Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,12,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 12, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 12);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(151.363606570\) |
Analytic rank: | \(1\) |
Dimension: | \(87\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −88.6400 | −20.5819 | 5809.05 | 5525.77 | 1824.38 | 36575.6 | −333379. | −176723. | −489804. | ||||||||||||||||||
1.2 | −87.4082 | −330.577 | 5592.19 | 10211.9 | 28895.1 | 3759.95 | −309791. | −67865.8 | −892600. | ||||||||||||||||||
1.3 | −83.4232 | −464.759 | 4911.44 | 704.980 | 38771.7 | −75183.8 | −238877. | 38853.8 | −58811.7 | ||||||||||||||||||
1.4 | −83.2998 | −824.779 | 4890.86 | −1344.00 | 68704.0 | −23932.5 | −236810. | 503114. | 111955. | ||||||||||||||||||
1.5 | −81.6406 | 759.281 | 4617.19 | −7790.01 | −61988.2 | 17561.7 | −209750. | 399361. | 635981. | ||||||||||||||||||
1.6 | −80.5320 | 583.209 | 4437.40 | 3620.77 | −46967.0 | 52016.6 | −192423. | 162986. | −291588. | ||||||||||||||||||
1.7 | −80.3186 | −228.720 | 4403.08 | −3202.18 | 18370.5 | 59878.0 | −189156. | −124834. | 257195. | ||||||||||||||||||
1.8 | −78.3803 | 171.771 | 4095.47 | −11319.5 | −13463.4 | 25833.1 | −160481. | −147642. | 887222. | ||||||||||||||||||
1.9 | −77.9965 | −293.459 | 4035.45 | 10021.4 | 22888.7 | −55110.9 | −155014. | −91029.0 | −781632. | ||||||||||||||||||
1.10 | −76.3606 | −27.2673 | 3782.94 | −7206.70 | 2082.15 | −38114.7 | −132481. | −176403. | 550308. | ||||||||||||||||||
1.11 | −75.1483 | 180.715 | 3599.27 | 11778.4 | −13580.5 | −19019.3 | −116575. | −144489. | −885131. | ||||||||||||||||||
1.12 | −69.8803 | −199.808 | 2835.26 | −2201.80 | 13962.7 | 8077.62 | −55013.9 | −137224. | 153862. | ||||||||||||||||||
1.13 | −69.5078 | 367.465 | 2783.34 | 10345.6 | −25541.7 | 15991.1 | −51112.0 | −42116.6 | −719098. | ||||||||||||||||||
1.14 | −64.7604 | −639.551 | 2145.90 | −7648.30 | 41417.6 | 39965.6 | −6340.32 | 231879. | 495307. | ||||||||||||||||||
1.15 | −64.5566 | 710.476 | 2119.56 | −6173.51 | −45865.9 | 4458.74 | −4619.38 | 327630. | 398541. | ||||||||||||||||||
1.16 | −64.0210 | 700.704 | 2050.69 | 372.774 | −44859.7 | −62139.1 | −172.063 | 313839. | −23865.4 | ||||||||||||||||||
1.17 | −61.9744 | −578.177 | 1792.83 | −9089.52 | 35832.2 | 7742.51 | 15814.3 | 157142. | 563317. | ||||||||||||||||||
1.18 | −61.6192 | 548.719 | 1748.92 | −12761.2 | −33811.6 | −65209.1 | 18428.9 | 123946. | 786333. | ||||||||||||||||||
1.19 | −57.5730 | −788.240 | 1266.65 | −4331.55 | 45381.3 | −65840.4 | 44984.7 | 444175. | 249381. | ||||||||||||||||||
1.20 | −54.5248 | −255.325 | 924.956 | 10305.0 | 13921.5 | −64390.2 | 61233.8 | −111956. | −561879. | ||||||||||||||||||
See all 87 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.12.a.a | ✓ | 87 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.12.a.a | ✓ | 87 | 1.a | even | 1 | 1 | trivial |