Properties

Label 196.8.e.d.177.2
Level $196$
Weight $8$
Character 196.177
Analytic conductor $61.227$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,8,Mod(165,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.165"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,14,0,-42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.2274649949\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{3529})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 883x^{2} + 882x + 777924 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.2
Root \(15.1013 + 26.1563i\) of defining polynomial
Character \(\chi\) \(=\) 196.177
Dual form 196.8.e.d.165.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(33.2027 + 57.5088i) q^{3} +(78.6081 - 136.153i) q^{5} +(-1111.34 + 1924.89i) q^{9} +(-3104.51 - 5377.17i) q^{11} +5380.35 q^{13} +10440.0 q^{15} +(5497.46 + 9521.87i) q^{17} +(-5851.53 + 10135.1i) q^{19} +(-53070.5 + 91920.8i) q^{23} +(26704.0 + 46252.8i) q^{25} -2369.04 q^{27} -51562.7 q^{29} +(123778. + 214390. i) q^{31} +(206156. - 357073. i) q^{33} +(-216839. + 375576. i) q^{37} +(178642. + 309417. i) q^{39} +322819. q^{41} +878703. q^{43} +(174720. + 302624. i) q^{45} +(-327563. + 567356. i) q^{47} +(-365061. + 632304. i) q^{51} +(222418. + 385240. i) q^{53} -976159. q^{55} -777146. q^{57} +(-1.07273e6 - 1.85802e6i) q^{59} +(-296451. + 513468. i) q^{61} +(422939. - 732552. i) q^{65} +(-864332. - 1.49707e6i) q^{67} -7.04833e6 q^{69} +1.58060e6 q^{71} +(2.16582e6 + 3.75131e6i) q^{73} +(-1.77329e6 + 3.07143e6i) q^{75} +(3.04259e6 - 5.26992e6i) q^{79} +(2.35184e6 + 4.07350e6i) q^{81} -8.10357e6 q^{83} +1.72858e6 q^{85} +(-1.71202e6 - 2.96531e6i) q^{87} +(-4.93016e6 + 8.53929e6i) q^{89} +(-8.21955e6 + 1.42367e7i) q^{93} +(919955. + 1.59341e6i) q^{95} -171786. q^{97} +1.38007e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{3} - 42 q^{5} - 2782 q^{9} - 7428 q^{11} + 23660 q^{13} + 41760 q^{15} - 15792 q^{17} - 26614 q^{19} - 32640 q^{23} + 91846 q^{25} - 175336 q^{27} - 316032 q^{29} + 180740 q^{31} + 348432 q^{33}+ \cdots + 28964904 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 33.2027 + 57.5088i 0.709985 + 1.22973i 0.964862 + 0.262756i \(0.0846315\pi\)
−0.254878 + 0.966973i \(0.582035\pi\)
\(4\) 0 0
\(5\) 78.6081 136.153i 0.281237 0.487116i −0.690453 0.723377i \(-0.742589\pi\)
0.971690 + 0.236261i \(0.0759220\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1111.34 + 1924.89i −0.508156 + 0.880152i
\(10\) 0 0
\(11\) −3104.51 5377.17i −0.703265 1.21809i −0.967314 0.253582i \(-0.918391\pi\)
0.264049 0.964509i \(-0.414942\pi\)
\(12\) 0 0
\(13\) 5380.35 0.679218 0.339609 0.940567i \(-0.389705\pi\)
0.339609 + 0.940567i \(0.389705\pi\)
\(14\) 0 0
\(15\) 10440.0 0.798695
\(16\) 0 0
\(17\) 5497.46 + 9521.87i 0.271388 + 0.470058i 0.969217 0.246206i \(-0.0791840\pi\)
−0.697830 + 0.716264i \(0.745851\pi\)
\(18\) 0 0
\(19\) −5851.53 + 10135.1i −0.195718 + 0.338994i −0.947136 0.320833i \(-0.896037\pi\)
0.751417 + 0.659827i \(0.229371\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −53070.5 + 91920.8i −0.909506 + 1.57531i −0.0947540 + 0.995501i \(0.530206\pi\)
−0.814752 + 0.579810i \(0.803127\pi\)
\(24\) 0 0
\(25\) 26704.0 + 46252.8i 0.341812 + 0.592035i
\(26\) 0 0
\(27\) −2369.04 −0.0231632
\(28\) 0 0
\(29\) −51562.7 −0.392593 −0.196297 0.980545i \(-0.562892\pi\)
−0.196297 + 0.980545i \(0.562892\pi\)
\(30\) 0 0
\(31\) 123778. + 214390.i 0.746240 + 1.29253i 0.949613 + 0.313425i \(0.101476\pi\)
−0.203373 + 0.979101i \(0.565190\pi\)
\(32\) 0 0
\(33\) 206156. 357073.i 0.998615 1.72965i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −216839. + 375576.i −0.703771 + 1.21897i 0.263363 + 0.964697i \(0.415168\pi\)
−0.967133 + 0.254270i \(0.918165\pi\)
\(38\) 0 0
\(39\) 178642. + 309417.i 0.482234 + 0.835254i
\(40\) 0 0
\(41\) 322819. 0.731501 0.365751 0.930713i \(-0.380812\pi\)
0.365751 + 0.930713i \(0.380812\pi\)
\(42\) 0 0
\(43\) 878703. 1.68540 0.842699 0.538385i \(-0.180965\pi\)
0.842699 + 0.538385i \(0.180965\pi\)
\(44\) 0 0
\(45\) 174720. + 302624.i 0.285824 + 0.495063i
\(46\) 0 0
\(47\) −327563. + 567356.i −0.460206 + 0.797101i −0.998971 0.0453557i \(-0.985558\pi\)
0.538765 + 0.842456i \(0.318891\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −365061. + 632304.i −0.385363 + 0.667468i
\(52\) 0 0
\(53\) 222418. + 385240.i 0.205213 + 0.355439i 0.950201 0.311639i \(-0.100878\pi\)
−0.744988 + 0.667078i \(0.767545\pi\)
\(54\) 0 0
\(55\) −976159. −0.791136
\(56\) 0 0
\(57\) −777146. −0.555828
\(58\) 0 0
\(59\) −1.07273e6 1.85802e6i −0.679996 1.17779i −0.974981 0.222286i \(-0.928648\pi\)
0.294985 0.955502i \(-0.404685\pi\)
\(60\) 0 0
\(61\) −296451. + 513468.i −0.167224 + 0.289640i −0.937443 0.348139i \(-0.886814\pi\)
0.770219 + 0.637780i \(0.220147\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 422939. 732552.i 0.191021 0.330858i
\(66\) 0 0
\(67\) −864332. 1.49707e6i −0.351090 0.608106i 0.635351 0.772224i \(-0.280856\pi\)
−0.986441 + 0.164118i \(0.947522\pi\)
\(68\) 0 0
\(69\) −7.04833e6 −2.58294
\(70\) 0 0
\(71\) 1.58060e6 0.524105 0.262052 0.965054i \(-0.415601\pi\)
0.262052 + 0.965054i \(0.415601\pi\)
\(72\) 0 0
\(73\) 2.16582e6 + 3.75131e6i 0.651617 + 1.12863i 0.982731 + 0.185042i \(0.0592423\pi\)
−0.331114 + 0.943591i \(0.607424\pi\)
\(74\) 0 0
\(75\) −1.77329e6 + 3.07143e6i −0.485362 + 0.840672i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.04259e6 5.26992e6i 0.694302 1.20257i −0.276113 0.961125i \(-0.589046\pi\)
0.970415 0.241442i \(-0.0776202\pi\)
\(80\) 0 0
\(81\) 2.35184e6 + 4.07350e6i 0.491711 + 0.851668i
\(82\) 0 0
\(83\) −8.10357e6 −1.55562 −0.777809 0.628500i \(-0.783669\pi\)
−0.777809 + 0.628500i \(0.783669\pi\)
\(84\) 0 0
\(85\) 1.72858e6 0.305297
\(86\) 0 0
\(87\) −1.71202e6 2.96531e6i −0.278735 0.482783i
\(88\) 0 0
\(89\) −4.93016e6 + 8.53929e6i −0.741303 + 1.28398i 0.210599 + 0.977573i \(0.432459\pi\)
−0.951902 + 0.306403i \(0.900875\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −8.21955e6 + 1.42367e7i −1.05964 + 1.83535i
\(94\) 0 0
\(95\) 919955. + 1.59341e6i 0.110086 + 0.190675i
\(96\) 0 0
\(97\) −171786. −0.0191111 −0.00955555 0.999954i \(-0.503042\pi\)
−0.00955555 + 0.999954i \(0.503042\pi\)
\(98\) 0 0
\(99\) 1.38007e7 1.42947
\(100\) 0 0
\(101\) −750685. 1.30022e6i −0.0724991 0.125572i 0.827497 0.561470i \(-0.189764\pi\)
−0.899996 + 0.435898i \(0.856431\pi\)
\(102\) 0 0
\(103\) 7.00495e6 1.21329e7i 0.631648 1.09405i −0.355567 0.934651i \(-0.615712\pi\)
0.987215 0.159395i \(-0.0509544\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.18255e7 + 2.04824e7i −0.933203 + 1.61636i −0.155397 + 0.987852i \(0.549666\pi\)
−0.777807 + 0.628504i \(0.783668\pi\)
\(108\) 0 0
\(109\) 9.12277e6 + 1.58011e7i 0.674736 + 1.16868i 0.976546 + 0.215309i \(0.0690759\pi\)
−0.301810 + 0.953368i \(0.597591\pi\)
\(110\) 0 0
\(111\) −2.87985e7 −1.99867
\(112\) 0 0
\(113\) 6.85019e6 0.446610 0.223305 0.974749i \(-0.428315\pi\)
0.223305 + 0.974749i \(0.428315\pi\)
\(114\) 0 0
\(115\) 8.34354e6 + 1.44514e7i 0.511573 + 0.886071i
\(116\) 0 0
\(117\) −5.97939e6 + 1.03566e7i −0.345149 + 0.597815i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.53242e6 + 1.65106e7i −0.489164 + 0.847257i
\(122\) 0 0
\(123\) 1.07184e7 + 1.85649e7i 0.519355 + 0.899549i
\(124\) 0 0
\(125\) 2.06791e7 0.946994
\(126\) 0 0
\(127\) 2.93488e7 1.27139 0.635693 0.771942i \(-0.280714\pi\)
0.635693 + 0.771942i \(0.280714\pi\)
\(128\) 0 0
\(129\) 2.91753e7 + 5.05331e7i 1.19661 + 2.07258i
\(130\) 0 0
\(131\) 5.15465e6 8.92812e6i 0.200332 0.346985i −0.748304 0.663356i \(-0.769131\pi\)
0.948635 + 0.316372i \(0.102465\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −186226. + 322552.i −0.00651435 + 0.0112832i
\(136\) 0 0
\(137\) −5.67534e6 9.82998e6i −0.188569 0.326611i 0.756204 0.654335i \(-0.227052\pi\)
−0.944773 + 0.327724i \(0.893718\pi\)
\(138\) 0 0
\(139\) −5.67661e7 −1.79282 −0.896412 0.443222i \(-0.853835\pi\)
−0.896412 + 0.443222i \(0.853835\pi\)
\(140\) 0 0
\(141\) −4.35039e7 −1.30696
\(142\) 0 0
\(143\) −1.67034e7 2.89311e7i −0.477670 0.827349i
\(144\) 0 0
\(145\) −4.05325e6 + 7.02043e6i −0.110412 + 0.191239i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.35563e7 + 2.34802e7i −0.335729 + 0.581500i −0.983625 0.180229i \(-0.942316\pi\)
0.647895 + 0.761729i \(0.275649\pi\)
\(150\) 0 0
\(151\) −1.61793e6 2.80234e6i −0.0382420 0.0662370i 0.846271 0.532753i \(-0.178842\pi\)
−0.884513 + 0.466516i \(0.845509\pi\)
\(152\) 0 0
\(153\) −2.44381e7 −0.551630
\(154\) 0 0
\(155\) 3.89199e7 0.839481
\(156\) 0 0
\(157\) −4.21922e7 7.30790e7i −0.870127 1.50711i −0.861864 0.507139i \(-0.830703\pi\)
−0.00826332 0.999966i \(-0.502630\pi\)
\(158\) 0 0
\(159\) −1.47698e7 + 2.55820e7i −0.291396 + 0.504713i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.14398e7 5.44554e7i 0.568622 0.984882i −0.428081 0.903740i \(-0.640810\pi\)
0.996703 0.0811413i \(-0.0258565\pi\)
\(164\) 0 0
\(165\) −3.24111e7 5.61377e7i −0.561695 0.972883i
\(166\) 0 0
\(167\) 7.14808e7 1.18763 0.593816 0.804601i \(-0.297621\pi\)
0.593816 + 0.804601i \(0.297621\pi\)
\(168\) 0 0
\(169\) −3.38003e7 −0.538663
\(170\) 0 0
\(171\) −1.30060e7 2.25271e7i −0.198911 0.344524i
\(172\) 0 0
\(173\) −3.30065e7 + 5.71690e7i −0.484662 + 0.839459i −0.999845 0.0176216i \(-0.994391\pi\)
0.515183 + 0.857080i \(0.327724\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.12348e7 1.23382e8i 0.965574 1.67242i
\(178\) 0 0
\(179\) 4.71103e6 + 8.15974e6i 0.0613946 + 0.106339i 0.895089 0.445887i \(-0.147112\pi\)
−0.833694 + 0.552226i \(0.813779\pi\)
\(180\) 0 0
\(181\) 3.65024e7 0.457558 0.228779 0.973478i \(-0.426527\pi\)
0.228779 + 0.973478i \(0.426527\pi\)
\(182\) 0 0
\(183\) −3.93719e7 −0.474906
\(184\) 0 0
\(185\) 3.40906e7 + 5.90466e7i 0.395852 + 0.685637i
\(186\) 0 0
\(187\) 3.41339e7 5.91216e7i 0.381715 0.661150i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.20307e7 7.27993e7i 0.436465 0.755980i −0.560949 0.827850i \(-0.689564\pi\)
0.997414 + 0.0718707i \(0.0228969\pi\)
\(192\) 0 0
\(193\) 3.33711e7 + 5.78004e7i 0.334133 + 0.578735i 0.983318 0.181895i \(-0.0582232\pi\)
−0.649185 + 0.760631i \(0.724890\pi\)
\(194\) 0 0
\(195\) 5.61709e7 0.542488
\(196\) 0 0
\(197\) −5.11607e7 −0.476765 −0.238383 0.971171i \(-0.576617\pi\)
−0.238383 + 0.971171i \(0.576617\pi\)
\(198\) 0 0
\(199\) −5.90834e7 1.02335e8i −0.531471 0.920535i −0.999325 0.0367292i \(-0.988306\pi\)
0.467854 0.883806i \(-0.345027\pi\)
\(200\) 0 0
\(201\) 5.73963e7 9.94133e7i 0.498537 0.863492i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.53762e7 4.39528e7i 0.205725 0.356326i
\(206\) 0 0
\(207\) −1.17958e8 2.04310e8i −0.924342 1.60101i
\(208\) 0 0
\(209\) 7.26646e7 0.550568
\(210\) 0 0
\(211\) −8.10808e7 −0.594196 −0.297098 0.954847i \(-0.596019\pi\)
−0.297098 + 0.954847i \(0.596019\pi\)
\(212\) 0 0
\(213\) 5.24802e7 + 9.08984e7i 0.372106 + 0.644507i
\(214\) 0 0
\(215\) 6.90731e7 1.19638e8i 0.473996 0.820985i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.43822e8 + 2.49107e8i −0.925276 + 1.60262i
\(220\) 0 0
\(221\) 2.95782e7 + 5.12310e7i 0.184331 + 0.319271i
\(222\) 0 0
\(223\) 2.40244e8 1.45072 0.725362 0.688368i \(-0.241672\pi\)
0.725362 + 0.688368i \(0.241672\pi\)
\(224\) 0 0
\(225\) −1.18709e8 −0.694775
\(226\) 0 0
\(227\) −3.81697e7 6.61118e7i −0.216585 0.375136i 0.737177 0.675700i \(-0.236158\pi\)
−0.953762 + 0.300564i \(0.902825\pi\)
\(228\) 0 0
\(229\) 3.46250e7 5.99723e7i 0.190531 0.330009i −0.754895 0.655845i \(-0.772312\pi\)
0.945426 + 0.325836i \(0.105646\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.07631e7 5.32832e7i 0.159325 0.275959i −0.775300 0.631593i \(-0.782402\pi\)
0.934625 + 0.355633i \(0.115735\pi\)
\(234\) 0 0
\(235\) 5.14982e7 + 8.91975e7i 0.258854 + 0.448348i
\(236\) 0 0
\(237\) 4.04089e8 1.97178
\(238\) 0 0
\(239\) −9.93248e7 −0.470614 −0.235307 0.971921i \(-0.575610\pi\)
−0.235307 + 0.971921i \(0.575610\pi\)
\(240\) 0 0
\(241\) 7.73023e7 + 1.33892e8i 0.355740 + 0.616160i 0.987244 0.159213i \(-0.0508955\pi\)
−0.631504 + 0.775372i \(0.717562\pi\)
\(242\) 0 0
\(243\) −1.58765e8 + 2.74989e8i −0.709796 + 1.22940i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.14833e7 + 5.45306e7i −0.132935 + 0.230251i
\(248\) 0 0
\(249\) −2.69060e8 4.66026e8i −1.10447 1.91299i
\(250\) 0 0
\(251\) 8.53238e7 0.340575 0.170287 0.985394i \(-0.445530\pi\)
0.170287 + 0.985394i \(0.445530\pi\)
\(252\) 0 0
\(253\) 6.59032e8 2.55850
\(254\) 0 0
\(255\) 5.73934e7 + 9.94084e7i 0.216756 + 0.375433i
\(256\) 0 0
\(257\) 2.13862e8 3.70419e8i 0.785900 1.36122i −0.142560 0.989786i \(-0.545534\pi\)
0.928460 0.371432i \(-0.121133\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.73036e7 9.92527e7i 0.199499 0.345542i
\(262\) 0 0
\(263\) 2.33554e8 + 4.04528e8i 0.791667 + 1.37121i 0.924934 + 0.380128i \(0.124120\pi\)
−0.133267 + 0.991080i \(0.542547\pi\)
\(264\) 0 0
\(265\) 6.99355e7 0.230854
\(266\) 0 0
\(267\) −6.54778e8 −2.10526
\(268\) 0 0
\(269\) −1.00001e8 1.73207e8i −0.313237 0.542542i 0.665824 0.746109i \(-0.268080\pi\)
−0.979061 + 0.203567i \(0.934747\pi\)
\(270\) 0 0
\(271\) 1.16453e8 2.01702e8i 0.355432 0.615627i −0.631760 0.775164i \(-0.717667\pi\)
0.987192 + 0.159538i \(0.0510004\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.65806e8 2.87185e8i 0.480769 0.832716i
\(276\) 0 0
\(277\) −2.23409e7 3.86955e7i −0.0631569 0.109391i 0.832718 0.553697i \(-0.186784\pi\)
−0.895875 + 0.444306i \(0.853450\pi\)
\(278\) 0 0
\(279\) −5.50238e8 −1.51683
\(280\) 0 0
\(281\) −1.38876e8 −0.373385 −0.186692 0.982418i \(-0.559777\pi\)
−0.186692 + 0.982418i \(0.559777\pi\)
\(282\) 0 0
\(283\) −1.64264e8 2.84513e8i −0.430814 0.746191i 0.566130 0.824316i \(-0.308440\pi\)
−0.996944 + 0.0781251i \(0.975107\pi\)
\(284\) 0 0
\(285\) −6.10899e7 + 1.05811e8i −0.156319 + 0.270753i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.44725e8 2.50672e8i 0.352697 0.610889i
\(290\) 0 0
\(291\) −5.70375e6 9.87918e6i −0.0135686 0.0235015i
\(292\) 0 0
\(293\) −1.91796e8 −0.445455 −0.222727 0.974881i \(-0.571496\pi\)
−0.222727 + 0.974881i \(0.571496\pi\)
\(294\) 0 0
\(295\) −3.37300e8 −0.764960
\(296\) 0 0
\(297\) 7.35472e6 + 1.27387e7i 0.0162899 + 0.0282149i
\(298\) 0 0
\(299\) −2.85538e8 + 4.94566e8i −0.617752 + 1.06998i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.98495e7 8.63419e7i 0.102947 0.178309i
\(304\) 0 0
\(305\) 4.66069e7 + 8.07255e7i 0.0940591 + 0.162915i
\(306\) 0 0
\(307\) 1.98092e8 0.390734 0.195367 0.980730i \(-0.437410\pi\)
0.195367 + 0.980730i \(0.437410\pi\)
\(308\) 0 0
\(309\) 9.30333e8 1.79384
\(310\) 0 0
\(311\) −2.00359e8 3.47033e8i −0.377701 0.654198i 0.613026 0.790063i \(-0.289952\pi\)
−0.990727 + 0.135865i \(0.956619\pi\)
\(312\) 0 0
\(313\) −2.65671e8 + 4.60156e8i −0.489711 + 0.848203i −0.999930 0.0118408i \(-0.996231\pi\)
0.510219 + 0.860044i \(0.329564\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.19124e7 3.79533e7i 0.0386351 0.0669180i −0.846061 0.533086i \(-0.821032\pi\)
0.884696 + 0.466168i \(0.154366\pi\)
\(318\) 0 0
\(319\) 1.60077e8 + 2.77262e8i 0.276097 + 0.478214i
\(320\) 0 0
\(321\) −1.57055e9 −2.65024
\(322\) 0 0
\(323\) −1.28674e8 −0.212462
\(324\) 0 0
\(325\) 1.43677e8 + 2.48856e8i 0.232165 + 0.402121i
\(326\) 0 0
\(327\) −6.05801e8 + 1.04928e9i −0.958104 + 1.65949i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.82233e8 + 3.15637e8i −0.276204 + 0.478399i −0.970438 0.241350i \(-0.922410\pi\)
0.694234 + 0.719749i \(0.255743\pi\)
\(332\) 0 0
\(333\) −4.81962e8 8.34784e8i −0.715251 1.23885i
\(334\) 0 0
\(335\) −2.71774e8 −0.394958
\(336\) 0 0
\(337\) 9.00453e8 1.28161 0.640806 0.767703i \(-0.278600\pi\)
0.640806 + 0.767703i \(0.278600\pi\)
\(338\) 0 0
\(339\) 2.27445e8 + 3.93946e8i 0.317086 + 0.549209i
\(340\) 0 0
\(341\) 7.68543e8 1.33116e9i 1.04961 1.81798i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.54056e8 + 9.59653e8i −0.726418 + 1.25819i
\(346\) 0 0
\(347\) 1.34815e8 + 2.33506e8i 0.173215 + 0.300017i 0.939542 0.342434i \(-0.111251\pi\)
−0.766327 + 0.642450i \(0.777918\pi\)
\(348\) 0 0
\(349\) 6.42732e8 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(350\) 0 0
\(351\) −1.27463e7 −0.0157329
\(352\) 0 0
\(353\) 4.98523e8 + 8.63466e8i 0.603217 + 1.04480i 0.992331 + 0.123612i \(0.0394479\pi\)
−0.389114 + 0.921190i \(0.627219\pi\)
\(354\) 0 0
\(355\) 1.24248e8 2.15204e8i 0.147398 0.255300i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.30674e8 + 1.43877e9i −0.947545 + 1.64120i −0.196972 + 0.980409i \(0.563111\pi\)
−0.750573 + 0.660787i \(0.770223\pi\)
\(360\) 0 0
\(361\) 3.78455e8 + 6.55504e8i 0.423389 + 0.733331i
\(362\) 0 0
\(363\) −1.26601e9 −1.38919
\(364\) 0 0
\(365\) 6.81004e8 0.733034
\(366\) 0 0
\(367\) −3.60430e8 6.24283e8i −0.380618 0.659250i 0.610532 0.791991i \(-0.290956\pi\)
−0.991151 + 0.132741i \(0.957622\pi\)
\(368\) 0 0
\(369\) −3.58761e8 + 6.21392e8i −0.371717 + 0.643833i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.39439e8 4.14721e8i 0.238899 0.413785i −0.721500 0.692415i \(-0.756547\pi\)
0.960399 + 0.278630i \(0.0898802\pi\)
\(374\) 0 0
\(375\) 6.86603e8 + 1.18923e9i 0.672351 + 1.16455i
\(376\) 0 0
\(377\) −2.77426e8 −0.266656
\(378\) 0 0
\(379\) −1.03267e9 −0.974373 −0.487186 0.873298i \(-0.661977\pi\)
−0.487186 + 0.873298i \(0.661977\pi\)
\(380\) 0 0
\(381\) 9.74460e8 + 1.68781e9i 0.902665 + 1.56346i
\(382\) 0 0
\(383\) 2.96721e8 5.13937e8i 0.269869 0.467427i −0.698959 0.715162i \(-0.746353\pi\)
0.968828 + 0.247735i \(0.0796862\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.76536e8 + 1.69141e9i −0.856445 + 1.48341i
\(388\) 0 0
\(389\) 1.07662e9 + 1.86476e9i 0.927340 + 1.60620i 0.787754 + 0.615990i \(0.211244\pi\)
0.139586 + 0.990210i \(0.455423\pi\)
\(390\) 0 0
\(391\) −1.16701e9 −0.987316
\(392\) 0 0
\(393\) 6.84593e8 0.568930
\(394\) 0 0
\(395\) −4.78344e8 8.28517e8i −0.390527 0.676412i
\(396\) 0 0
\(397\) −9.41231e7 + 1.63026e8i −0.0754969 + 0.130765i −0.901302 0.433191i \(-0.857388\pi\)
0.825805 + 0.563955i \(0.190721\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.79082e8 6.56590e8i 0.293581 0.508498i −0.681073 0.732216i \(-0.738486\pi\)
0.974654 + 0.223718i \(0.0718196\pi\)
\(402\) 0 0
\(403\) 6.65971e8 + 1.15350e9i 0.506860 + 0.877906i
\(404\) 0 0
\(405\) 7.39494e8 0.553149
\(406\) 0 0
\(407\) 2.69272e9 1.97975
\(408\) 0 0
\(409\) 7.53535e8 + 1.30516e9i 0.544593 + 0.943262i 0.998632 + 0.0522808i \(0.0166491\pi\)
−0.454040 + 0.890981i \(0.650018\pi\)
\(410\) 0 0
\(411\) 3.76873e8 6.52764e8i 0.267762 0.463778i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.37006e8 + 1.10333e9i −0.437497 + 0.757767i
\(416\) 0 0
\(417\) −1.88479e9 3.26455e9i −1.27288 2.20469i
\(418\) 0 0
\(419\) 1.51449e9 1.00581 0.502907 0.864341i \(-0.332264\pi\)
0.502907 + 0.864341i \(0.332264\pi\)
\(420\) 0 0
\(421\) −1.05648e9 −0.690037 −0.345019 0.938596i \(-0.612127\pi\)
−0.345019 + 0.938596i \(0.612127\pi\)
\(422\) 0 0
\(423\) −7.28067e8 1.26105e9i −0.467713 0.810103i
\(424\) 0 0
\(425\) −2.93609e8 + 5.08545e8i −0.185527 + 0.321342i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.10919e9 1.92118e9i 0.678277 1.17481i
\(430\) 0 0
\(431\) −1.26232e9 2.18640e9i −0.759450 1.31541i −0.943131 0.332420i \(-0.892135\pi\)
0.183681 0.982986i \(-0.441199\pi\)
\(432\) 0 0
\(433\) 4.25297e8 0.251759 0.125879 0.992046i \(-0.459825\pi\)
0.125879 + 0.992046i \(0.459825\pi\)
\(434\) 0 0
\(435\) −5.38315e8 −0.313562
\(436\) 0 0
\(437\) −6.21087e8 1.07575e9i −0.356014 0.616634i
\(438\) 0 0
\(439\) −5.36614e8 + 9.29443e8i −0.302717 + 0.524321i −0.976750 0.214380i \(-0.931227\pi\)
0.674034 + 0.738701i \(0.264560\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.89589e8 5.01584e8i 0.158259 0.274113i −0.775982 0.630756i \(-0.782745\pi\)
0.934241 + 0.356642i \(0.116078\pi\)
\(444\) 0 0
\(445\) 7.75101e8 + 1.34251e9i 0.416964 + 0.722202i
\(446\) 0 0
\(447\) −1.80042e9 −0.953450
\(448\) 0 0
\(449\) −2.44352e9 −1.27396 −0.636978 0.770882i \(-0.719816\pi\)
−0.636978 + 0.770882i \(0.719816\pi\)
\(450\) 0 0
\(451\) −1.00219e9 1.73585e9i −0.514439 0.891035i
\(452\) 0 0
\(453\) 1.07439e8 1.86090e8i 0.0543024 0.0940545i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.86749e8 4.96664e8i 0.140538 0.243420i −0.787161 0.616747i \(-0.788450\pi\)
0.927700 + 0.373328i \(0.121783\pi\)
\(458\) 0 0
\(459\) −1.30237e7 2.25577e7i −0.00628622 0.0108881i
\(460\) 0 0
\(461\) 4.58794e8 0.218105 0.109052 0.994036i \(-0.465218\pi\)
0.109052 + 0.994036i \(0.465218\pi\)
\(462\) 0 0
\(463\) −3.14598e8 −0.147307 −0.0736533 0.997284i \(-0.523466\pi\)
−0.0736533 + 0.997284i \(0.523466\pi\)
\(464\) 0 0
\(465\) 1.29225e9 + 2.23824e9i 0.596019 + 1.03233i
\(466\) 0 0
\(467\) −4.71062e8 + 8.15903e8i −0.214027 + 0.370706i −0.952971 0.303061i \(-0.901991\pi\)
0.738944 + 0.673767i \(0.235325\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.80179e9 4.85284e9i 1.23555 2.14004i
\(472\) 0 0
\(473\) −2.72794e9 4.72494e9i −1.18528 2.05297i
\(474\) 0 0
\(475\) −6.25038e8 −0.267595
\(476\) 0 0
\(477\) −9.88727e8 −0.417121
\(478\) 0 0
\(479\) −1.55182e9 2.68783e9i −0.645160 1.11745i −0.984265 0.176701i \(-0.943457\pi\)
0.339105 0.940749i \(-0.389876\pi\)
\(480\) 0 0
\(481\) −1.16667e9 + 2.02073e9i −0.478013 + 0.827944i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.35037e7 + 2.33892e7i −0.00537475 + 0.00930934i
\(486\) 0 0
\(487\) 9.49669e8 + 1.64488e9i 0.372581 + 0.645330i 0.989962 0.141335i \(-0.0451395\pi\)
−0.617381 + 0.786665i \(0.711806\pi\)
\(488\) 0 0
\(489\) 4.17555e9 1.61485
\(490\) 0 0
\(491\) −1.74671e9 −0.665940 −0.332970 0.942937i \(-0.608051\pi\)
−0.332970 + 0.942937i \(0.608051\pi\)
\(492\) 0 0
\(493\) −2.83464e8 4.90974e8i −0.106545 0.184541i
\(494\) 0 0
\(495\) 1.08484e9 1.87900e9i 0.402021 0.696320i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.90379e9 3.29746e9i 0.685910 1.18803i −0.287240 0.957859i \(-0.592738\pi\)
0.973150 0.230172i \(-0.0739288\pi\)
\(500\) 0 0
\(501\) 2.37336e9 + 4.11077e9i 0.843201 + 1.46047i
\(502\) 0 0
\(503\) −3.25718e8 −0.114118 −0.0570589 0.998371i \(-0.518172\pi\)
−0.0570589 + 0.998371i \(0.518172\pi\)
\(504\) 0 0
\(505\) −2.36040e8 −0.0815577
\(506\) 0 0
\(507\) −1.12226e9 1.94382e9i −0.382443 0.662410i
\(508\) 0 0
\(509\) 1.95090e9 3.37907e9i 0.655728 1.13575i −0.325983 0.945376i \(-0.605695\pi\)
0.981711 0.190379i \(-0.0609716\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.38625e7 2.40106e7i 0.00453347 0.00785220i
\(514\) 0 0
\(515\) −1.10129e9 1.90749e9i −0.355285 0.615372i
\(516\) 0 0
\(517\) 4.06770e9 1.29459
\(518\) 0 0
\(519\) −4.38362e9 −1.37641
\(520\) 0 0
\(521\) 1.46434e9 + 2.53631e9i 0.453638 + 0.785724i 0.998609 0.0527313i \(-0.0167927\pi\)
−0.544971 + 0.838455i \(0.683459\pi\)
\(522\) 0 0
\(523\) 2.24897e9 3.89532e9i 0.687428 1.19066i −0.285239 0.958456i \(-0.592073\pi\)
0.972667 0.232204i \(-0.0745936\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.36093e9 + 2.35720e9i −0.405041 + 0.701552i
\(528\) 0 0
\(529\) −3.93054e9 6.80789e9i −1.15440 1.99948i
\(530\) 0 0
\(531\) 4.76864e9 1.38218
\(532\) 0 0
\(533\) 1.73688e9 0.496849
\(534\) 0 0
\(535\) 1.85916e9 + 3.22016e9i 0.524902 + 0.909158i
\(536\) 0 0
\(537\) −3.12838e8 + 5.41851e8i −0.0871785 + 0.150998i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.88858e8 + 1.01993e9i −0.159889 + 0.276937i −0.934829 0.355099i \(-0.884447\pi\)
0.774939 + 0.632036i \(0.217780\pi\)
\(542\) 0 0
\(543\) 1.21198e9 + 2.09921e9i 0.324859 + 0.562672i
\(544\) 0 0
\(545\) 2.86849e9 0.759042
\(546\) 0 0
\(547\) 3.94940e9 1.03175 0.515877 0.856663i \(-0.327466\pi\)
0.515877 + 0.856663i \(0.327466\pi\)
\(548\) 0 0
\(549\) −6.58915e8 1.14127e9i −0.169952 0.294365i
\(550\) 0 0
\(551\) 3.01721e8 5.22595e8i 0.0768377 0.133087i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.26380e9 + 3.92101e9i −0.562098 + 0.973583i
\(556\) 0 0
\(557\) 2.10372e9 + 3.64374e9i 0.515815 + 0.893418i 0.999831 + 0.0183590i \(0.00584416\pi\)
−0.484016 + 0.875059i \(0.660823\pi\)
\(558\) 0 0
\(559\) 4.72773e9 1.14475
\(560\) 0 0
\(561\) 4.53334e9 1.08405
\(562\) 0 0
\(563\) −1.98661e9 3.44091e9i −0.469174 0.812632i 0.530205 0.847869i \(-0.322115\pi\)
−0.999379 + 0.0352368i \(0.988781\pi\)
\(564\) 0 0
\(565\) 5.38480e8 9.32675e8i 0.125603 0.217551i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.53009e9 + 4.38225e9i −0.575763 + 0.997250i 0.420196 + 0.907434i \(0.361961\pi\)
−0.995958 + 0.0898168i \(0.971372\pi\)
\(570\) 0 0
\(571\) −2.12052e8 3.67285e8i −0.0476668 0.0825613i 0.841208 0.540712i \(-0.181845\pi\)
−0.888874 + 0.458151i \(0.848512\pi\)
\(572\) 0 0
\(573\) 5.58213e9 1.23953
\(574\) 0 0
\(575\) −5.66878e9 −1.24352
\(576\) 0 0
\(577\) 2.51195e9 + 4.35082e9i 0.544371 + 0.942878i 0.998646 + 0.0520169i \(0.0165650\pi\)
−0.454275 + 0.890861i \(0.650102\pi\)
\(578\) 0 0
\(579\) −2.21602e9 + 3.83826e9i −0.474459 + 0.821786i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.38100e9 2.39196e9i 0.288638 0.499936i
\(584\) 0 0
\(585\) 9.40056e8 + 1.62823e9i 0.194137 + 0.336255i
\(586\) 0 0
\(587\) −8.56543e9 −1.74790 −0.873948 0.486019i \(-0.838449\pi\)
−0.873948 + 0.486019i \(0.838449\pi\)
\(588\) 0 0
\(589\) −2.89717e9 −0.584212
\(590\) 0 0
\(591\) −1.69867e9 2.94219e9i −0.338496 0.586293i
\(592\) 0 0
\(593\) 2.89605e9 5.01611e9i 0.570315 0.987815i −0.426218 0.904621i \(-0.640154\pi\)
0.996533 0.0831947i \(-0.0265123\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.92346e9 6.79562e9i 0.754673 1.30713i
\(598\) 0 0
\(599\) −8.72232e8 1.51075e9i −0.165820 0.287210i 0.771126 0.636683i \(-0.219694\pi\)
−0.936946 + 0.349473i \(0.886361\pi\)
\(600\) 0 0
\(601\) −8.05605e9 −1.51378 −0.756888 0.653545i \(-0.773281\pi\)
−0.756888 + 0.653545i \(0.773281\pi\)
\(602\) 0 0
\(603\) 3.84226e9 0.713635
\(604\) 0 0
\(605\) 1.49865e9 + 2.59574e9i 0.275142 + 0.476559i
\(606\) 0 0
\(607\) −2.34963e9 + 4.06967e9i −0.426421 + 0.738583i −0.996552 0.0829709i \(-0.973559\pi\)
0.570131 + 0.821554i \(0.306892\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.76240e9 + 3.05257e9i −0.312580 + 0.541405i
\(612\) 0 0
\(613\) −1.15331e9 1.99759e9i −0.202225 0.350263i 0.747020 0.664801i \(-0.231484\pi\)
−0.949245 + 0.314538i \(0.898150\pi\)
\(614\) 0 0
\(615\) 3.37023e9 0.584247
\(616\) 0 0
\(617\) −8.81255e9 −1.51044 −0.755220 0.655471i \(-0.772470\pi\)
−0.755220 + 0.655471i \(0.772470\pi\)
\(618\) 0 0
\(619\) 2.75824e9 + 4.77742e9i 0.467428 + 0.809610i 0.999307 0.0372106i \(-0.0118472\pi\)
−0.531879 + 0.846820i \(0.678514\pi\)
\(620\) 0 0
\(621\) 1.25726e8 2.17764e8i 0.0210671 0.0364893i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.60707e8 + 7.97967e8i −0.0754822 + 0.130739i
\(626\) 0 0
\(627\) 2.41266e9 + 4.17885e9i 0.390895 + 0.677049i
\(628\) 0 0
\(629\) −4.76825e9 −0.763980
\(630\) 0 0
\(631\) 4.00663e9 0.634857 0.317429 0.948282i \(-0.397181\pi\)
0.317429 + 0.948282i \(0.397181\pi\)
\(632\) 0 0
\(633\) −2.69210e9 4.66286e9i −0.421870 0.730700i
\(634\) 0 0
\(635\) 2.30705e9 3.99593e9i 0.357561 0.619313i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.75658e9 + 3.04249e9i −0.266327 + 0.461292i
\(640\) 0 0
\(641\) −3.76178e9 6.51560e9i −0.564145 0.977128i −0.997129 0.0757261i \(-0.975873\pi\)
0.432984 0.901402i \(-0.357461\pi\)
\(642\) 0 0
\(643\) −1.08744e10 −1.61311 −0.806557 0.591156i \(-0.798672\pi\)
−0.806557 + 0.591156i \(0.798672\pi\)
\(644\) 0 0
\(645\) 9.17366e9 1.34612
\(646\) 0 0
\(647\) 1.58668e9 + 2.74821e9i 0.230316 + 0.398919i 0.957901 0.287098i \(-0.0926907\pi\)
−0.727585 + 0.686018i \(0.759357\pi\)
\(648\) 0 0
\(649\) −6.66058e9 + 1.15365e10i −0.956435 + 1.65659i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.97427e9 6.88363e9i 0.558549 0.967434i −0.439069 0.898453i \(-0.644692\pi\)
0.997618 0.0689813i \(-0.0219749\pi\)
\(654\) 0 0
\(655\) −8.10394e8 1.40364e9i −0.112681 0.195170i
\(656\) 0 0
\(657\) −9.62783e9 −1.32449
\(658\) 0 0
\(659\) −1.08219e10 −1.47301 −0.736504 0.676433i \(-0.763525\pi\)
−0.736504 + 0.676433i \(0.763525\pi\)
\(660\) 0 0
\(661\) −4.93054e9 8.53995e9i −0.664033 1.15014i −0.979547 0.201217i \(-0.935510\pi\)
0.315514 0.948921i \(-0.397823\pi\)
\(662\) 0 0
\(663\) −1.96416e9 + 3.40202e9i −0.261745 + 0.453356i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.73646e9 4.73968e9i 0.357066 0.618456i
\(668\) 0 0
\(669\) 7.97673e9 + 1.38161e10i 1.02999 + 1.78400i
\(670\) 0 0
\(671\) 3.68135e9 0.470411
\(672\) 0 0
\(673\) 1.48659e10 1.87992 0.939959 0.341288i \(-0.110863\pi\)
0.939959 + 0.341288i \(0.110863\pi\)
\(674\) 0 0
\(675\) −6.32629e7 1.09575e8i −0.00791746 0.0137135i
\(676\) 0 0
\(677\) 2.85564e9 4.94611e9i 0.353706 0.612637i −0.633190 0.773997i \(-0.718255\pi\)
0.986896 + 0.161360i \(0.0515880\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.53467e9 4.39018e9i 0.307544 0.532681i
\(682\) 0 0
\(683\) −4.70337e9 8.14647e9i −0.564854 0.978356i −0.997063 0.0765825i \(-0.975599\pi\)
0.432209 0.901773i \(-0.357734\pi\)
\(684\) 0 0
\(685\) −1.78451e9 −0.212130
\(686\) 0 0
\(687\) 4.59857e9 0.541096
\(688\) 0 0
\(689\) 1.19669e9 + 2.07273e9i 0.139384 + 0.241421i
\(690\) 0 0
\(691\) −8.15556e9 + 1.41258e10i −0.940331 + 1.62870i −0.175490 + 0.984481i \(0.556151\pi\)
−0.764841 + 0.644219i \(0.777182\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.46228e9 + 7.72889e9i −0.504208 + 0.873314i
\(696\) 0 0
\(697\) 1.77468e9 + 3.07384e9i 0.198521 + 0.343848i
\(698\) 0 0
\(699\) 4.08567e9 0.452473
\(700\) 0 0
\(701\) 1.18926e10 1.30396 0.651979 0.758237i \(-0.273939\pi\)
0.651979 + 0.758237i \(0.273939\pi\)
\(702\) 0 0
\(703\) −2.53768e9 4.39539e9i −0.275482 0.477148i
\(704\) 0 0
\(705\) −3.41976e9 + 5.92320e9i −0.367565 + 0.636640i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.49704e9 + 1.29853e10i −0.790002 + 1.36832i 0.135963 + 0.990714i \(0.456587\pi\)
−0.925965 + 0.377609i \(0.876746\pi\)
\(710\) 0 0
\(711\) 6.76269e9 + 1.17133e10i 0.705628 + 1.22218i
\(712\) 0 0
\(713\) −2.62759e10 −2.71484
\(714\) 0 0
\(715\) −5.25208e9 −0.537354
\(716\) 0 0
\(717\) −3.29785e9 5.71204e9i −0.334129 0.578728i
\(718\) 0 0
\(719\) −2.17818e9 + 3.77272e9i −0.218546 + 0.378533i −0.954364 0.298647i \(-0.903465\pi\)
0.735817 + 0.677180i \(0.236798\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.13329e9 + 8.89112e9i −0.505140 + 0.874928i
\(724\) 0 0
\(725\) −1.37693e9 2.38492e9i −0.134193 0.232429i
\(726\) 0 0
\(727\) 4.64655e9 0.448498 0.224249 0.974532i \(-0.428007\pi\)
0.224249 + 0.974532i \(0.428007\pi\)
\(728\) 0 0
\(729\) −1.07988e10 −1.03235
\(730\) 0 0
\(731\) 4.83063e9 + 8.36690e9i 0.457397 + 0.792234i
\(732\) 0 0
\(733\) 8.35641e9 1.44737e10i 0.783710 1.35743i −0.146056 0.989276i \(-0.546658\pi\)
0.929766 0.368150i \(-0.120009\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.36666e9 + 9.29533e9i −0.493819 + 0.855320i
\(738\) 0 0
\(739\) 5.20893e9 + 9.02213e9i 0.474781 + 0.822344i 0.999583 0.0288800i \(-0.00919406\pi\)
−0.524802 + 0.851224i \(0.675861\pi\)
\(740\) 0 0
\(741\) −4.18132e9 −0.377528
\(742\) 0 0
\(743\) 1.42061e8 0.0127061 0.00635307 0.999980i \(-0.497978\pi\)
0.00635307 + 0.999980i \(0.497978\pi\)
\(744\) 0 0
\(745\) 2.13127e9 + 3.69147e9i 0.188839 + 0.327078i
\(746\) 0 0
\(747\) 9.00580e9 1.55985e10i 0.790497 1.36918i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.34693e9 2.33295e9i 0.116039 0.200986i −0.802155 0.597115i \(-0.796314\pi\)
0.918195 + 0.396129i \(0.129647\pi\)
\(752\) 0 0
\(753\) 2.83298e9 + 4.90687e9i 0.241803 + 0.418815i
\(754\) 0 0
\(755\) −5.08729e8 −0.0430202
\(756\) 0 0
\(757\) −4.63791e8 −0.0388585 −0.0194293 0.999811i \(-0.506185\pi\)
−0.0194293 + 0.999811i \(0.506185\pi\)
\(758\) 0 0
\(759\) 2.18816e10 + 3.79001e10i 1.81649 + 3.14626i
\(760\) 0 0
\(761\) 8.57486e9 1.48521e10i 0.705311 1.22163i −0.261268 0.965266i \(-0.584141\pi\)
0.966579 0.256369i \(-0.0825261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.92103e9 + 3.32733e9i −0.155139 + 0.268708i
\(766\) 0 0
\(767\) −5.77164e9 9.99677e9i −0.461865 0.799974i
\(768\) 0 0
\(769\) 2.83370e9 0.224705 0.112352 0.993668i \(-0.464161\pi\)
0.112352 + 0.993668i \(0.464161\pi\)
\(770\) 0 0
\(771\) 2.84031e10 2.23191
\(772\) 0 0
\(773\) −3.60180e9 6.23849e9i −0.280473 0.485793i 0.691028 0.722828i \(-0.257158\pi\)
−0.971501 + 0.237034i \(0.923825\pi\)
\(774\) 0 0
\(775\) −6.61076e9 + 1.14502e10i −0.510147 + 0.883601i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.88898e9 + 3.27181e9i −0.143168 + 0.247975i
\(780\) 0 0
\(781\) −4.90700e9 8.49917e9i −0.368585 0.638407i
\(782\) 0 0
\(783\) 1.22154e8 0.00909373
\(784\) 0 0
\(785\) −1.32666e10 −0.978848
\(786\) 0 0
\(787\) 3.41031e9 + 5.90683e9i 0.249392 + 0.431960i 0.963357 0.268222i \(-0.0864359\pi\)
−0.713965 + 0.700181i \(0.753103\pi\)
\(788\) 0 0
\(789\) −1.55093e10 + 2.68628e10i −1.12414 + 1.94707i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.59501e9 + 2.76264e9i −0.113581 + 0.196729i
\(794\) 0 0
\(795\) 2.32205e9 + 4.02190e9i 0.163903 + 0.283888i
\(796\) 0 0
\(797\) 1.38571e10 0.969544 0.484772 0.874641i \(-0.338903\pi\)
0.484772 + 0.874641i \(0.338903\pi\)
\(798\) 0 0
\(799\) −7.20306e9 −0.499578
\(800\) 0 0
\(801\) −1.09581e10 1.89801e10i −0.753396 1.30492i
\(802\) 0 0
\(803\) 1.34476e10 2.32920e10i 0.916519 1.58746i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.64063e9 1.15019e10i 0.444787 0.770393i
\(808\) 0 0
\(809\) 2.60291e9 + 4.50837e9i 0.172838 + 0.299364i 0.939411 0.342793i \(-0.111373\pi\)
−0.766573 + 0.642157i \(0.778040\pi\)
\(810\) 0 0
\(811\) 1.44908e9 0.0953938 0.0476969 0.998862i \(-0.484812\pi\)
0.0476969 + 0.998862i \(0.484812\pi\)
\(812\) 0 0
\(813\) 1.54662e10 1.00941
\(814\) 0 0
\(815\) −4.94285e9 8.56126e9i −0.319835 0.553970i
\(816\) 0 0
\(817\) −5.14175e9 + 8.90578e9i −0.329863 + 0.571340i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.34721e10 + 2.33344e10i −0.849638 + 1.47162i 0.0318930 + 0.999491i \(0.489846\pi\)
−0.881531 + 0.472125i \(0.843487\pi\)
\(822\) 0 0
\(823\) 5.60170e9 + 9.70243e9i 0.350284 + 0.606710i 0.986299 0.164967i \(-0.0527517\pi\)
−0.636015 + 0.771677i \(0.719418\pi\)
\(824\) 0 0
\(825\) 2.20208e10 1.36535
\(826\) 0 0
\(827\) −7.78707e9 −0.478746 −0.239373 0.970928i \(-0.576942\pi\)
−0.239373 + 0.970928i \(0.576942\pi\)
\(828\) 0 0
\(829\) 5.44374e9 + 9.42883e9i 0.331861 + 0.574800i 0.982877 0.184264i \(-0.0589901\pi\)
−0.651016 + 0.759064i \(0.725657\pi\)
\(830\) 0 0
\(831\) 1.48355e9 2.56959e9i 0.0896809 0.155332i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.61897e9 9.73235e9i 0.334006 0.578515i
\(836\) 0 0
\(837\) −2.93236e8 5.07899e8i −0.0172853 0.0299391i
\(838\) 0 0
\(839\) −8.20806e9 −0.479815 −0.239907 0.970796i \(-0.577117\pi\)
−0.239907 + 0.970796i \(0.577117\pi\)
\(840\) 0 0
\(841\) −1.45912e10 −0.845871
\(842\) 0 0
\(843\) −4.61107e9 7.98661e9i −0.265097 0.459162i
\(844\) 0 0
\(845\) −2.65698e9 + 4.60202e9i −0.151492 + 0.262392i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.09080e10 1.88932e10i 0.611742 1.05957i
\(850\) 0 0
\(851\) −2.30155e10 3.98640e10i −1.28017 2.21731i
\(852\) 0 0
\(853\) 4.95254e9 0.273216 0.136608 0.990625i \(-0.456380\pi\)
0.136608 + 0.990625i \(0.456380\pi\)
\(854\) 0 0
\(855\) −4.08952e9 −0.223764
\(856\) 0 0
\(857\) −1.69082e10 2.92859e10i −0.917625 1.58937i −0.803011 0.595964i \(-0.796770\pi\)
−0.114614 0.993410i \(-0.536563\pi\)
\(858\) 0 0
\(859\) 3.24901e9 5.62746e9i 0.174894 0.302926i −0.765230 0.643756i \(-0.777375\pi\)
0.940125 + 0.340831i \(0.110708\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.07004e10 1.85336e10i 0.566709 0.981569i −0.430179 0.902744i \(-0.641550\pi\)
0.996888 0.0788258i \(-0.0251171\pi\)
\(864\) 0 0
\(865\) 5.18916e9 + 8.98789e9i 0.272609 + 0.472173i
\(866\) 0 0
\(867\) 1.92211e10 1.00164
\(868\) 0 0
\(869\) −3.77830e10 −1.95311
\(870\) 0 0
\(871\) −4.65041e9 8.05475e9i −0.238467 0.413036i
\(872\) 0 0
\(873\) 1.90912e8 3.30669e8i 0.00971143 0.0168207i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.40547e10 2.43434e10i 0.703595 1.21866i −0.263601 0.964632i \(-0.584910\pi\)
0.967196 0.254031i \(-0.0817564\pi\)
\(878\) 0 0
\(879\) −6.36816e9 1.10300e10i −0.316266 0.547789i
\(880\) 0 0
\(881\) 8.82922e9 0.435017 0.217509 0.976058i \(-0.430207\pi\)
0.217509 + 0.976058i \(0.430207\pi\)
\(882\) 0 0
\(883\) 2.59216e10 1.26707 0.633534 0.773715i \(-0.281604\pi\)
0.633534 + 0.773715i \(0.281604\pi\)
\(884\) 0 0
\(885\) −1.11993e10 1.93977e10i −0.543110 0.940694i
\(886\) 0 0
\(887\) 9.46987e9 1.64023e10i 0.455629 0.789173i −0.543095 0.839671i \(-0.682748\pi\)
0.998724 + 0.0504984i \(0.0160810\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.46026e10 2.52925e10i 0.691606 1.19790i
\(892\) 0 0
\(893\) −3.83349e9 6.63980e9i −0.180142 0.312014i
\(894\) 0 0
\(895\) 1.48130e9 0.0690657
\(896\) 0 0
\(897\) −3.79225e10 −1.75438
\(898\) 0 0
\(899\) −6.38235e9 1.10545e10i −0.292969 0.507437i
\(900\) 0 0
\(901\) −2.44547e9 + 4.23568e9i −0.111385 + 0.192924i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.86938e9 4.96991e9i 0.128682 0.222884i
\(906\) 0 0
\(907\) −4.51010e9 7.81172e9i −0.200706 0.347633i 0.748050 0.663642i \(-0.230990\pi\)
−0.948756 + 0.316009i \(0.897657\pi\)
\(908\) 0 0
\(909\) 3.33706e9 0.147364
\(910\) 0 0
\(911\) 3.38470e10 1.48322 0.741610 0.670831i \(-0.234062\pi\)
0.741610 + 0.670831i \(0.234062\pi\)
\(912\) 0 0
\(913\) 2.51576e10 + 4.35743e10i 1.09401 + 1.89489i
\(914\) 0 0
\(915\) −3.09495e9 + 5.36061e9i −0.133561 + 0.231334i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.75389e10 3.03783e10i 0.745415 1.29110i −0.204585 0.978849i \(-0.565585\pi\)
0.950001 0.312248i \(-0.101082\pi\)
\(920\) 0 0
\(921\) 6.57717e9 + 1.13920e10i 0.277415 + 0.480497i
\(922\) 0 0
\(923\) 8.50419e9 0.355981
\(924\) 0 0
\(925\) −2.31619e10 −0.962228
\(926\) 0 0
\(927\) 1.55697e10 + 2.69676e10i 0.641951 + 1.11189i
\(928\) 0 0
\(929\) 1.18689e10 2.05575e10i 0.485685 0.841230i −0.514180 0.857682i \(-0.671904\pi\)
0.999865 + 0.0164520i \(0.00523706\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.33049e10 2.30448e10i 0.536324 0.928941i
\(934\) 0 0
\(935\) −5.36639e9 9.29487e9i −0.214705 0.371880i
\(936\) 0 0
\(937\) 2.48298e9 0.0986017 0.0493009 0.998784i \(-0.484301\pi\)
0.0493009 + 0.998784i \(0.484301\pi\)
\(938\) 0 0
\(939\) −3.52840e10 −1.39075
\(940\) 0 0
\(941\) −8.52745e9 1.47700e10i −0.333623 0.577851i 0.649597 0.760279i \(-0.274938\pi\)
−0.983219 + 0.182428i \(0.941604\pi\)
\(942\) 0 0
\(943\) −1.71321e10 + 2.96737e10i −0.665305 + 1.15234i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.77604e9 + 1.69326e10i −0.374057 + 0.647886i −0.990185 0.139760i \(-0.955367\pi\)
0.616128 + 0.787646i \(0.288700\pi\)
\(948\) 0 0
\(949\) 1.16529e10 + 2.01834e10i 0.442590 + 0.766588i
\(950\) 0 0
\(951\) 2.91020e9 0.109721
\(952\) 0 0
\(953\) 1.99979e10 0.748444 0.374222 0.927339i \(-0.377910\pi\)
0.374222 + 0.927339i \(0.377910\pi\)
\(954\) 0 0
\(955\) −6.60790e9 1.14452e10i −0.245500 0.425219i
\(956\) 0 0
\(957\) −1.06300e10 + 1.84117e10i −0.392049 + 0.679049i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.68858e10 + 2.92471e10i −0.613749 + 1.06304i
\(962\) 0 0
\(963\) −2.62843e10 4.55257e10i −0.948426 1.64272i
\(964\) 0 0
\(965\) 1.04929e10 0.375882
\(966\) 0 0
\(967\) 2.36717e10 0.841853 0.420927 0.907095i \(-0.361705\pi\)
0.420927 + 0.907095i \(0.361705\pi\)
\(968\) 0 0
\(969\) −4.27233e9 7.39989e9i −0.150845 0.261271i
\(970\) 0 0
\(971\) 2.74938e10 4.76207e10i 0.963757 1.66928i 0.250839 0.968029i \(-0.419293\pi\)
0.712918 0.701248i \(-0.247373\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −9.54093e9 + 1.65254e10i −0.329666 + 0.570999i
\(976\) 0 0
\(977\) 2.72177e9 + 4.71424e9i 0.0933727 + 0.161726i 0.908928 0.416952i \(-0.136902\pi\)
−0.815556 + 0.578679i \(0.803569\pi\)
\(978\) 0 0
\(979\) 6.12230e10 2.08533
\(980\) 0 0
\(981\) −4.05539e10 −1.37149
\(982\) 0 0
\(983\) −1.83178e10 3.17273e10i −0.615086 1.06536i −0.990369 0.138450i \(-0.955788\pi\)
0.375284 0.926910i \(-0.377545\pi\)
\(984\) 0 0
\(985\) −4.02165e9 + 6.96569e9i −0.134084 + 0.232240i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.66332e10 + 8.07710e10i −1.53288 + 2.65502i
\(990\) 0 0
\(991\) −6.84498e8 1.18559e9i −0.0223416 0.0386968i 0.854638 0.519224i \(-0.173779\pi\)
−0.876980 + 0.480527i \(0.840445\pi\)
\(992\) 0 0
\(993\) −2.42025e10 −0.784401
\(994\) 0 0
\(995\) −1.85777e10 −0.597877
\(996\) 0 0
\(997\) −6.81654e9 1.18066e10i −0.217837 0.377304i 0.736310 0.676645i \(-0.236567\pi\)
−0.954146 + 0.299341i \(0.903233\pi\)
\(998\) 0 0
\(999\) 5.13700e8 8.89755e8i 0.0163016 0.0282352i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.8.e.d.177.2 4
7.2 even 3 28.8.a.a.1.1 2
7.3 odd 6 196.8.e.a.165.1 4
7.4 even 3 inner 196.8.e.d.165.2 4
7.5 odd 6 196.8.a.b.1.2 2
7.6 odd 2 196.8.e.a.177.1 4
21.2 odd 6 252.8.a.e.1.2 2
28.23 odd 6 112.8.a.i.1.2 2
56.37 even 6 448.8.a.p.1.2 2
56.51 odd 6 448.8.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.a.1.1 2 7.2 even 3
112.8.a.i.1.2 2 28.23 odd 6
196.8.a.b.1.2 2 7.5 odd 6
196.8.e.a.165.1 4 7.3 odd 6
196.8.e.a.177.1 4 7.6 odd 2
196.8.e.d.165.2 4 7.4 even 3 inner
196.8.e.d.177.2 4 1.1 even 1 trivial
252.8.a.e.1.2 2 21.2 odd 6
448.8.a.n.1.1 2 56.51 odd 6
448.8.a.p.1.2 2 56.37 even 6