Defining parameters
| Level: | \( N \) | = | \( 1 \) |
| Weight: | \( k \) | = | \( 12 \) |
| Character orbit: | \([\chi]\) | = | 1.a (trivial) |
| Character field: | \(\Q\) | ||
| Newforms: | \( 1 \) | ||
| Sturm bound: | \(1\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(1))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2 | 2 | 0 |
| Cusp forms | 1 | 1 | 0 |
| Eisenstein series | 1 | 1 | 0 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\) into irreducible Hecke orbits
| Label | Dim. | \(A\) | Field | CM | Traces | Fricke sign | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|
| \(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | |||||||
| 1.12.a.a | \(1\) | \(0.768\) | \(\Q\) | None | \(-24\) | \(252\) | \(4830\) | \(-16744\) | \(+\) | \(q-24q^{2}+252q^{3}-1472q^{4}+4830q^{5}+\cdots\) |