Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,12,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 12, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 12);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(151.363606570\) |
Analytic rank: | \(0\) |
Dimension: | \(92\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −89.8122 | 408.684 | 6018.23 | −5687.18 | −36704.8 | −1069.14 | −356575. | −10124.4 | 510778. | ||||||||||||||||||
1.2 | −87.1440 | 786.167 | 5546.07 | 12634.2 | −68509.7 | −52867.9 | −304836. | 440912. | −1.10099e6 | ||||||||||||||||||
1.3 | −86.5721 | −287.043 | 5446.73 | −10768.4 | 24849.9 | −50234.8 | −294236. | −94753.4 | 932242. | ||||||||||||||||||
1.4 | −84.9113 | −568.693 | 5161.93 | −8080.39 | 48288.5 | 44471.4 | −264408. | 146264. | 686117. | ||||||||||||||||||
1.5 | −84.8742 | 339.556 | 5155.63 | 2009.94 | −28819.5 | −56259.8 | −263758. | −61848.8 | −170592. | ||||||||||||||||||
1.6 | −79.8918 | 101.497 | 4334.69 | 1864.60 | −8108.77 | 52018.3 | −182688. | −166845. | −148966. | ||||||||||||||||||
1.7 | −79.8310 | −674.325 | 4324.98 | 3933.54 | 53832.0 | −6505.44 | −181774. | 277567. | −314018. | ||||||||||||||||||
1.8 | −78.5767 | 504.204 | 4126.30 | −5592.54 | −39618.7 | −45440.8 | −163306. | 77074.3 | 439443. | ||||||||||||||||||
1.9 | −78.1317 | 593.673 | 4056.56 | 6158.78 | −46384.7 | 72514.6 | −156932. | 175301. | −481196. | ||||||||||||||||||
1.10 | −75.5952 | −693.315 | 3666.63 | 10252.9 | 52411.3 | 78779.8 | −122361. | 303539. | −775068. | ||||||||||||||||||
1.11 | −73.7285 | 331.029 | 3387.90 | 2290.71 | −24406.3 | −50357.4 | −98788.6 | −67567.1 | −168891. | ||||||||||||||||||
1.12 | −72.3048 | −558.542 | 3179.98 | 7098.19 | 40385.2 | −17185.4 | −81847.3 | 134822. | −513233. | ||||||||||||||||||
1.13 | −69.7386 | 286.356 | 2815.48 | −13059.6 | −19970.1 | 78397.4 | −53522.7 | −95147.0 | 910755. | ||||||||||||||||||
1.14 | −67.2111 | −95.0378 | 2469.33 | 1940.57 | 6387.60 | −29829.0 | −28318.0 | −168115. | −130428. | ||||||||||||||||||
1.15 | −66.4070 | −356.598 | 2361.89 | −8882.65 | 23680.6 | −71949.2 | −20844.3 | −49984.8 | 589870. | ||||||||||||||||||
1.16 | −63.4914 | −424.047 | 1983.16 | 564.056 | 26923.4 | 62228.3 | 4117.09 | 2669.21 | −35812.7 | ||||||||||||||||||
1.17 | −60.3928 | −648.662 | 1599.29 | −13683.9 | 39174.5 | −8398.03 | 27098.6 | 243615. | 826410. | ||||||||||||||||||
1.18 | −59.6321 | 54.3091 | 1507.99 | −3681.72 | −3238.57 | 14583.9 | 32202.1 | −174198. | 219549. | ||||||||||||||||||
1.19 | −58.1801 | −202.649 | 1336.93 | 5488.34 | 11790.1 | 63266.7 | 41370.2 | −136080. | −319313. | ||||||||||||||||||
1.20 | −57.9178 | 751.961 | 1306.47 | 5857.83 | −43551.9 | −5863.08 | 42947.8 | 388299. | −339273. | ||||||||||||||||||
See all 92 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.12.a.b | ✓ | 92 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.12.a.b | ✓ | 92 | 1.a | even | 1 | 1 | trivial |