\) 41.8380 1.55382
\(726\) 0 0
\(727\) 7.18941 0.266640 0.133320 0.991073i \(-0.457436\pi\)
0.133320 + 0.991073i \(0.457436\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) 2.77407 0.102603
\(732\) 0 0
\(733\) 15.9620 0.589570 0.294785 0.955564i \(-0.404752\pi\)
0.294785 + 0.955564i \(0.404752\pi\)
\(734\) 0 0
\(735\) 55.7732 2.05723
\(736\) 0 0
\(737\) 22.8966 0.843407
\(738\) 0 0
\(739\) −46.3373 −1.70454 −0.852272 0.523099i \(-0.824776\pi\)
−0.852272 + 0.523099i \(0.824776\pi\)
\(740\) 0 0
\(741\) −40.8467 −1.50054
\(742\) 0 0
\(743\) 21.1198 0.774810 0.387405 0.921910i \(-0.373371\pi\)
0.387405 + 0.921910i \(0.373371\pi\)
\(744\) 0 0
\(745\) −38.9661 −1.42761
\(746\) 0 0
\(747\) 74.0976 2.71109
\(748\) 0 0
\(749\) −12.9824 −0.474366
\(750\) 0 0
\(751\) 29.6525 1.08203 0.541017 0.841012i \(-0.318040\pi\)
0.541017 + 0.841012i \(0.318040\pi\)
\(752\) 0 0
\(753\) −62.0390 −2.26083
\(754\) 0 0
\(755\) −0.136655 −0.00497339
\(756\) 0 0
\(757\) 28.7055 1.04332 0.521660 0.853153i \(-0.325313\pi\)
0.521660 + 0.853153i \(0.325313\pi\)
\(758\) 0 0
\(759\) 56.3037 2.04369
\(760\) 0 0
\(761\) −12.3978 −0.449419 −0.224709 0.974426i \(-0.572143\pi\)
−0.224709 + 0.974426i \(0.572143\pi\)
\(762\) 0 0
\(763\) 17.6470 0.638864
\(764\) 0 0
\(765\) 31.5382 1.14027
\(766\) 0 0
\(767\) 51.9179 1.87465
\(768\) 0 0
\(769\) −14.2353 −0.513338 −0.256669 0.966499i \(-0.582625\pi\)
−0.256669 + 0.966499i \(0.582625\pi\)
\(770\) 0 0
\(771\) 0.325344 0.0117170
\(772\) 0 0
\(773\) 20.9357 0.753004 0.376502 0.926416i \(-0.377127\pi\)
0.376502 + 0.926416i \(0.377127\pi\)
\(774\) 0 0
\(775\) −5.74153 −0.206242
\(776\) 0 0
\(777\) −24.8364 −0.891001
\(778\) 0 0
\(779\) −12.9458 −0.463830
\(780\) 0 0
\(781\) −5.25523 −0.188047
\(782\) 0 0
\(783\) 29.1476 1.04165
\(784\) 0 0
\(785\) 37.2267 1.32868
\(786\) 0 0
\(787\) −45.6360 −1.62675 −0.813375 0.581740i \(-0.802372\pi\)
−0.813375 + 0.581740i \(0.802372\pi\)
\(788\) 0 0
\(789\) 25.1718 0.896141
\(790\) 0 0
\(791\) 14.1315 0.502458
\(792\) 0 0
\(793\) 16.5359 0.587207
\(794\) 0 0
\(795\) −4.14149 −0.146883
\(796\) 0 0
\(797\) −40.4032 −1.43115 −0.715577 0.698534i \(-0.753836\pi\)
−0.715577 + 0.698534i \(0.753836\pi\)
\(798\) 0 0
\(799\) 14.4093 0.509766
\(800\) 0 0
\(801\) 6.14296 0.217051
\(802\) 0 0
\(803\) −18.0727 −0.637771
\(804\) 0 0
\(805\) 16.1746 0.570079
\(806\) 0 0
\(807\) 1.04212 0.0366843
\(808\) 0 0
\(809\) −31.9928 −1.12481 −0.562404 0.826863i \(-0.690123\pi\)
−0.562404 + 0.826863i \(0.690123\pi\)
\(810\) 0 0
\(811\) −6.49042 −0.227909 −0.113955 0.993486i \(-0.536352\pi\)
−0.113955 + 0.993486i \(0.536352\pi\)
\(812\) 0 0
\(813\) 37.1200 1.30186
\(814\) 0 0
\(815\) −44.2915 −1.55147
\(816\) 0 0
\(817\) 4.73153 0.165535
\(818\) 0 0
\(819\) −15.9417 −0.557047
\(820\) 0 0
\(821\) −26.6592 −0.930413 −0.465206 0.885202i \(-0.654020\pi\)
−0.465206 + 0.885202i \(0.654020\pi\)
\(822\) 0 0
\(823\) −34.6753 −1.20871 −0.604353 0.796717i \(-0.706568\pi\)
−0.604353 + 0.796717i \(0.706568\pi\)
\(824\) 0 0
\(825\) 57.5241 2.00273
\(826\) 0 0
\(827\) 29.8765 1.03891 0.519454 0.854498i \(-0.326135\pi\)
0.519454 + 0.854498i \(0.326135\pi\)
\(828\) 0 0
\(829\) 51.2020 1.77832 0.889160 0.457596i \(-0.151289\pi\)
0.889160 + 0.457596i \(0.151289\pi\)
\(830\) 0 0
\(831\) −26.3491 −0.914041
\(832\) 0 0
\(833\) 13.4269 0.465213
\(834\) 0 0
\(835\) 2.44725 0.0846905
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) 36.2954 1.25306 0.626529 0.779398i \(-0.284475\pi\)
0.626529 + 0.779398i \(0.284475\pi\)
\(840\) 0 0
\(841\) 24.0990 0.831000
\(842\) 0 0
\(843\) 21.5311 0.741569
\(844\) 0 0
\(845\) −11.5886 −0.398662
\(846\) 0 0
\(847\) −2.15006 −0.0738769
\(848\) 0 0
\(849\) −79.1455 −2.71627
\(850\) 0 0
\(851\) 58.1739 1.99418
\(852\) 0 0
\(853\) 28.4978 0.975746 0.487873 0.872915i \(-0.337773\pi\)
0.487873 + 0.872915i \(0.337773\pi\)
\(854\) 0 0
\(855\) 53.7925 1.83967
\(856\) 0 0
\(857\) 30.1834 1.03105 0.515523 0.856876i \(-0.327598\pi\)
0.515523 + 0.856876i \(0.327598\pi\)
\(858\) 0 0
\(859\) 21.5967 0.736868 0.368434 0.929654i \(-0.379894\pi\)
0.368434 + 0.929654i \(0.379894\pi\)
\(860\) 0 0
\(861\) −8.44788 −0.287903
\(862\) 0 0
\(863\) −33.6905 −1.14684 −0.573418 0.819263i \(-0.694383\pi\)
−0.573418 + 0.819263i \(0.694383\pi\)
\(864\) 0 0
\(865\) 18.4409 0.627011
\(866\) 0 0
\(867\) −33.7500 −1.14621
\(868\) 0 0
\(869\) 56.8743 1.92933
\(870\) 0 0
\(871\) 25.3893 0.860285
\(872\) 0 0
\(873\) 56.3850 1.90834
\(874\) 0 0
\(875\) 2.13426 0.0721510
\(876\) 0 0
\(877\) 7.29869 0.246459 0.123230 0.992378i \(-0.460675\pi\)
0.123230 + 0.992378i \(0.460675\pi\)
\(878\) 0 0
\(879\) −6.62560 −0.223476
\(880\) 0 0
\(881\) −50.6833 −1.70756 −0.853782 0.520631i \(-0.825697\pi\)
−0.853782 + 0.520631i \(0.825697\pi\)
\(882\) 0 0
\(883\) 47.0153 1.58219 0.791095 0.611693i \(-0.209511\pi\)
0.791095 + 0.611693i \(0.209511\pi\)
\(884\) 0 0
\(885\) −114.321 −3.84285
\(886\) 0 0
\(887\) 25.9258 0.870502 0.435251 0.900309i \(-0.356660\pi\)
0.435251 + 0.900309i \(0.356660\pi\)
\(888\) 0 0
\(889\) 15.4700 0.518848
\(890\) 0 0
\(891\) −9.03633 −0.302729
\(892\) 0 0
\(893\) 24.5770 0.822437
\(894\) 0 0
\(895\) 60.2314 2.01331
\(896\) 0 0
\(897\) 62.4334 2.08459
\(898\) 0 0
\(899\) −7.28691 −0.243032
\(900\) 0 0
\(901\) −0.997023 −0.0332156
\(902\) 0 0
\(903\) 3.08760 0.102749
\(904\) 0 0
\(905\) 65.7208 2.18463
\(906\) 0 0
\(907\) −28.1132 −0.933483 −0.466742 0.884394i \(-0.654572\pi\)
−0.466742 + 0.884394i \(0.654572\pi\)
\(908\) 0 0
\(909\) −31.9786 −1.06066
\(910\) 0 0
\(911\) −15.9013 −0.526832 −0.263416 0.964682i \(-0.584849\pi\)
−0.263416 + 0.964682i \(0.584849\pi\)
\(912\) 0 0
\(913\) 60.8701 2.01451
\(914\) 0 0
\(915\) −36.4113 −1.20372
\(916\) 0 0
\(917\) 14.5121 0.479233
\(918\) 0 0
\(919\) 39.1422 1.29118 0.645590 0.763684i \(-0.276611\pi\)
0.645590 + 0.763684i \(0.276611\pi\)
\(920\) 0 0
\(921\) 18.6736 0.615316
\(922\) 0 0
\(923\) −5.82736 −0.191810
\(924\) 0 0
\(925\) 59.4349 1.95421
\(926\) 0 0
\(927\) −50.4592 −1.65730
\(928\) 0 0
\(929\) −7.98651 −0.262029 −0.131014 0.991380i \(-0.541823\pi\)
−0.131014 + 0.991380i \(0.541823\pi\)
\(930\) 0 0
\(931\) 22.9012 0.750557
\(932\) 0 0
\(933\) −30.3043 −0.992118
\(934\) 0 0
\(935\) 25.9082 0.847289
\(936\) 0 0
\(937\) 34.7086 1.13388 0.566940 0.823759i \(-0.308127\pi\)
0.566940 + 0.823759i \(0.308127\pi\)
\(938\) 0 0
\(939\) −18.2729 −0.596314
\(940\) 0 0
\(941\) −53.8431 −1.75523 −0.877617 0.479363i \(-0.840868\pi\)
−0.877617 + 0.479363i \(0.840868\pi\)
\(942\) 0 0
\(943\) 19.7873 0.644364
\(944\) 0 0
\(945\) 11.5127 0.374509
\(946\) 0 0
\(947\) −47.5710 −1.54585 −0.772924 0.634498i \(-0.781207\pi\)
−0.772924 + 0.634498i \(0.781207\pi\)
\(948\) 0 0
\(949\) −20.0402 −0.650533
\(950\) 0 0
\(951\) −9.36890 −0.303807
\(952\) 0 0
\(953\) −30.1998 −0.978269 −0.489134 0.872209i \(-0.662687\pi\)
−0.489134 + 0.872209i \(0.662687\pi\)
\(954\) 0 0
\(955\) −13.3709 −0.432673
\(956\) 0 0
\(957\) 73.0072 2.35999
\(958\) 0 0
\(959\) −19.9179 −0.643183
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 65.9938 2.12662
\(964\) 0 0
\(965\) 69.3722 2.23317
\(966\) 0 0
\(967\) −58.6042 −1.88458 −0.942291 0.334794i \(-0.891333\pi\)
−0.942291 + 0.334794i \(0.891333\pi\)
\(968\) 0 0
\(969\) 21.6528 0.695588
\(970\) 0 0
\(971\) 31.8164 1.02104 0.510518 0.859867i \(-0.329454\pi\)
0.510518 + 0.859867i \(0.329454\pi\)
\(972\) 0 0
\(973\) −6.80441 −0.218139
\(974\) 0 0
\(975\) 63.7867 2.04281
\(976\) 0 0
\(977\) −36.3440 −1.16275 −0.581373 0.813637i \(-0.697484\pi\)
−0.581373 + 0.813637i \(0.697484\pi\)
\(978\) 0 0
\(979\) 5.04635 0.161282
\(980\) 0 0
\(981\) −89.7055 −2.86408
\(982\) 0 0
\(983\) −27.9326 −0.890912 −0.445456 0.895304i \(-0.646958\pi\)
−0.445456 + 0.895304i \(0.646958\pi\)
\(984\) 0 0
\(985\) 28.9250 0.921629
\(986\) 0 0
\(987\) 16.0379 0.510492
\(988\) 0 0
\(989\) −7.23204 −0.229965
\(990\) 0 0
\(991\) −0.464524 −0.0147561 −0.00737805 0.999973i \(-0.502349\pi\)
−0.00737805 + 0.999973i \(0.502349\pi\)
\(992\) 0 0
\(993\) 21.1687 0.671768
\(994\) 0 0
\(995\) 26.8661 0.851712
\(996\) 0 0
\(997\) −21.4503 −0.679338 −0.339669 0.940545i \(-0.610315\pi\)
−0.339669 + 0.940545i \(0.610315\pi\)
\(998\) 0 0
\(999\) 41.4071 1.31006
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.z.1.3 4
4.3 odd 2 1984.2.a.y.1.1 4
8.3 odd 2 992.2.a.f.1.4 yes 4
8.5 even 2 992.2.a.e.1.2 4
24.5 odd 2 8928.2.a.bm.1.1 4
24.11 even 2 8928.2.a.bn.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.e.1.2 4 8.5 even 2
992.2.a.f.1.4 yes 4 8.3 odd 2
1984.2.a.y.1.1 4 4.3 odd 2
1984.2.a.z.1.3 4 1.1 even 1 trivial
8928.2.a.bm.1.1 4 24.5 odd 2
8928.2.a.bn.1.1 4 24.11 even 2