Properties

Label 197.12.a
Level 197197
Weight 1212
Character orbit 197.a
Rep. character χ197(1,)\chi_{197}(1,\cdot)
Character field Q\Q
Dimension 179179
Newform subspaces 22
Sturm bound 198198
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 197 197
Weight: k k == 12 12
Character orbit: [χ][\chi] == 197.a (trivial)
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 198198
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M12(Γ0(197))M_{12}(\Gamma_0(197)).

Total New Old
Modular forms 183 179 4
Cusp forms 181 179 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

197197Dim
++9292
-8787

Trace form

179q32q2506q3+181248q44292q5+15552q6+73958q723466q8+10915153q9451446q101707062q111036288q12+3046244q13+3377650q144726682q15+228362184182q99+O(q100) 179 q - 32 q^{2} - 506 q^{3} + 181248 q^{4} - 4292 q^{5} + 15552 q^{6} + 73958 q^{7} - 23466 q^{8} + 10915153 q^{9} - 451446 q^{10} - 1707062 q^{11} - 1036288 q^{12} + 3046244 q^{13} + 3377650 q^{14} - 4726682 q^{15}+ \cdots - 228362184182 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S12new(Γ0(197))S_{12}^{\mathrm{new}}(\Gamma_0(197)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 197
197.12.a.a 197.a 1.a 8787 151.364151.364 None 197.12.a.a 96-96 2926-2926 20896-20896 231933-231933 - SU(2)\mathrm{SU}(2)
197.12.a.b 197.a 1.a 9292 151.364151.364 None 197.12.a.b 6464 24202420 1660416604 305891305891 ++ SU(2)\mathrm{SU}(2)

Decomposition of S12old(Γ0(197))S_{12}^{\mathrm{old}}(\Gamma_0(197)) into lower level spaces

S12old(Γ0(197)) S_{12}^{\mathrm{old}}(\Gamma_0(197)) \simeq S12new(Γ0(1))S_{12}^{\mathrm{new}}(\Gamma_0(1))2^{\oplus 2}