Properties

Label 198.3.j.b.127.2
Level $198$
Weight $3$
Character 198.127
Analytic conductor $5.395$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,3,Mod(19,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 198.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39510923433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 127.2
Root \(1.13551 + 1.56290i\) of defining polynomial
Character \(\chi\) \(=\) 198.127
Dual form 198.3.j.b.145.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34500 + 0.437016i) q^{2} +(1.61803 - 1.17557i) q^{4} +(-0.109202 + 0.336090i) q^{5} +(0.464787 + 0.639725i) q^{7} +(-1.66251 + 2.28825i) q^{8} -0.499764i q^{10} +(10.9281 + 1.25540i) q^{11} +(0.198988 - 0.0646551i) q^{13} +(-0.904708 - 0.657309i) q^{14} +(1.23607 - 3.80423i) q^{16} +(14.2369 + 4.62586i) q^{17} +(-1.27522 + 1.75519i) q^{19} +(0.218405 + 0.672180i) q^{20} +(-15.2469 + 3.08725i) q^{22} +24.1342 q^{23} +(20.1244 + 14.6212i) q^{25} +(-0.239383 + 0.173922i) q^{26} +(1.50408 + 0.488706i) q^{28} +(10.4767 + 14.4199i) q^{29} +(10.4564 + 32.1814i) q^{31} +5.65685i q^{32} -21.1702 q^{34} +(-0.265761 + 0.0863510i) q^{35} +(48.6102 - 35.3174i) q^{37} +(0.948120 - 2.91801i) q^{38} +(-0.587507 - 0.808634i) q^{40} +(-31.4796 + 43.3280i) q^{41} +15.5727i q^{43} +(19.1579 - 10.8155i) q^{44} +(-32.4604 + 10.5470i) q^{46} +(-49.4759 - 35.9463i) q^{47} +(14.9486 - 46.0071i) q^{49} +(-33.4570 - 10.8708i) q^{50} +(0.245962 - 0.338538i) q^{52} +(-18.2219 - 56.0812i) q^{53} +(-1.61531 + 3.53574i) q^{55} -2.23656 q^{56} +(-20.3928 - 14.8163i) q^{58} +(-41.6528 + 30.2625i) q^{59} +(38.7576 + 12.5931i) q^{61} +(-28.1276 - 38.7143i) q^{62} +(-2.47214 - 7.60845i) q^{64} +0.0739383i q^{65} -72.9302 q^{67} +(28.4739 - 9.25172i) q^{68} +(0.319711 - 0.232284i) q^{70} +(29.3727 - 90.3998i) q^{71} +(-66.7272 - 91.8421i) q^{73} +(-49.9464 + 68.7453i) q^{74} +4.33906i q^{76} +(4.27614 + 7.57449i) q^{77} +(-139.926 + 45.4646i) q^{79} +(1.14358 + 0.830861i) q^{80} +(23.4050 - 72.0331i) q^{82} +(18.9025 + 6.14179i) q^{83} +(-3.10941 + 4.27974i) q^{85} +(-6.80554 - 20.9453i) q^{86} +(-21.0408 + 22.9191i) q^{88} +74.9710 q^{89} +(0.133848 + 0.0972466i) q^{91} +(39.0499 - 28.3714i) q^{92} +(82.2540 + 26.7260i) q^{94} +(-0.450645 - 0.620259i) q^{95} +(31.3671 + 96.5379i) q^{97} +68.4122i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 8 q^{5} + 60 q^{7} + 4 q^{11} - 60 q^{13} + 32 q^{14} - 16 q^{16} + 60 q^{17} + 16 q^{20} - 48 q^{22} + 8 q^{23} - 48 q^{25} - 48 q^{26} + 40 q^{28} + 160 q^{29} + 32 q^{31} - 64 q^{34}+ \cdots + 324 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 + 0.437016i −0.672499 + 0.218508i
\(3\) 0 0
\(4\) 1.61803 1.17557i 0.404508 0.293893i
\(5\) −0.109202 + 0.336090i −0.0218405 + 0.0672180i −0.961383 0.275215i \(-0.911251\pi\)
0.939542 + 0.342433i \(0.111251\pi\)
\(6\) 0 0
\(7\) 0.464787 + 0.639725i 0.0663982 + 0.0913893i 0.840925 0.541152i \(-0.182012\pi\)
−0.774526 + 0.632542i \(0.782012\pi\)
\(8\) −1.66251 + 2.28825i −0.207813 + 0.286031i
\(9\) 0 0
\(10\) 0.499764i 0.0499764i
\(11\) 10.9281 + 1.25540i 0.993466 + 0.114128i
\(12\) 0 0
\(13\) 0.198988 0.0646551i 0.0153068 0.00497347i −0.301354 0.953512i \(-0.597438\pi\)
0.316660 + 0.948539i \(0.397438\pi\)
\(14\) −0.904708 0.657309i −0.0646220 0.0469506i
\(15\) 0 0
\(16\) 1.23607 3.80423i 0.0772542 0.237764i
\(17\) 14.2369 + 4.62586i 0.837467 + 0.272109i 0.696187 0.717860i \(-0.254878\pi\)
0.141280 + 0.989970i \(0.454878\pi\)
\(18\) 0 0
\(19\) −1.27522 + 1.75519i −0.0671168 + 0.0923783i −0.841256 0.540637i \(-0.818183\pi\)
0.774139 + 0.633016i \(0.218183\pi\)
\(20\) 0.218405 + 0.672180i 0.0109202 + 0.0336090i
\(21\) 0 0
\(22\) −15.2469 + 3.08725i −0.693042 + 0.140330i
\(23\) 24.1342 1.04931 0.524656 0.851314i \(-0.324194\pi\)
0.524656 + 0.851314i \(0.324194\pi\)
\(24\) 0 0
\(25\) 20.1244 + 14.6212i 0.804976 + 0.584849i
\(26\) −0.239383 + 0.173922i −0.00920703 + 0.00668930i
\(27\) 0 0
\(28\) 1.50408 + 0.488706i 0.0537173 + 0.0174538i
\(29\) 10.4767 + 14.4199i 0.361265 + 0.497239i 0.950501 0.310723i \(-0.100571\pi\)
−0.589236 + 0.807961i \(0.700571\pi\)
\(30\) 0 0
\(31\) 10.4564 + 32.1814i 0.337303 + 1.03811i 0.965577 + 0.260119i \(0.0837616\pi\)
−0.628274 + 0.777992i \(0.716238\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −21.1702 −0.622653
\(35\) −0.265761 + 0.0863510i −0.00759318 + 0.00246717i
\(36\) 0 0
\(37\) 48.6102 35.3174i 1.31379 0.954524i 0.313803 0.949488i \(-0.398397\pi\)
0.999987 0.00503636i \(-0.00160313\pi\)
\(38\) 0.948120 2.91801i 0.0249505 0.0767899i
\(39\) 0 0
\(40\) −0.587507 0.808634i −0.0146877 0.0202159i
\(41\) −31.4796 + 43.3280i −0.767796 + 1.05678i 0.228729 + 0.973490i \(0.426543\pi\)
−0.996525 + 0.0832904i \(0.973457\pi\)
\(42\) 0 0
\(43\) 15.5727i 0.362157i 0.983469 + 0.181078i \(0.0579588\pi\)
−0.983469 + 0.181078i \(0.942041\pi\)
\(44\) 19.1579 10.8155i 0.435407 0.245807i
\(45\) 0 0
\(46\) −32.4604 + 10.5470i −0.705661 + 0.229283i
\(47\) −49.4759 35.9463i −1.05268 0.764816i −0.0799585 0.996798i \(-0.525479\pi\)
−0.972720 + 0.231983i \(0.925479\pi\)
\(48\) 0 0
\(49\) 14.9486 46.0071i 0.305074 0.938920i
\(50\) −33.4570 10.8708i −0.669139 0.217417i
\(51\) 0 0
\(52\) 0.245962 0.338538i 0.00473005 0.00651035i
\(53\) −18.2219 56.0812i −0.343809 1.05814i −0.962218 0.272280i \(-0.912222\pi\)
0.618409 0.785857i \(-0.287778\pi\)
\(54\) 0 0
\(55\) −1.61531 + 3.53574i −0.0293692 + 0.0642863i
\(56\) −2.23656 −0.0399386
\(57\) 0 0
\(58\) −20.3928 14.8163i −0.351601 0.255453i
\(59\) −41.6528 + 30.2625i −0.705980 + 0.512924i −0.881874 0.471485i \(-0.843718\pi\)
0.175894 + 0.984409i \(0.443718\pi\)
\(60\) 0 0
\(61\) 38.7576 + 12.5931i 0.635371 + 0.206445i 0.608953 0.793206i \(-0.291590\pi\)
0.0264182 + 0.999651i \(0.491590\pi\)
\(62\) −28.1276 38.7143i −0.453671 0.624425i
\(63\) 0 0
\(64\) −2.47214 7.60845i −0.0386271 0.118882i
\(65\) 0.0739383i 0.00113751i
\(66\) 0 0
\(67\) −72.9302 −1.08851 −0.544255 0.838920i \(-0.683188\pi\)
−0.544255 + 0.838920i \(0.683188\pi\)
\(68\) 28.4739 9.25172i 0.418733 0.136055i
\(69\) 0 0
\(70\) 0.319711 0.232284i 0.00456730 0.00331834i
\(71\) 29.3727 90.3998i 0.413700 1.27324i −0.499709 0.866193i \(-0.666560\pi\)
0.913409 0.407043i \(-0.133440\pi\)
\(72\) 0 0
\(73\) −66.7272 91.8421i −0.914071 1.25811i −0.965757 0.259448i \(-0.916459\pi\)
0.0516858 0.998663i \(-0.483541\pi\)
\(74\) −49.9464 + 68.7453i −0.674951 + 0.928990i
\(75\) 0 0
\(76\) 4.33906i 0.0570930i
\(77\) 4.27614 + 7.57449i 0.0555343 + 0.0983700i
\(78\) 0 0
\(79\) −139.926 + 45.4646i −1.77121 + 0.575502i −0.998260 0.0589621i \(-0.981221\pi\)
−0.772952 + 0.634464i \(0.781221\pi\)
\(80\) 1.14358 + 0.830861i 0.0142948 + 0.0103858i
\(81\) 0 0
\(82\) 23.4050 72.0331i 0.285427 0.878453i
\(83\) 18.9025 + 6.14179i 0.227741 + 0.0739974i 0.420664 0.907216i \(-0.361797\pi\)
−0.192924 + 0.981214i \(0.561797\pi\)
\(84\) 0 0
\(85\) −3.10941 + 4.27974i −0.0365813 + 0.0503499i
\(86\) −6.80554 20.9453i −0.0791342 0.243550i
\(87\) 0 0
\(88\) −21.0408 + 22.9191i −0.239100 + 0.260445i
\(89\) 74.9710 0.842371 0.421185 0.906975i \(-0.361614\pi\)
0.421185 + 0.906975i \(0.361614\pi\)
\(90\) 0 0
\(91\) 0.133848 + 0.0972466i 0.00147086 + 0.00106864i
\(92\) 39.0499 28.3714i 0.424456 0.308385i
\(93\) 0 0
\(94\) 82.2540 + 26.7260i 0.875043 + 0.284319i
\(95\) −0.450645 0.620259i −0.00474363 0.00652905i
\(96\) 0 0
\(97\) 31.3671 + 96.5379i 0.323372 + 0.995236i 0.972170 + 0.234276i \(0.0752719\pi\)
−0.648798 + 0.760960i \(0.724728\pi\)
\(98\) 68.4122i 0.698084i
\(99\) 0 0
\(100\) 49.7502 0.497502
\(101\) −24.8088 + 8.06086i −0.245631 + 0.0798105i −0.429245 0.903188i \(-0.641220\pi\)
0.183614 + 0.982998i \(0.441220\pi\)
\(102\) 0 0
\(103\) 25.5133 18.5365i 0.247702 0.179966i −0.457006 0.889464i \(-0.651078\pi\)
0.704708 + 0.709498i \(0.251078\pi\)
\(104\) −0.182872 + 0.562823i −0.00175839 + 0.00541175i
\(105\) 0 0
\(106\) 49.0168 + 67.4658i 0.462423 + 0.636470i
\(107\) −47.3389 + 65.1565i −0.442420 + 0.608939i −0.970748 0.240102i \(-0.922819\pi\)
0.528328 + 0.849040i \(0.322819\pi\)
\(108\) 0 0
\(109\) 32.1811i 0.295239i −0.989044 0.147620i \(-0.952839\pi\)
0.989044 0.147620i \(-0.0471612\pi\)
\(110\) 0.627405 5.46148i 0.00570368 0.0496498i
\(111\) 0 0
\(112\) 3.00817 0.977413i 0.0268586 0.00872690i
\(113\) −23.6264 17.1656i −0.209083 0.151908i 0.478315 0.878188i \(-0.341248\pi\)
−0.687399 + 0.726280i \(0.741248\pi\)
\(114\) 0 0
\(115\) −2.63551 + 8.11126i −0.0229175 + 0.0705327i
\(116\) 33.9033 + 11.0158i 0.292270 + 0.0949641i
\(117\) 0 0
\(118\) 42.7977 58.9060i 0.362692 0.499203i
\(119\) 3.65787 + 11.2578i 0.0307384 + 0.0946031i
\(120\) 0 0
\(121\) 117.848 + 27.4384i 0.973950 + 0.226764i
\(122\) −57.6323 −0.472396
\(123\) 0 0
\(124\) 54.7503 + 39.7784i 0.441535 + 0.320794i
\(125\) −14.2591 + 10.3598i −0.114073 + 0.0828786i
\(126\) 0 0
\(127\) 141.757 + 46.0595i 1.11619 + 0.362673i 0.808314 0.588752i \(-0.200380\pi\)
0.307880 + 0.951425i \(0.400380\pi\)
\(128\) 6.65003 + 9.15298i 0.0519534 + 0.0715077i
\(129\) 0 0
\(130\) −0.0323122 0.0994468i −0.000248556 0.000764976i
\(131\) 165.965i 1.26691i 0.773780 + 0.633454i \(0.218364\pi\)
−0.773780 + 0.633454i \(0.781636\pi\)
\(132\) 0 0
\(133\) −1.71554 −0.0128988
\(134\) 98.0909 31.8717i 0.732021 0.237848i
\(135\) 0 0
\(136\) −34.2541 + 24.8871i −0.251869 + 0.182993i
\(137\) 45.3846 139.680i 0.331275 1.01956i −0.637253 0.770654i \(-0.719930\pi\)
0.968528 0.248904i \(-0.0800705\pi\)
\(138\) 0 0
\(139\) −125.653 172.947i −0.903982 1.24422i −0.969180 0.246352i \(-0.920768\pi\)
0.0651984 0.997872i \(-0.479232\pi\)
\(140\) −0.328499 + 0.452140i −0.00234642 + 0.00322957i
\(141\) 0 0
\(142\) 134.424i 0.946646i
\(143\) 2.25573 0.456749i 0.0157744 0.00319405i
\(144\) 0 0
\(145\) −5.99047 + 1.94642i −0.0413136 + 0.0134236i
\(146\) 129.884 + 94.3665i 0.889619 + 0.646346i
\(147\) 0 0
\(148\) 37.1349 114.290i 0.250912 0.772227i
\(149\) 219.924 + 71.4578i 1.47600 + 0.479582i 0.932916 0.360094i \(-0.117255\pi\)
0.543087 + 0.839677i \(0.317255\pi\)
\(150\) 0 0
\(151\) −156.589 + 215.527i −1.03701 + 1.42733i −0.137467 + 0.990506i \(0.543896\pi\)
−0.899548 + 0.436822i \(0.856104\pi\)
\(152\) −1.89624 5.83603i −0.0124753 0.0383949i
\(153\) 0 0
\(154\) −9.06157 8.31893i −0.0588414 0.0540190i
\(155\) −11.9577 −0.0771466
\(156\) 0 0
\(157\) 84.3629 + 61.2933i 0.537344 + 0.390403i 0.823098 0.567900i \(-0.192244\pi\)
−0.285754 + 0.958303i \(0.592244\pi\)
\(158\) 168.331 122.300i 1.06539 0.774048i
\(159\) 0 0
\(160\) −1.90121 0.617742i −0.0118826 0.00386089i
\(161\) 11.2173 + 15.4392i 0.0696724 + 0.0958959i
\(162\) 0 0
\(163\) −86.4221 265.980i −0.530197 1.63178i −0.753804 0.657099i \(-0.771783\pi\)
0.223607 0.974679i \(-0.428217\pi\)
\(164\) 107.113i 0.653126i
\(165\) 0 0
\(166\) −28.1078 −0.169324
\(167\) −244.370 + 79.4006i −1.46329 + 0.475453i −0.929074 0.369893i \(-0.879394\pi\)
−0.534219 + 0.845346i \(0.679394\pi\)
\(168\) 0 0
\(169\) −136.688 + 99.3100i −0.808807 + 0.587633i
\(170\) 2.31184 7.11510i 0.0135990 0.0418535i
\(171\) 0 0
\(172\) 18.3069 + 25.1972i 0.106435 + 0.146496i
\(173\) 64.7673 89.1445i 0.374377 0.515286i −0.579707 0.814825i \(-0.696833\pi\)
0.954084 + 0.299539i \(0.0968329\pi\)
\(174\) 0 0
\(175\) 19.6698i 0.112399i
\(176\) 18.2837 40.0213i 0.103885 0.227394i
\(177\) 0 0
\(178\) −100.836 + 32.7635i −0.566493 + 0.184065i
\(179\) 21.9460 + 15.9447i 0.122603 + 0.0890764i 0.647397 0.762153i \(-0.275858\pi\)
−0.524794 + 0.851229i \(0.675858\pi\)
\(180\) 0 0
\(181\) 80.2120 246.867i 0.443160 1.36391i −0.441329 0.897345i \(-0.645493\pi\)
0.884489 0.466561i \(-0.154507\pi\)
\(182\) −0.222524 0.0723025i −0.00122266 0.000397266i
\(183\) 0 0
\(184\) −40.1233 + 55.2249i −0.218061 + 0.300135i
\(185\) 6.56148 + 20.1942i 0.0354675 + 0.109158i
\(186\) 0 0
\(187\) 149.776 + 68.4251i 0.800940 + 0.365910i
\(188\) −122.311 −0.650591
\(189\) 0 0
\(190\) 0.877179 + 0.637308i 0.00461673 + 0.00335425i
\(191\) −100.951 + 73.3452i −0.528539 + 0.384006i −0.819811 0.572634i \(-0.805922\pi\)
0.291272 + 0.956640i \(0.405922\pi\)
\(192\) 0 0
\(193\) 39.9341 + 12.9754i 0.206912 + 0.0672299i 0.410639 0.911798i \(-0.365306\pi\)
−0.203727 + 0.979028i \(0.565306\pi\)
\(194\) −84.3772 116.135i −0.434934 0.598635i
\(195\) 0 0
\(196\) −29.8972 92.0142i −0.152537 0.469460i
\(197\) 274.338i 1.39258i −0.717760 0.696290i \(-0.754833\pi\)
0.717760 0.696290i \(-0.245167\pi\)
\(198\) 0 0
\(199\) −150.979 −0.758690 −0.379345 0.925255i \(-0.623851\pi\)
−0.379345 + 0.925255i \(0.623851\pi\)
\(200\) −66.9139 + 21.7417i −0.334570 + 0.108708i
\(201\) 0 0
\(202\) 29.8450 21.6837i 0.147748 0.107345i
\(203\) −4.35535 + 13.4044i −0.0214549 + 0.0660315i
\(204\) 0 0
\(205\) −11.1245 15.3115i −0.0542657 0.0746903i
\(206\) −26.2146 + 36.0813i −0.127255 + 0.175152i
\(207\) 0 0
\(208\) 0.836913i 0.00402362i
\(209\) −16.1392 + 17.5800i −0.0772212 + 0.0841149i
\(210\) 0 0
\(211\) −17.7693 + 5.77360i −0.0842147 + 0.0273630i −0.350821 0.936442i \(-0.614098\pi\)
0.266607 + 0.963805i \(0.414098\pi\)
\(212\) −95.4111 69.3202i −0.450052 0.326982i
\(213\) 0 0
\(214\) 35.1963 108.323i 0.164469 0.506183i
\(215\) −5.23385 1.70058i −0.0243435 0.00790968i
\(216\) 0 0
\(217\) −15.7273 + 21.6467i −0.0724759 + 0.0997545i
\(218\) 14.0637 + 43.2835i 0.0645122 + 0.198548i
\(219\) 0 0
\(220\) 1.54290 + 7.61986i 0.00701317 + 0.0346357i
\(221\) 3.13206 0.0141722
\(222\) 0 0
\(223\) 76.2747 + 55.4168i 0.342039 + 0.248506i 0.745522 0.666481i \(-0.232200\pi\)
−0.403483 + 0.914987i \(0.632200\pi\)
\(224\) −3.61883 + 2.62923i −0.0161555 + 0.0117377i
\(225\) 0 0
\(226\) 39.2791 + 12.7626i 0.173801 + 0.0564715i
\(227\) −170.335 234.446i −0.750374 1.03280i −0.997954 0.0639340i \(-0.979635\pi\)
0.247580 0.968867i \(-0.420365\pi\)
\(228\) 0 0
\(229\) −70.5265 217.058i −0.307976 0.947852i −0.978550 0.206010i \(-0.933952\pi\)
0.670574 0.741843i \(-0.266048\pi\)
\(230\) 12.0614i 0.0524408i
\(231\) 0 0
\(232\) −50.4139 −0.217301
\(233\) −284.201 + 92.3427i −1.21975 + 0.396320i −0.846990 0.531608i \(-0.821588\pi\)
−0.372758 + 0.927928i \(0.621588\pi\)
\(234\) 0 0
\(235\) 17.4841 12.7029i 0.0744004 0.0540551i
\(236\) −31.8199 + 97.9317i −0.134830 + 0.414965i
\(237\) 0 0
\(238\) −9.83965 13.5431i −0.0413431 0.0569038i
\(239\) 144.554 198.961i 0.604827 0.832473i −0.391313 0.920258i \(-0.627979\pi\)
0.996139 + 0.0877850i \(0.0279789\pi\)
\(240\) 0 0
\(241\) 373.418i 1.54945i 0.632297 + 0.774726i \(0.282112\pi\)
−0.632297 + 0.774726i \(0.717888\pi\)
\(242\) −170.496 + 14.5969i −0.704529 + 0.0603176i
\(243\) 0 0
\(244\) 77.5153 25.1862i 0.317686 0.103222i
\(245\) 13.8301 + 10.0482i 0.0564494 + 0.0410129i
\(246\) 0 0
\(247\) −0.140271 + 0.431710i −0.000567900 + 0.00174782i
\(248\) −91.0228 29.5751i −0.367028 0.119254i
\(249\) 0 0
\(250\) 14.6510 20.1654i 0.0586040 0.0806615i
\(251\) 111.067 + 341.831i 0.442500 + 1.36187i 0.885202 + 0.465206i \(0.154020\pi\)
−0.442702 + 0.896669i \(0.645980\pi\)
\(252\) 0 0
\(253\) 263.741 + 30.2981i 1.04246 + 0.119755i
\(254\) −210.791 −0.829886
\(255\) 0 0
\(256\) −12.9443 9.40456i −0.0505636 0.0367366i
\(257\) −28.9501 + 21.0334i −0.112646 + 0.0818422i −0.642682 0.766133i \(-0.722178\pi\)
0.530036 + 0.847975i \(0.322178\pi\)
\(258\) 0 0
\(259\) 45.1869 + 14.6821i 0.174467 + 0.0566876i
\(260\) 0.0869197 + 0.119635i 0.000334307 + 0.000460134i
\(261\) 0 0
\(262\) −72.5294 223.222i −0.276830 0.851994i
\(263\) 364.668i 1.38657i −0.720663 0.693286i \(-0.756162\pi\)
0.720663 0.693286i \(-0.243838\pi\)
\(264\) 0 0
\(265\) 20.8382 0.0786348
\(266\) 2.30740 0.749720i 0.00867444 0.00281850i
\(267\) 0 0
\(268\) −118.004 + 85.7346i −0.440312 + 0.319905i
\(269\) 4.13369 12.7222i 0.0153669 0.0472944i −0.943079 0.332569i \(-0.892085\pi\)
0.958446 + 0.285274i \(0.0920847\pi\)
\(270\) 0 0
\(271\) 41.6402 + 57.3128i 0.153654 + 0.211486i 0.878904 0.477000i \(-0.158276\pi\)
−0.725250 + 0.688486i \(0.758276\pi\)
\(272\) 35.1956 48.4426i 0.129396 0.178098i
\(273\) 0 0
\(274\) 207.702i 0.758038i
\(275\) 201.566 + 185.047i 0.732969 + 0.672898i
\(276\) 0 0
\(277\) −75.4632 + 24.5195i −0.272430 + 0.0885179i −0.442046 0.896992i \(-0.645747\pi\)
0.169616 + 0.985510i \(0.445747\pi\)
\(278\) 244.584 + 177.701i 0.879800 + 0.639212i
\(279\) 0 0
\(280\) 0.244238 0.751686i 0.000872277 0.00268459i
\(281\) 326.300 + 106.021i 1.16121 + 0.377300i 0.825355 0.564614i \(-0.190975\pi\)
0.335854 + 0.941914i \(0.390975\pi\)
\(282\) 0 0
\(283\) −70.3457 + 96.8225i −0.248571 + 0.342129i −0.915010 0.403430i \(-0.867818\pi\)
0.666439 + 0.745560i \(0.267818\pi\)
\(284\) −58.7453 180.800i −0.206850 0.636618i
\(285\) 0 0
\(286\) −2.83435 + 1.60012i −0.00991030 + 0.00559481i
\(287\) −42.3493 −0.147559
\(288\) 0 0
\(289\) −52.5141 38.1538i −0.181710 0.132020i
\(290\) 7.20655 5.23586i 0.0248502 0.0180547i
\(291\) 0 0
\(292\) −215.934 70.1611i −0.739499 0.240278i
\(293\) −6.76900 9.31673i −0.0231024 0.0317977i 0.797310 0.603571i \(-0.206256\pi\)
−0.820412 + 0.571773i \(0.806256\pi\)
\(294\) 0 0
\(295\) −5.62236 17.3038i −0.0190588 0.0586571i
\(296\) 169.948i 0.574147i
\(297\) 0 0
\(298\) −327.026 −1.09740
\(299\) 4.80241 1.56040i 0.0160616 0.00521872i
\(300\) 0 0
\(301\) −9.96228 + 7.23802i −0.0330973 + 0.0240466i
\(302\) 116.423 358.315i 0.385508 1.18647i
\(303\) 0 0
\(304\) 5.10088 + 7.02075i 0.0167792 + 0.0230946i
\(305\) −8.46485 + 11.6509i −0.0277536 + 0.0381996i
\(306\) 0 0
\(307\) 196.858i 0.641231i −0.947210 0.320615i \(-0.896110\pi\)
0.947210 0.320615i \(-0.103890\pi\)
\(308\) 15.8233 + 7.22888i 0.0513743 + 0.0234704i
\(309\) 0 0
\(310\) 16.0831 5.22572i 0.0518810 0.0168572i
\(311\) 218.771 + 158.946i 0.703443 + 0.511082i 0.881052 0.473020i \(-0.156836\pi\)
−0.177608 + 0.984101i \(0.556836\pi\)
\(312\) 0 0
\(313\) 106.490 327.743i 0.340224 1.04710i −0.623867 0.781531i \(-0.714439\pi\)
0.964091 0.265572i \(-0.0855608\pi\)
\(314\) −140.254 45.5713i −0.446669 0.145132i
\(315\) 0 0
\(316\) −172.958 + 238.056i −0.547335 + 0.753342i
\(317\) −20.2627 62.3621i −0.0639201 0.196726i 0.913996 0.405723i \(-0.132980\pi\)
−0.977916 + 0.208997i \(0.932980\pi\)
\(318\) 0 0
\(319\) 96.3877 + 170.735i 0.302156 + 0.535220i
\(320\) 2.82709 0.00883465
\(321\) 0 0
\(322\) −21.8344 15.8636i −0.0678086 0.0492659i
\(323\) −26.2745 + 19.0895i −0.0813451 + 0.0591007i
\(324\) 0 0
\(325\) 4.94985 + 1.60830i 0.0152303 + 0.00494862i
\(326\) 232.475 + 319.974i 0.713113 + 0.981516i
\(327\) 0 0
\(328\) −46.8100 144.066i −0.142713 0.439226i
\(329\) 48.3584i 0.146986i
\(330\) 0 0
\(331\) 105.818 0.319693 0.159847 0.987142i \(-0.448900\pi\)
0.159847 + 0.987142i \(0.448900\pi\)
\(332\) 37.8050 12.2836i 0.113870 0.0369987i
\(333\) 0 0
\(334\) 293.978 213.587i 0.880172 0.639483i
\(335\) 7.96415 24.5111i 0.0237736 0.0731675i
\(336\) 0 0
\(337\) 132.617 + 182.531i 0.393521 + 0.541635i 0.959103 0.283057i \(-0.0913485\pi\)
−0.565582 + 0.824692i \(0.691348\pi\)
\(338\) 140.446 193.307i 0.415519 0.571913i
\(339\) 0 0
\(340\) 10.5801i 0.0311179i
\(341\) 73.8680 + 364.810i 0.216622 + 1.06982i
\(342\) 0 0
\(343\) 73.2299 23.7938i 0.213498 0.0693698i
\(344\) −35.6343 25.8898i −0.103588 0.0752611i
\(345\) 0 0
\(346\) −48.1542 + 148.203i −0.139174 + 0.428334i
\(347\) −128.933 41.8930i −0.371566 0.120729i 0.117281 0.993099i \(-0.462582\pi\)
−0.488847 + 0.872370i \(0.662582\pi\)
\(348\) 0 0
\(349\) 293.983 404.633i 0.842358 1.15941i −0.143137 0.989703i \(-0.545719\pi\)
0.985495 0.169704i \(-0.0542811\pi\)
\(350\) −8.59603 26.4559i −0.0245601 0.0755882i
\(351\) 0 0
\(352\) −7.10163 + 61.8188i −0.0201751 + 0.175622i
\(353\) −320.592 −0.908192 −0.454096 0.890953i \(-0.650038\pi\)
−0.454096 + 0.890953i \(0.650038\pi\)
\(354\) 0 0
\(355\) 27.1749 + 19.7437i 0.0765491 + 0.0556162i
\(356\) 121.306 88.1337i 0.340746 0.247567i
\(357\) 0 0
\(358\) −36.4853 11.8548i −0.101914 0.0331140i
\(359\) −66.6745 91.7696i −0.185723 0.255626i 0.705996 0.708216i \(-0.250500\pi\)
−0.891718 + 0.452591i \(0.850500\pi\)
\(360\) 0 0
\(361\) 110.101 + 338.855i 0.304988 + 0.938656i
\(362\) 367.089i 1.01406i
\(363\) 0 0
\(364\) 0.330892 0.000909043
\(365\) 38.1540 12.3970i 0.104532 0.0339644i
\(366\) 0 0
\(367\) −72.4621 + 52.6468i −0.197444 + 0.143452i −0.682115 0.731245i \(-0.738940\pi\)
0.484670 + 0.874697i \(0.338940\pi\)
\(368\) 29.8315 91.8119i 0.0810638 0.249489i
\(369\) 0 0
\(370\) −17.6504 24.2936i −0.0477037 0.0656584i
\(371\) 27.4073 37.7228i 0.0738740 0.101679i
\(372\) 0 0
\(373\) 275.552i 0.738744i −0.929282 0.369372i \(-0.879573\pi\)
0.929282 0.369372i \(-0.120427\pi\)
\(374\) −231.351 26.5771i −0.618585 0.0710619i
\(375\) 0 0
\(376\) 164.508 53.4519i 0.437522 0.142159i
\(377\) 3.01705 + 2.19202i 0.00800279 + 0.00581437i
\(378\) 0 0
\(379\) −54.2463 + 166.953i −0.143130 + 0.440509i −0.996766 0.0803612i \(-0.974393\pi\)
0.853636 + 0.520871i \(0.174393\pi\)
\(380\) −1.45832 0.473836i −0.00383768 0.00124694i
\(381\) 0 0
\(382\) 103.726 142.766i 0.271533 0.373733i
\(383\) 15.8151 + 48.6740i 0.0412928 + 0.127086i 0.969578 0.244783i \(-0.0787169\pi\)
−0.928285 + 0.371870i \(0.878717\pi\)
\(384\) 0 0
\(385\) −3.01268 + 0.610018i −0.00782514 + 0.00158446i
\(386\) −59.3817 −0.153838
\(387\) 0 0
\(388\) 164.240 + 119.327i 0.423299 + 0.307545i
\(389\) −18.5317 + 13.4641i −0.0476393 + 0.0346120i −0.611350 0.791360i \(-0.709373\pi\)
0.563711 + 0.825972i \(0.309373\pi\)
\(390\) 0 0
\(391\) 343.597 + 111.641i 0.878764 + 0.285528i
\(392\) 80.4234 + 110.693i 0.205162 + 0.282381i
\(393\) 0 0
\(394\) 119.890 + 368.984i 0.304290 + 0.936509i
\(395\) 51.9925i 0.131627i
\(396\) 0 0
\(397\) 131.054 0.330112 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(398\) 203.067 65.9804i 0.510218 0.165780i
\(399\) 0 0
\(400\) 80.4976 58.4849i 0.201244 0.146212i
\(401\) −239.751 + 737.877i −0.597882 + 1.84009i −0.0580587 + 0.998313i \(0.518491\pi\)
−0.539823 + 0.841778i \(0.681509\pi\)
\(402\) 0 0
\(403\) 4.16138 + 5.72765i 0.0103260 + 0.0142125i
\(404\) −30.6653 + 42.2072i −0.0759043 + 0.104473i
\(405\) 0 0
\(406\) 19.9322i 0.0490942i
\(407\) 575.556 324.928i 1.41414 0.798348i
\(408\) 0 0
\(409\) −710.800 + 230.953i −1.73790 + 0.564677i −0.994553 0.104232i \(-0.966762\pi\)
−0.743345 + 0.668909i \(0.766762\pi\)
\(410\) 21.6538 + 15.7324i 0.0528140 + 0.0383716i
\(411\) 0 0
\(412\) 19.4904 59.9854i 0.0473069 0.145596i
\(413\) −38.7194 12.5807i −0.0937516 0.0304617i
\(414\) 0 0
\(415\) −4.12839 + 5.68224i −0.00994793 + 0.0136921i
\(416\) 0.365744 + 1.12565i 0.000879193 + 0.00270588i
\(417\) 0 0
\(418\) 14.0245 30.6982i 0.0335513 0.0734406i
\(419\) 408.427 0.974765 0.487383 0.873189i \(-0.337952\pi\)
0.487383 + 0.873189i \(0.337952\pi\)
\(420\) 0 0
\(421\) −84.5514 61.4302i −0.200835 0.145915i 0.482823 0.875718i \(-0.339612\pi\)
−0.683657 + 0.729803i \(0.739612\pi\)
\(422\) 21.3765 15.5309i 0.0506552 0.0368032i
\(423\) 0 0
\(424\) 158.622 + 51.5393i 0.374108 + 0.121555i
\(425\) 218.874 + 301.254i 0.514998 + 0.708833i
\(426\) 0 0
\(427\) 9.95793 + 30.6473i 0.0233207 + 0.0717737i
\(428\) 161.076i 0.376345i
\(429\) 0 0
\(430\) 7.78269 0.0180993
\(431\) 274.915 89.3253i 0.637854 0.207251i 0.0278030 0.999613i \(-0.491149\pi\)
0.610051 + 0.792362i \(0.291149\pi\)
\(432\) 0 0
\(433\) −445.768 + 323.869i −1.02949 + 0.747966i −0.968206 0.250154i \(-0.919519\pi\)
−0.0612810 + 0.998121i \(0.519519\pi\)
\(434\) 11.6932 35.9879i 0.0269428 0.0829213i
\(435\) 0 0
\(436\) −37.8311 52.0701i −0.0867687 0.119427i
\(437\) −30.7764 + 42.3600i −0.0704265 + 0.0969337i
\(438\) 0 0
\(439\) 576.891i 1.31410i −0.753846 0.657051i \(-0.771804\pi\)
0.753846 0.657051i \(-0.228196\pi\)
\(440\) −5.40519 9.57442i −0.0122845 0.0217600i
\(441\) 0 0
\(442\) −4.21261 + 1.36876i −0.00953080 + 0.00309675i
\(443\) −144.200 104.767i −0.325508 0.236495i 0.413014 0.910724i \(-0.364476\pi\)
−0.738522 + 0.674229i \(0.764476\pi\)
\(444\) 0 0
\(445\) −8.18701 + 25.1970i −0.0183978 + 0.0566225i
\(446\) −126.807 41.2022i −0.284321 0.0923816i
\(447\) 0 0
\(448\) 3.71830 5.11780i 0.00829977 0.0114237i
\(449\) −192.428 592.233i −0.428570 1.31900i −0.899534 0.436851i \(-0.856094\pi\)
0.470963 0.882153i \(-0.343906\pi\)
\(450\) 0 0
\(451\) −398.408 + 433.974i −0.883387 + 0.962249i
\(452\) −58.4078 −0.129221
\(453\) 0 0
\(454\) 331.557 + 240.890i 0.730301 + 0.530595i
\(455\) −0.0473002 + 0.0343656i −0.000103956 + 7.55288e-5i
\(456\) 0 0
\(457\) −749.250 243.446i −1.63950 0.532704i −0.663070 0.748557i \(-0.730747\pi\)
−0.976426 + 0.215853i \(0.930747\pi\)
\(458\) 189.716 + 261.121i 0.414227 + 0.570134i
\(459\) 0 0
\(460\) 5.27102 + 16.2225i 0.0114587 + 0.0352664i
\(461\) 377.985i 0.819924i −0.912103 0.409962i \(-0.865542\pi\)
0.912103 0.409962i \(-0.134458\pi\)
\(462\) 0 0
\(463\) −49.3159 −0.106514 −0.0532569 0.998581i \(-0.516960\pi\)
−0.0532569 + 0.998581i \(0.516960\pi\)
\(464\) 67.8065 22.0317i 0.146135 0.0474821i
\(465\) 0 0
\(466\) 341.895 248.401i 0.733680 0.533050i
\(467\) 36.2129 111.452i 0.0775436 0.238655i −0.904769 0.425902i \(-0.859957\pi\)
0.982313 + 0.187248i \(0.0599567\pi\)
\(468\) 0 0
\(469\) −33.8970 46.6553i −0.0722751 0.0994782i
\(470\) −17.9647 + 24.7262i −0.0382227 + 0.0526090i
\(471\) 0 0
\(472\) 145.624i 0.308525i
\(473\) −19.5501 + 170.181i −0.0413321 + 0.359791i
\(474\) 0 0
\(475\) −51.3260 + 16.6768i −0.108055 + 0.0351091i
\(476\) 19.1529 + 13.9154i 0.0402371 + 0.0292340i
\(477\) 0 0
\(478\) −107.475 + 330.774i −0.224843 + 0.691996i
\(479\) −875.668 284.522i −1.82812 0.593991i −0.999411 0.0343053i \(-0.989078\pi\)
−0.828705 0.559686i \(-0.810922\pi\)
\(480\) 0 0
\(481\) 7.38940 10.1706i 0.0153626 0.0211448i
\(482\) −163.190 502.246i −0.338568 1.04200i
\(483\) 0 0
\(484\) 222.938 94.1423i 0.460615 0.194509i
\(485\) −35.8708 −0.0739604
\(486\) 0 0
\(487\) −313.986 228.124i −0.644735 0.468427i 0.216739 0.976230i \(-0.430458\pi\)
−0.861474 + 0.507802i \(0.830458\pi\)
\(488\) −93.2510 + 67.7508i −0.191088 + 0.138834i
\(489\) 0 0
\(490\) −22.9927 7.47077i −0.0469238 0.0152465i
\(491\) −214.526 295.270i −0.436917 0.601365i 0.532607 0.846363i \(-0.321213\pi\)
−0.969523 + 0.244998i \(0.921213\pi\)
\(492\) 0 0
\(493\) 82.4513 + 253.759i 0.167244 + 0.514724i
\(494\) 0.641950i 0.00129949i
\(495\) 0 0
\(496\) 135.350 0.272884
\(497\) 71.4830 23.2262i 0.143829 0.0467329i
\(498\) 0 0
\(499\) 198.310 144.081i 0.397415 0.288739i −0.371072 0.928604i \(-0.621010\pi\)
0.768487 + 0.639865i \(0.221010\pi\)
\(500\) −10.8930 + 33.5251i −0.0217859 + 0.0670502i
\(501\) 0 0
\(502\) −298.771 411.223i −0.595161 0.819169i
\(503\) −172.959 + 238.058i −0.343855 + 0.473276i −0.945563 0.325440i \(-0.894487\pi\)
0.601707 + 0.798717i \(0.294487\pi\)
\(504\) 0 0
\(505\) 9.21825i 0.0182540i
\(506\) −367.972 + 74.5083i −0.727218 + 0.147250i
\(507\) 0 0
\(508\) 283.513 92.1190i 0.558097 0.181337i
\(509\) −691.862 502.667i −1.35926 0.987558i −0.998492 0.0549019i \(-0.982515\pi\)
−0.360766 0.932656i \(-0.617485\pi\)
\(510\) 0 0
\(511\) 27.7397 85.3741i 0.0542852 0.167073i
\(512\) 21.5200 + 6.99226i 0.0420312 + 0.0136568i
\(513\) 0 0
\(514\) 29.7458 40.9416i 0.0578712 0.0796528i
\(515\) 3.44383 + 10.5990i 0.00668704 + 0.0205806i
\(516\) 0 0
\(517\) −495.552 454.938i −0.958514 0.879958i
\(518\) −67.1925 −0.129715
\(519\) 0 0
\(520\) −0.169189 0.122923i −0.000325364 0.000236391i
\(521\) −491.143 + 356.836i −0.942693 + 0.684907i −0.949068 0.315073i \(-0.897971\pi\)
0.00637404 + 0.999980i \(0.497971\pi\)
\(522\) 0 0
\(523\) 641.901 + 208.566i 1.22734 + 0.398788i 0.849752 0.527183i \(-0.176752\pi\)
0.377593 + 0.925972i \(0.376752\pi\)
\(524\) 195.104 + 268.537i 0.372335 + 0.512475i
\(525\) 0 0
\(526\) 159.366 + 490.478i 0.302977 + 0.932467i
\(527\) 506.535i 0.961166i
\(528\) 0 0
\(529\) 53.4586 0.101056
\(530\) −28.0274 + 9.10664i −0.0528818 + 0.0171823i
\(531\) 0 0
\(532\) −2.77581 + 2.01674i −0.00521768 + 0.00379087i
\(533\) −3.46269 + 10.6571i −0.00649660 + 0.0199945i
\(534\) 0 0
\(535\) −16.7289 23.0254i −0.0312690 0.0430381i
\(536\) 121.247 166.882i 0.226207 0.311347i
\(537\) 0 0
\(538\) 18.9178i 0.0351632i
\(539\) 221.118 484.005i 0.410237 0.897968i
\(540\) 0 0
\(541\) −222.251 + 72.2137i −0.410815 + 0.133482i −0.507131 0.861869i \(-0.669294\pi\)
0.0963161 + 0.995351i \(0.469294\pi\)
\(542\) −81.0525 58.8881i −0.149543 0.108650i
\(543\) 0 0
\(544\) −26.1678 + 80.5363i −0.0481026 + 0.148045i
\(545\) 10.8157 + 3.51425i 0.0198454 + 0.00644816i
\(546\) 0 0
\(547\) 560.308 771.198i 1.02433 1.40987i 0.115207 0.993342i \(-0.463247\pi\)
0.909123 0.416527i \(-0.136753\pi\)
\(548\) −90.7693 279.359i −0.165637 0.509779i
\(549\) 0 0
\(550\) −351.975 160.800i −0.639954 0.292363i
\(551\) −38.6697 −0.0701810
\(552\) 0 0
\(553\) −94.1206 68.3826i −0.170200 0.123658i
\(554\) 90.7823 65.9572i 0.163867 0.119056i
\(555\) 0 0
\(556\) −406.623 132.120i −0.731337 0.237626i
\(557\) −264.552 364.125i −0.474959 0.653725i 0.502567 0.864538i \(-0.332389\pi\)
−0.977526 + 0.210813i \(0.932389\pi\)
\(558\) 0 0
\(559\) 1.00686 + 3.09879i 0.00180118 + 0.00554345i
\(560\) 1.11775i 0.00199598i
\(561\) 0 0
\(562\) −485.205 −0.863354
\(563\) −297.055 + 96.5192i −0.527630 + 0.171437i −0.560705 0.828016i \(-0.689470\pi\)
0.0330754 + 0.999453i \(0.489470\pi\)
\(564\) 0 0
\(565\) 8.34926 6.06609i 0.0147774 0.0107364i
\(566\) 52.3017 160.968i 0.0924059 0.284396i
\(567\) 0 0
\(568\) 158.025 + 217.502i 0.278212 + 0.382926i
\(569\) −331.841 + 456.740i −0.583200 + 0.802706i −0.994042 0.109000i \(-0.965235\pi\)
0.410841 + 0.911707i \(0.365235\pi\)
\(570\) 0 0
\(571\) 224.552i 0.393260i −0.980478 0.196630i \(-0.937000\pi\)
0.980478 0.196630i \(-0.0629998\pi\)
\(572\) 3.11291 3.39081i 0.00544215 0.00592798i
\(573\) 0 0
\(574\) 56.9597 18.5073i 0.0992330 0.0322428i
\(575\) 485.686 + 352.871i 0.844671 + 0.613689i
\(576\) 0 0
\(577\) −326.124 + 1003.71i −0.565207 + 1.73953i 0.102130 + 0.994771i \(0.467434\pi\)
−0.667337 + 0.744756i \(0.732566\pi\)
\(578\) 87.3052 + 28.3672i 0.151047 + 0.0490782i
\(579\) 0 0
\(580\) −7.40463 + 10.1916i −0.0127666 + 0.0175717i
\(581\) 4.85658 + 14.9470i 0.00835900 + 0.0257264i
\(582\) 0 0
\(583\) −128.727 635.739i −0.220800 1.09046i
\(584\) 321.092 0.549815
\(585\) 0 0
\(586\) 13.1759 + 9.57282i 0.0224844 + 0.0163359i
\(587\) −64.2470 + 46.6782i −0.109450 + 0.0795200i −0.641164 0.767404i \(-0.721548\pi\)
0.531714 + 0.846924i \(0.321548\pi\)
\(588\) 0 0
\(589\) −69.8186 22.6855i −0.118538 0.0385152i
\(590\) 15.1241 + 20.8166i 0.0256341 + 0.0352823i
\(591\) 0 0
\(592\) −74.2698 228.579i −0.125456 0.386113i
\(593\) 709.519i 1.19649i −0.801313 0.598245i \(-0.795865\pi\)
0.801313 0.598245i \(-0.204135\pi\)
\(594\) 0 0
\(595\) −4.18307 −0.00703037
\(596\) 439.849 142.916i 0.738001 0.239791i
\(597\) 0 0
\(598\) −5.77731 + 4.19746i −0.00966105 + 0.00701916i
\(599\) −215.771 + 664.076i −0.360219 + 1.10864i 0.592702 + 0.805422i \(0.298061\pi\)
−0.952921 + 0.303219i \(0.901939\pi\)
\(600\) 0 0
\(601\) 131.365 + 180.808i 0.218577 + 0.300845i 0.904198 0.427113i \(-0.140469\pi\)
−0.685621 + 0.727958i \(0.740469\pi\)
\(602\) 10.2361 14.0888i 0.0170035 0.0234033i
\(603\) 0 0
\(604\) 532.811i 0.882137i
\(605\) −22.0911 + 36.6112i −0.0365141 + 0.0605144i
\(606\) 0 0
\(607\) 906.706 294.607i 1.49375 0.485348i 0.555561 0.831476i \(-0.312503\pi\)
0.938188 + 0.346127i \(0.112503\pi\)
\(608\) −9.92885 7.21373i −0.0163303 0.0118647i
\(609\) 0 0
\(610\) 6.29358 19.3697i 0.0103173 0.0317535i
\(611\) −12.1692 3.95402i −0.0199169 0.00647139i
\(612\) 0 0
\(613\) −16.3918 + 22.5614i −0.0267403 + 0.0368049i −0.822178 0.569231i \(-0.807241\pi\)
0.795438 + 0.606036i \(0.207241\pi\)
\(614\) 86.0300 + 264.773i 0.140114 + 0.431227i
\(615\) 0 0
\(616\) −24.4414 2.80778i −0.0396776 0.00455809i
\(617\) 997.165 1.61615 0.808075 0.589079i \(-0.200509\pi\)
0.808075 + 0.589079i \(0.200509\pi\)
\(618\) 0 0
\(619\) 18.8208 + 13.6741i 0.0304052 + 0.0220907i 0.602884 0.797829i \(-0.294018\pi\)
−0.572479 + 0.819919i \(0.694018\pi\)
\(620\) −19.3480 + 14.0571i −0.0312065 + 0.0226728i
\(621\) 0 0
\(622\) −363.708 118.176i −0.584740 0.189994i
\(623\) 34.8456 + 47.9608i 0.0559319 + 0.0769837i
\(624\) 0 0
\(625\) 190.246 + 585.517i 0.304394 + 0.936828i
\(626\) 487.352i 0.778517i
\(627\) 0 0
\(628\) 208.557 0.332097
\(629\) 855.434 277.947i 1.35999 0.441888i
\(630\) 0 0
\(631\) 423.736 307.862i 0.671531 0.487896i −0.199006 0.979998i \(-0.563771\pi\)
0.870537 + 0.492103i \(0.163771\pi\)
\(632\) 128.593 395.770i 0.203471 0.626218i
\(633\) 0 0
\(634\) 54.5065 + 75.0218i 0.0859724 + 0.118331i
\(635\) −30.9603 + 42.6132i −0.0487564 + 0.0671074i
\(636\) 0 0
\(637\) 10.1214i 0.0158891i
\(638\) −204.255 187.515i −0.320149 0.293911i
\(639\) 0 0
\(640\) −3.80243 + 1.23548i −0.00594129 + 0.00193044i
\(641\) −54.5371 39.6235i −0.0850813 0.0618152i 0.544431 0.838805i \(-0.316745\pi\)
−0.629513 + 0.776990i \(0.716745\pi\)
\(642\) 0 0
\(643\) −249.209 + 766.988i −0.387573 + 1.19283i 0.547024 + 0.837117i \(0.315761\pi\)
−0.934597 + 0.355710i \(0.884239\pi\)
\(644\) 36.2998 + 11.7945i 0.0563662 + 0.0183145i
\(645\) 0 0
\(646\) 26.9967 37.1577i 0.0417905 0.0575197i
\(647\) 300.028 + 923.392i 0.463722 + 1.42719i 0.860582 + 0.509311i \(0.170100\pi\)
−0.396860 + 0.917879i \(0.629900\pi\)
\(648\) 0 0
\(649\) −493.179 + 278.422i −0.759906 + 0.429001i
\(650\) −7.36038 −0.0113237
\(651\) 0 0
\(652\) −452.512 328.769i −0.694037 0.504247i
\(653\) 22.6871 16.4831i 0.0347429 0.0252422i −0.570278 0.821452i \(-0.693165\pi\)
0.605021 + 0.796209i \(0.293165\pi\)
\(654\) 0 0
\(655\) −55.7792 18.1238i −0.0851591 0.0276699i
\(656\) 125.919 + 173.312i 0.191949 + 0.264195i
\(657\) 0 0
\(658\) 21.1334 + 65.0419i 0.0321176 + 0.0988478i
\(659\) 570.449i 0.865628i −0.901483 0.432814i \(-0.857521\pi\)
0.901483 0.432814i \(-0.142479\pi\)
\(660\) 0 0
\(661\) 854.772 1.29315 0.646575 0.762851i \(-0.276201\pi\)
0.646575 + 0.762851i \(0.276201\pi\)
\(662\) −142.325 + 46.2443i −0.214993 + 0.0698555i
\(663\) 0 0
\(664\) −45.4794 + 33.0427i −0.0684931 + 0.0497632i
\(665\) 0.187341 0.576577i 0.000281716 0.000867034i
\(666\) 0 0
\(667\) 252.846 + 348.013i 0.379080 + 0.521758i
\(668\) −302.058 + 415.747i −0.452182 + 0.622376i
\(669\) 0 0
\(670\) 36.4478i 0.0543998i
\(671\) 407.739 + 186.276i 0.607659 + 0.277609i
\(672\) 0 0
\(673\) 336.109 109.208i 0.499418 0.162271i −0.0484662 0.998825i \(-0.515433\pi\)
0.547885 + 0.836554i \(0.315433\pi\)
\(674\) −258.138 187.548i −0.382994 0.278261i
\(675\) 0 0
\(676\) −104.421 + 321.374i −0.154468 + 0.475405i
\(677\) 1181.53 + 383.903i 1.74525 + 0.567065i 0.995509 0.0946695i \(-0.0301794\pi\)
0.749738 + 0.661735i \(0.230179\pi\)
\(678\) 0 0
\(679\) −47.1787 + 64.9359i −0.0694826 + 0.0956346i
\(680\) −4.62367 14.2302i −0.00679952 0.0209268i
\(681\) 0 0
\(682\) −258.780 458.386i −0.379443 0.672121i
\(683\) 818.617 1.19856 0.599281 0.800539i \(-0.295453\pi\)
0.599281 + 0.800539i \(0.295453\pi\)
\(684\) 0 0
\(685\) 41.9888 + 30.5067i 0.0612975 + 0.0445353i
\(686\) −88.0957 + 64.0052i −0.128419 + 0.0933021i
\(687\) 0 0
\(688\) 59.2423 + 19.2490i 0.0861079 + 0.0279782i
\(689\) −7.25187 9.98134i −0.0105252 0.0144867i
\(690\) 0 0
\(691\) 84.5050 + 260.080i 0.122294 + 0.376381i 0.993398 0.114716i \(-0.0365959\pi\)
−0.871105 + 0.491098i \(0.836596\pi\)
\(692\) 220.377i 0.318464i
\(693\) 0 0
\(694\) 191.723 0.276258
\(695\) 71.8475 23.3447i 0.103378 0.0335895i
\(696\) 0 0
\(697\) −648.603 + 471.238i −0.930564 + 0.676094i
\(698\) −218.575 + 672.705i −0.313145 + 0.963761i
\(699\) 0 0
\(700\) 23.1233 + 31.8265i 0.0330333 + 0.0454664i
\(701\) 298.072 410.262i 0.425210 0.585252i −0.541635 0.840614i \(-0.682195\pi\)
0.966846 + 0.255362i \(0.0821946\pi\)
\(702\) 0 0
\(703\) 130.358i 0.185430i
\(704\) −17.4641 86.2497i −0.0248070 0.122514i
\(705\) 0 0
\(706\) 431.195 140.104i 0.610758 0.198447i
\(707\) −16.6875 12.1242i −0.0236033 0.0171488i
\(708\) 0 0
\(709\) 178.793 550.269i 0.252177 0.776119i −0.742196 0.670183i \(-0.766216\pi\)
0.994373 0.105937i \(-0.0337842\pi\)
\(710\) −45.1785 14.6794i −0.0636317 0.0206752i
\(711\) 0 0
\(712\) −124.640 + 171.552i −0.175056 + 0.240944i
\(713\) 252.356 + 776.672i 0.353936 + 1.08930i
\(714\) 0 0
\(715\) −0.0928224 + 0.808008i −0.000129822 + 0.00113008i
\(716\) 54.2534 0.0757729
\(717\) 0 0
\(718\) 129.782 + 94.2920i 0.180755 + 0.131326i
\(719\) 31.7569 23.0727i 0.0441681 0.0320900i −0.565482 0.824761i \(-0.691310\pi\)
0.609650 + 0.792671i \(0.291310\pi\)
\(720\) 0 0
\(721\) 23.7165 + 7.70597i 0.0328940 + 0.0106879i
\(722\) −296.170 407.643i −0.410208 0.564603i
\(723\) 0 0
\(724\) −160.424 493.734i −0.221580 0.681953i
\(725\) 443.374i 0.611550i
\(726\) 0 0
\(727\) 918.828 1.26386 0.631932 0.775024i \(-0.282262\pi\)
0.631932 + 0.775024i \(0.282262\pi\)
\(728\) −0.445048 + 0.144605i −0.000611330 + 0.000198633i
\(729\) 0 0
\(730\) −45.8993 + 33.3478i −0.0628758 + 0.0456820i
\(731\) −72.0374 + 221.708i −0.0985463 + 0.303294i
\(732\) 0 0
\(733\) 434.317 + 597.786i 0.592520 + 0.815534i 0.994998 0.0998958i \(-0.0318509\pi\)
−0.402478 + 0.915430i \(0.631851\pi\)
\(734\) 74.4538 102.477i 0.101436 0.139614i
\(735\) 0 0
\(736\) 136.524i 0.185494i
\(737\) −796.990 91.5568i −1.08140 0.124229i
\(738\) 0 0
\(739\) 1082.21 351.633i 1.46443 0.475822i 0.535011 0.844845i \(-0.320308\pi\)
0.929420 + 0.369023i \(0.120308\pi\)
\(740\) 34.3564 + 24.9614i 0.0464275 + 0.0337316i
\(741\) 0 0
\(742\) −20.3772 + 62.7145i −0.0274625 + 0.0845209i
\(743\) −179.099 58.1929i −0.241049 0.0783215i 0.186001 0.982550i \(-0.440447\pi\)
−0.427050 + 0.904228i \(0.640447\pi\)
\(744\) 0 0
\(745\) −48.0325 + 66.1111i −0.0644732 + 0.0887397i
\(746\) 120.421 + 370.616i 0.161422 + 0.496805i
\(747\) 0 0
\(748\) 322.781 65.3578i 0.431525 0.0873767i
\(749\) −63.6848 −0.0850264
\(750\) 0 0
\(751\) −489.777 355.844i −0.652166 0.473827i 0.211842 0.977304i \(-0.432054\pi\)
−0.864008 + 0.503477i \(0.832054\pi\)
\(752\) −197.904 + 143.785i −0.263170 + 0.191204i
\(753\) 0 0
\(754\) −5.01587 1.62976i −0.00665235 0.00216148i
\(755\) −55.3365 76.1641i −0.0732933 0.100880i
\(756\) 0 0
\(757\) −120.088 369.594i −0.158637 0.488235i 0.839874 0.542781i \(-0.182629\pi\)
−0.998511 + 0.0545462i \(0.982629\pi\)
\(758\) 248.258i 0.327517i
\(759\) 0 0
\(760\) 2.16851 0.00285330
\(761\) −664.937 + 216.051i −0.873768 + 0.283904i −0.711367 0.702821i \(-0.751924\pi\)
−0.162400 + 0.986725i \(0.551924\pi\)
\(762\) 0 0
\(763\) 20.5870 14.9574i 0.0269817 0.0196034i
\(764\) −77.1197 + 237.350i −0.100942 + 0.310667i
\(765\) 0 0
\(766\) −42.5426 58.5549i −0.0555387 0.0764424i
\(767\) −6.33178 + 8.71494i −0.00825525 + 0.0113624i
\(768\) 0 0
\(769\) 337.074i 0.438328i 0.975688 + 0.219164i \(0.0703330\pi\)
−0.975688 + 0.219164i \(0.929667\pi\)
\(770\) 3.78545 2.13706i 0.00491617 0.00277540i
\(771\) 0 0
\(772\) 79.8682 25.9507i 0.103456 0.0336149i
\(773\) −643.324 467.403i −0.832244 0.604660i 0.0879495 0.996125i \(-0.471969\pi\)
−0.920193 + 0.391464i \(0.871969\pi\)
\(774\) 0 0
\(775\) −260.104 + 800.517i −0.335618 + 1.03292i
\(776\) −273.050 88.7195i −0.351869 0.114329i
\(777\) 0 0
\(778\) 19.0410 26.2078i 0.0244744 0.0336861i
\(779\) −35.9054 110.505i −0.0460916 0.141855i
\(780\) 0 0
\(781\) 434.476 951.026i 0.556308 1.21770i
\(782\) −510.926 −0.653358
\(783\) 0 0
\(784\) −156.544 113.736i −0.199673 0.145071i
\(785\) −29.8127 + 21.6602i −0.0379780 + 0.0275926i
\(786\) 0 0
\(787\) −508.815 165.324i −0.646525 0.210069i −0.0326436 0.999467i \(-0.510393\pi\)
−0.613881 + 0.789398i \(0.710393\pi\)
\(788\) −322.504 443.889i −0.409269 0.563311i
\(789\) 0 0
\(790\) 22.7216 + 69.9298i 0.0287615 + 0.0885188i
\(791\) 23.0928i 0.0291944i
\(792\) 0 0
\(793\) 8.52651 0.0107522
\(794\) −176.268 + 57.2729i −0.222000 + 0.0721321i
\(795\) 0 0
\(796\) −244.290 + 177.487i −0.306897 + 0.222974i
\(797\) 219.724 676.242i 0.275689 0.848484i −0.713347 0.700811i \(-0.752822\pi\)
0.989036 0.147673i \(-0.0471783\pi\)
\(798\) 0 0
\(799\) −538.102 740.634i −0.673470 0.926952i
\(800\) −82.7102 + 113.841i −0.103388 + 0.142301i
\(801\) 0 0
\(802\) 1097.22i 1.36810i
\(803\) −613.905 1087.43i −0.764514 1.35421i
\(804\) 0 0
\(805\) −6.41393 + 2.08401i −0.00796761 + 0.00258883i
\(806\) −8.10013 5.88509i −0.0100498 0.00730160i
\(807\) 0 0
\(808\) 22.7996 70.1698i 0.0282173 0.0868438i
\(809\) 102.321 + 33.2462i 0.126479 + 0.0410954i 0.371572 0.928404i \(-0.378819\pi\)
−0.245094 + 0.969499i \(0.578819\pi\)
\(810\) 0 0
\(811\) −738.698 + 1016.73i −0.910848 + 1.25368i 0.0560279 + 0.998429i \(0.482156\pi\)
−0.966876 + 0.255246i \(0.917844\pi\)
\(812\) 8.71070 + 26.8088i 0.0107275 + 0.0330157i
\(813\) 0 0
\(814\) −632.123 + 688.554i −0.776564 + 0.845890i
\(815\) 98.8308 0.121265
\(816\) 0 0
\(817\) −27.3331 19.8587i −0.0334555 0.0243068i
\(818\) 855.094 621.262i 1.04535 0.759489i
\(819\) 0 0
\(820\) −35.9995 11.6970i −0.0439019 0.0142646i
\(821\) 608.067 + 836.933i 0.740642 + 1.01941i 0.998581 + 0.0532455i \(0.0169566\pi\)
−0.257939 + 0.966161i \(0.583043\pi\)
\(822\) 0 0
\(823\) −165.580 509.603i −0.201191 0.619202i −0.999848 0.0174160i \(-0.994456\pi\)
0.798657 0.601786i \(-0.205544\pi\)
\(824\) 89.1979i 0.108250i
\(825\) 0 0
\(826\) 57.5755 0.0697039
\(827\) −131.119 + 42.6030i −0.158547 + 0.0515151i −0.387215 0.921989i \(-0.626563\pi\)
0.228668 + 0.973504i \(0.426563\pi\)
\(828\) 0 0
\(829\) 7.75076 5.63126i 0.00934954 0.00679283i −0.583101 0.812400i \(-0.698161\pi\)
0.592450 + 0.805607i \(0.298161\pi\)
\(830\) 3.06944 9.44677i 0.00369812 0.0113817i
\(831\) 0 0
\(832\) −0.983850 1.35415i −0.00118251 0.00162759i
\(833\) 425.645 585.850i 0.510978 0.703301i
\(834\) 0 0
\(835\) 90.8011i 0.108744i
\(836\) −5.44727 + 47.4178i −0.00651588 + 0.0567199i
\(837\) 0 0
\(838\) −549.333 + 178.489i −0.655528 + 0.212994i
\(839\) −388.855 282.520i −0.463474 0.336734i 0.331418 0.943484i \(-0.392473\pi\)
−0.794893 + 0.606750i \(0.792473\pi\)
\(840\) 0 0
\(841\) 161.710 497.693i 0.192283 0.591787i
\(842\) 140.567 + 45.6731i 0.166945 + 0.0542436i
\(843\) 0 0
\(844\) −21.9641 + 30.2309i −0.0260238 + 0.0358186i
\(845\) −18.4504 56.7845i −0.0218348 0.0672006i
\(846\) 0 0
\(847\) 37.2212 + 88.1433i 0.0439447 + 0.104065i
\(848\) −235.869 −0.278148
\(849\) 0 0
\(850\) −426.038 309.534i −0.501221 0.364158i
\(851\) 1173.17 852.357i 1.37858 1.00159i
\(852\) 0 0
\(853\) −1443.72 469.094i −1.69252 0.549934i −0.705248 0.708960i \(-0.749165\pi\)
−0.987274 + 0.159026i \(0.949165\pi\)
\(854\) −26.7868 36.8688i −0.0313662 0.0431719i
\(855\) 0 0
\(856\) −70.3926 216.646i −0.0822344 0.253091i
\(857\) 229.336i 0.267603i 0.991008 + 0.133802i \(0.0427185\pi\)
−0.991008 + 0.133802i \(0.957282\pi\)
\(858\) 0 0
\(859\) −308.792 −0.359478 −0.179739 0.983714i \(-0.557525\pi\)
−0.179739 + 0.983714i \(0.557525\pi\)
\(860\) −10.4677 + 3.40116i −0.0121717 + 0.00395484i
\(861\) 0 0
\(862\) −330.723 + 240.285i −0.383670 + 0.278752i
\(863\) −159.802 + 491.821i −0.185171 + 0.569897i −0.999951 0.00987257i \(-0.996857\pi\)
0.814781 + 0.579770i \(0.196857\pi\)
\(864\) 0 0
\(865\) 22.8879 + 31.5024i 0.0264600 + 0.0364190i
\(866\) 458.020 630.411i 0.528892 0.727957i
\(867\) 0 0
\(868\) 53.5137i 0.0616517i
\(869\) −1586.20 + 321.180i −1.82532 + 0.369597i
\(870\) 0 0
\(871\) −14.5122 + 4.71530i −0.0166616 + 0.00541367i
\(872\) 73.6382 + 53.5013i 0.0844475 + 0.0613547i
\(873\) 0 0
\(874\) 22.8821 70.4239i 0.0261809 0.0805765i
\(875\) −13.2549 4.30677i −0.0151484 0.00492202i
\(876\) 0 0
\(877\) 148.255 204.056i 0.169048 0.232675i −0.716084 0.698014i \(-0.754067\pi\)
0.885133 + 0.465339i \(0.154067\pi\)
\(878\) 252.111 + 775.916i 0.287142 + 0.883732i
\(879\) 0 0
\(880\) 11.4541 + 10.5154i 0.0130161 + 0.0119493i
\(881\) −830.794 −0.943012 −0.471506 0.881863i \(-0.656289\pi\)
−0.471506 + 0.881863i \(0.656289\pi\)
\(882\) 0 0
\(883\) −435.210 316.199i −0.492877 0.358096i 0.313413 0.949617i \(-0.398528\pi\)
−0.806290 + 0.591521i \(0.798528\pi\)
\(884\) 5.06778 3.68196i 0.00573279 0.00416511i
\(885\) 0 0
\(886\) 239.733 + 77.8941i 0.270579 + 0.0879166i
\(887\) −840.566 1156.94i −0.947651 1.30433i −0.952563 0.304341i \(-0.901564\pi\)
0.00491261 0.999988i \(-0.498436\pi\)
\(888\) 0 0
\(889\) 36.4213 + 112.093i 0.0409688 + 0.126089i
\(890\) 37.4678i 0.0420986i
\(891\) 0 0
\(892\) 188.562 0.211392
\(893\) 126.185 41.0001i 0.141305 0.0459127i
\(894\) 0 0
\(895\) −7.75540 + 5.63463i −0.00866525 + 0.00629567i
\(896\) −2.76454 + 8.50838i −0.00308543 + 0.00949596i
\(897\) 0 0
\(898\) 517.630 + 712.457i 0.576426 + 0.793382i
\(899\) −354.505 + 487.935i −0.394333 + 0.542753i
\(900\) 0 0
\(901\) 882.717i 0.979708i
\(902\) 346.203 757.805i 0.383817 0.840138i
\(903\) 0 0
\(904\) 78.5583 25.5251i 0.0869007 0.0282358i
\(905\) 74.2103 + 53.9169i 0.0820003 + 0.0595767i
\(906\) 0 0
\(907\) −418.026 + 1286.55i −0.460889 + 1.41847i 0.403191 + 0.915116i \(0.367901\pi\)
−0.864080 + 0.503355i \(0.832099\pi\)
\(908\) −551.215 179.101i −0.607065 0.197248i
\(909\) 0 0
\(910\) 0.0486003 0.0668926i 5.34069e−5 7.35083e-5i
\(911\) 263.965 + 812.400i 0.289753 + 0.891768i 0.984934 + 0.172933i \(0.0553243\pi\)
−0.695181 + 0.718835i \(0.744676\pi\)
\(912\) 0 0
\(913\) 198.858 + 90.8485i 0.217808 + 0.0995054i
\(914\) 1114.13 1.21896
\(915\) 0 0
\(916\) −369.281 268.299i −0.403146 0.292902i
\(917\) −106.172 + 77.1385i −0.115782 + 0.0841204i
\(918\) 0 0
\(919\) −314.056 102.043i −0.341737 0.111037i 0.133120 0.991100i \(-0.457500\pi\)
−0.474857 + 0.880063i \(0.657500\pi\)
\(920\) −14.1790 19.5157i −0.0154120 0.0212127i
\(921\) 0 0
\(922\) 165.185 + 508.389i 0.179160 + 0.551398i
\(923\) 19.8875i 0.0215466i
\(924\) 0 0
\(925\) 1494.64 1.61582
\(926\) 66.3297 21.5518i 0.0716303 0.0232741i
\(927\) 0 0
\(928\) −81.5714 + 59.2651i −0.0879002 + 0.0638632i
\(929\) 35.3551 108.812i 0.0380572 0.117128i −0.930223 0.366995i \(-0.880387\pi\)
0.968280 + 0.249867i \(0.0803868\pi\)
\(930\) 0 0
\(931\) 61.6884 + 84.9068i 0.0662603 + 0.0911995i
\(932\) −351.292 + 483.512i −0.376923 + 0.518790i
\(933\) 0 0
\(934\) 165.728i 0.177439i
\(935\) −39.3529 + 42.8660i −0.0420886 + 0.0458460i
\(936\) 0 0
\(937\) 1540.46 500.527i 1.64404 0.534181i 0.666603 0.745413i \(-0.267748\pi\)
0.977436 + 0.211233i \(0.0677478\pi\)
\(938\) 65.9805 + 47.9376i 0.0703417 + 0.0511062i
\(939\) 0 0
\(940\) 13.3567 41.1076i 0.0142092 0.0437315i
\(941\) −722.085 234.620i −0.767359 0.249330i −0.100925 0.994894i \(-0.532180\pi\)
−0.666434 + 0.745564i \(0.732180\pi\)
\(942\) 0 0
\(943\) −759.735 + 1045.69i −0.805658 + 1.10889i
\(944\) 63.6398 + 195.863i 0.0674151 + 0.207482i
\(945\) 0 0
\(946\) −48.0770 237.437i −0.0508214 0.250990i
\(947\) −1855.32 −1.95915 −0.979575 0.201079i \(-0.935555\pi\)
−0.979575 + 0.201079i \(0.935555\pi\)
\(948\) 0 0
\(949\) −19.2160 13.9612i −0.0202486 0.0147115i
\(950\) 61.7453 44.8606i 0.0649951 0.0472217i
\(951\) 0 0
\(952\) −31.8418 10.3460i −0.0334472 0.0108677i
\(953\) 955.025 + 1314.48i 1.00212 + 1.37931i 0.924013 + 0.382361i \(0.124889\pi\)
0.0781115 + 0.996945i \(0.475111\pi\)
\(954\) 0 0
\(955\) −13.6265 41.9381i −0.0142686 0.0439142i
\(956\) 491.859i 0.514496i
\(957\) 0 0
\(958\) 1302.11 1.35920
\(959\) 110.451 35.8876i 0.115173 0.0374219i
\(960\) 0 0
\(961\) −148.843 + 108.141i −0.154884 + 0.112530i
\(962\) −5.49399 + 16.9088i −0.00571101 + 0.0175767i
\(963\) 0 0
\(964\) 438.979 + 604.203i 0.455373 + 0.626767i
\(965\) −8.72179 + 12.0045i −0.00903812 + 0.0124399i
\(966\) 0 0
\(967\) 325.104i 0.336199i −0.985770 0.168099i \(-0.946237\pi\)
0.985770 0.168099i \(-0.0537629\pi\)
\(968\) −258.709 + 224.048i −0.267261 + 0.231455i
\(969\) 0 0
\(970\) 48.2461 15.6761i 0.0497383 0.0161609i
\(971\) 227.145 + 165.031i 0.233929 + 0.169960i 0.698574 0.715537i \(-0.253818\pi\)
−0.464645 + 0.885497i \(0.653818\pi\)
\(972\) 0 0
\(973\) 52.2365 160.767i 0.0536860 0.165229i
\(974\) 522.004 + 169.609i 0.535938 + 0.174137i
\(975\) 0 0
\(976\) 95.8141 131.877i 0.0981702 0.135120i
\(977\) −497.452 1531.00i −0.509163 1.56704i −0.793658 0.608364i \(-0.791826\pi\)
0.284495 0.958678i \(-0.408174\pi\)
\(978\) 0 0
\(979\) 819.293 + 94.1188i 0.836867 + 0.0961377i
\(980\) 34.1899 0.0348877
\(981\) 0 0
\(982\) 417.575 + 303.386i 0.425229 + 0.308947i
\(983\) −302.881 + 220.056i −0.308119 + 0.223862i −0.731089 0.682282i \(-0.760988\pi\)
0.422970 + 0.906144i \(0.360988\pi\)
\(984\) 0 0
\(985\) 92.2025 + 29.9584i 0.0936066 + 0.0304146i
\(986\) −221.794 305.273i −0.224943 0.309607i
\(987\) 0 0
\(988\) 0.280542 + 0.863421i 0.000283950 + 0.000873908i
\(989\) 375.836i 0.380016i
\(990\) 0 0
\(991\) −943.875 −0.952447 −0.476223 0.879324i \(-0.657995\pi\)
−0.476223 + 0.879324i \(0.657995\pi\)
\(992\) −182.046 + 59.1502i −0.183514 + 0.0596272i
\(993\) 0 0
\(994\) −85.9942 + 62.4785i −0.0865133 + 0.0628556i
\(995\) 16.4873 50.7427i 0.0165702 0.0509977i
\(996\) 0 0
\(997\) 400.666 + 551.470i 0.401872 + 0.553129i 0.961213 0.275809i \(-0.0889457\pi\)
−0.559341 + 0.828938i \(0.688946\pi\)
\(998\) −203.761 + 280.453i −0.204169 + 0.281015i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.3.j.b.127.2 16
3.2 odd 2 66.3.f.a.61.4 yes 16
11.2 odd 10 inner 198.3.j.b.145.2 16
11.3 even 5 2178.3.d.m.1693.12 16
11.8 odd 10 2178.3.d.m.1693.4 16
12.11 even 2 528.3.bf.c.193.1 16
33.2 even 10 66.3.f.a.13.4 16
33.8 even 10 726.3.d.e.241.10 16
33.14 odd 10 726.3.d.e.241.2 16
132.35 odd 10 528.3.bf.c.145.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.4 16 33.2 even 10
66.3.f.a.61.4 yes 16 3.2 odd 2
198.3.j.b.127.2 16 1.1 even 1 trivial
198.3.j.b.145.2 16 11.2 odd 10 inner
528.3.bf.c.145.1 16 132.35 odd 10
528.3.bf.c.193.1 16 12.11 even 2
726.3.d.e.241.2 16 33.14 odd 10
726.3.d.e.241.10 16 33.8 even 10
2178.3.d.m.1693.4 16 11.8 odd 10
2178.3.d.m.1693.12 16 11.3 even 5