Properties

Label 112.8.a.i.1.2
Level $112$
Weight $8$
Character 112.1
Self dual yes
Analytic conductor $34.987$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.9871228542\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3529}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 882 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 28)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-29.2027\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+66.4054 q^{3} -157.216 q^{5} -343.000 q^{7} +2222.68 q^{9} -6209.03 q^{11} +5380.35 q^{13} -10440.0 q^{15} -10994.9 q^{17} -11703.1 q^{19} -22777.0 q^{21} -106141. q^{23} -53408.1 q^{25} +2369.04 q^{27} -51562.7 q^{29} +247557. q^{31} -412313. q^{33} +53925.1 q^{35} +433678. q^{37} +357284. q^{39} +322819. q^{41} -878703. q^{43} -349440. q^{45} -655126. q^{47} +117649. q^{49} -730121. q^{51} -444837. q^{53} +976159. q^{55} -777146. q^{57} -2.14545e6 q^{59} +592902. q^{61} -762378. q^{63} -845878. q^{65} -1.72866e6 q^{67} -7.04833e6 q^{69} -1.58060e6 q^{71} -4.33164e6 q^{73} -3.54658e6 q^{75} +2.12970e6 q^{77} +6.08518e6 q^{79} -4.70367e6 q^{81} +8.10357e6 q^{83} +1.72858e6 q^{85} -3.42404e6 q^{87} +9.86032e6 q^{89} -1.84546e6 q^{91} +1.64391e7 q^{93} +1.83991e6 q^{95} -171786. q^{97} -1.38007e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{3} + 42 q^{5} - 686 q^{7} + 2782 q^{9} - 7428 q^{11} + 11830 q^{13} - 20880 q^{15} + 15792 q^{17} - 26614 q^{19} - 4802 q^{21} - 32640 q^{23} - 91846 q^{25} + 87668 q^{27} - 158016 q^{29} + 180740 q^{31}+ \cdots - 14482452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 66.4054 1.41997 0.709985 0.704217i \(-0.248702\pi\)
0.709985 + 0.704217i \(0.248702\pi\)
\(4\) 0 0
\(5\) −157.216 −0.562474 −0.281237 0.959638i \(-0.590745\pi\)
−0.281237 + 0.959638i \(0.590745\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 0 0
\(9\) 2222.68 1.01631
\(10\) 0 0
\(11\) −6209.03 −1.40653 −0.703265 0.710928i \(-0.748275\pi\)
−0.703265 + 0.710928i \(0.748275\pi\)
\(12\) 0 0
\(13\) 5380.35 0.679218 0.339609 0.940567i \(-0.389705\pi\)
0.339609 + 0.940567i \(0.389705\pi\)
\(14\) 0 0
\(15\) −10440.0 −0.798695
\(16\) 0 0
\(17\) −10994.9 −0.542776 −0.271388 0.962470i \(-0.587483\pi\)
−0.271388 + 0.962470i \(0.587483\pi\)
\(18\) 0 0
\(19\) −11703.1 −0.391437 −0.195718 0.980660i \(-0.562704\pi\)
−0.195718 + 0.980660i \(0.562704\pi\)
\(20\) 0 0
\(21\) −22777.0 −0.536698
\(22\) 0 0
\(23\) −106141. −1.81901 −0.909506 0.415691i \(-0.863540\pi\)
−0.909506 + 0.415691i \(0.863540\pi\)
\(24\) 0 0
\(25\) −53408.1 −0.683623
\(26\) 0 0
\(27\) 2369.04 0.0231632
\(28\) 0 0
\(29\) −51562.7 −0.392593 −0.196297 0.980545i \(-0.562892\pi\)
−0.196297 + 0.980545i \(0.562892\pi\)
\(30\) 0 0
\(31\) 247557. 1.49248 0.746240 0.665677i \(-0.231857\pi\)
0.746240 + 0.665677i \(0.231857\pi\)
\(32\) 0 0
\(33\) −412313. −1.99723
\(34\) 0 0
\(35\) 53925.1 0.212595
\(36\) 0 0
\(37\) 433678. 1.40754 0.703771 0.710427i \(-0.251498\pi\)
0.703771 + 0.710427i \(0.251498\pi\)
\(38\) 0 0
\(39\) 357284. 0.964468
\(40\) 0 0
\(41\) 322819. 0.731501 0.365751 0.930713i \(-0.380812\pi\)
0.365751 + 0.930713i \(0.380812\pi\)
\(42\) 0 0
\(43\) −878703. −1.68540 −0.842699 0.538385i \(-0.819035\pi\)
−0.842699 + 0.538385i \(0.819035\pi\)
\(44\) 0 0
\(45\) −349440. −0.571649
\(46\) 0 0
\(47\) −655126. −0.920413 −0.460206 0.887812i \(-0.652225\pi\)
−0.460206 + 0.887812i \(0.652225\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) −730121. −0.770725
\(52\) 0 0
\(53\) −444837. −0.410426 −0.205213 0.978717i \(-0.565789\pi\)
−0.205213 + 0.978717i \(0.565789\pi\)
\(54\) 0 0
\(55\) 976159. 0.791136
\(56\) 0 0
\(57\) −777146. −0.555828
\(58\) 0 0
\(59\) −2.14545e6 −1.35999 −0.679996 0.733216i \(-0.738019\pi\)
−0.679996 + 0.733216i \(0.738019\pi\)
\(60\) 0 0
\(61\) 592902. 0.334448 0.167224 0.985919i \(-0.446520\pi\)
0.167224 + 0.985919i \(0.446520\pi\)
\(62\) 0 0
\(63\) −762378. −0.384130
\(64\) 0 0
\(65\) −845878. −0.382042
\(66\) 0 0
\(67\) −1.72866e6 −0.702180 −0.351090 0.936342i \(-0.614189\pi\)
−0.351090 + 0.936342i \(0.614189\pi\)
\(68\) 0 0
\(69\) −7.04833e6 −2.58294
\(70\) 0 0
\(71\) −1.58060e6 −0.524105 −0.262052 0.965054i \(-0.584399\pi\)
−0.262052 + 0.965054i \(0.584399\pi\)
\(72\) 0 0
\(73\) −4.33164e6 −1.30323 −0.651617 0.758548i \(-0.725909\pi\)
−0.651617 + 0.758548i \(0.725909\pi\)
\(74\) 0 0
\(75\) −3.54658e6 −0.970724
\(76\) 0 0
\(77\) 2.12970e6 0.531618
\(78\) 0 0
\(79\) 6.08518e6 1.38860 0.694302 0.719684i \(-0.255713\pi\)
0.694302 + 0.719684i \(0.255713\pi\)
\(80\) 0 0
\(81\) −4.70367e6 −0.983421
\(82\) 0 0
\(83\) 8.10357e6 1.55562 0.777809 0.628500i \(-0.216331\pi\)
0.777809 + 0.628500i \(0.216331\pi\)
\(84\) 0 0
\(85\) 1.72858e6 0.305297
\(86\) 0 0
\(87\) −3.42404e6 −0.557470
\(88\) 0 0
\(89\) 9.86032e6 1.48261 0.741303 0.671170i \(-0.234208\pi\)
0.741303 + 0.671170i \(0.234208\pi\)
\(90\) 0 0
\(91\) −1.84546e6 −0.256720
\(92\) 0 0
\(93\) 1.64391e7 2.11928
\(94\) 0 0
\(95\) 1.83991e6 0.220173
\(96\) 0 0
\(97\) −171786. −0.0191111 −0.00955555 0.999954i \(-0.503042\pi\)
−0.00955555 + 0.999954i \(0.503042\pi\)
\(98\) 0 0
\(99\) −1.38007e7 −1.42947
\(100\) 0 0
\(101\) 1.50137e6 0.144998 0.0724991 0.997368i \(-0.476903\pi\)
0.0724991 + 0.997368i \(0.476903\pi\)
\(102\) 0 0
\(103\) 1.40099e7 1.26330 0.631648 0.775256i \(-0.282379\pi\)
0.631648 + 0.775256i \(0.282379\pi\)
\(104\) 0 0
\(105\) 3.58092e6 0.301878
\(106\) 0 0
\(107\) −2.36510e7 −1.86641 −0.933203 0.359348i \(-0.882999\pi\)
−0.933203 + 0.359348i \(0.882999\pi\)
\(108\) 0 0
\(109\) −1.82455e7 −1.34947 −0.674736 0.738059i \(-0.735743\pi\)
−0.674736 + 0.738059i \(0.735743\pi\)
\(110\) 0 0
\(111\) 2.87985e7 1.99867
\(112\) 0 0
\(113\) 6.85019e6 0.446610 0.223305 0.974749i \(-0.428315\pi\)
0.223305 + 0.974749i \(0.428315\pi\)
\(114\) 0 0
\(115\) 1.66871e7 1.02315
\(116\) 0 0
\(117\) 1.19588e7 0.690297
\(118\) 0 0
\(119\) 3.77126e6 0.205150
\(120\) 0 0
\(121\) 1.90648e7 0.978328
\(122\) 0 0
\(123\) 2.14369e7 1.03871
\(124\) 0 0
\(125\) 2.06791e7 0.946994
\(126\) 0 0
\(127\) −2.93488e7 −1.27139 −0.635693 0.771942i \(-0.719286\pi\)
−0.635693 + 0.771942i \(0.719286\pi\)
\(128\) 0 0
\(129\) −5.83506e7 −2.39321
\(130\) 0 0
\(131\) 1.03093e7 0.400663 0.200332 0.979728i \(-0.435798\pi\)
0.200332 + 0.979728i \(0.435798\pi\)
\(132\) 0 0
\(133\) 4.01415e6 0.147949
\(134\) 0 0
\(135\) −372451. −0.0130287
\(136\) 0 0
\(137\) 1.13507e7 0.377138 0.188569 0.982060i \(-0.439615\pi\)
0.188569 + 0.982060i \(0.439615\pi\)
\(138\) 0 0
\(139\) 5.67661e7 1.79282 0.896412 0.443222i \(-0.146165\pi\)
0.896412 + 0.443222i \(0.146165\pi\)
\(140\) 0 0
\(141\) −4.35039e7 −1.30696
\(142\) 0 0
\(143\) −3.34067e7 −0.955340
\(144\) 0 0
\(145\) 8.10649e6 0.220823
\(146\) 0 0
\(147\) 7.81253e6 0.202853
\(148\) 0 0
\(149\) 2.71126e7 0.671458 0.335729 0.941959i \(-0.391017\pi\)
0.335729 + 0.941959i \(0.391017\pi\)
\(150\) 0 0
\(151\) −3.23586e6 −0.0764839 −0.0382420 0.999269i \(-0.512176\pi\)
−0.0382420 + 0.999269i \(0.512176\pi\)
\(152\) 0 0
\(153\) −2.44381e7 −0.551630
\(154\) 0 0
\(155\) −3.89199e7 −0.839481
\(156\) 0 0
\(157\) 8.43843e7 1.74025 0.870127 0.492827i \(-0.164036\pi\)
0.870127 + 0.492827i \(0.164036\pi\)
\(158\) 0 0
\(159\) −2.95395e7 −0.582792
\(160\) 0 0
\(161\) 3.64063e7 0.687522
\(162\) 0 0
\(163\) 6.28796e7 1.13724 0.568622 0.822599i \(-0.307477\pi\)
0.568622 + 0.822599i \(0.307477\pi\)
\(164\) 0 0
\(165\) 6.48222e7 1.12339
\(166\) 0 0
\(167\) −7.14808e7 −1.18763 −0.593816 0.804601i \(-0.702379\pi\)
−0.593816 + 0.804601i \(0.702379\pi\)
\(168\) 0 0
\(169\) −3.38003e7 −0.538663
\(170\) 0 0
\(171\) −2.60121e7 −0.397822
\(172\) 0 0
\(173\) 6.60131e7 0.969323 0.484662 0.874702i \(-0.338943\pi\)
0.484662 + 0.874702i \(0.338943\pi\)
\(174\) 0 0
\(175\) 1.83190e7 0.258385
\(176\) 0 0
\(177\) −1.42470e8 −1.93115
\(178\) 0 0
\(179\) 9.42206e6 0.122789 0.0613946 0.998114i \(-0.480445\pi\)
0.0613946 + 0.998114i \(0.480445\pi\)
\(180\) 0 0
\(181\) 3.65024e7 0.457558 0.228779 0.973478i \(-0.426527\pi\)
0.228779 + 0.973478i \(0.426527\pi\)
\(182\) 0 0
\(183\) 3.93719e7 0.474906
\(184\) 0 0
\(185\) −6.81812e7 −0.791705
\(186\) 0 0
\(187\) 6.82677e7 0.763431
\(188\) 0 0
\(189\) −812581. −0.00875488
\(190\) 0 0
\(191\) 8.40614e7 0.872930 0.436465 0.899721i \(-0.356230\pi\)
0.436465 + 0.899721i \(0.356230\pi\)
\(192\) 0 0
\(193\) −6.67421e7 −0.668266 −0.334133 0.942526i \(-0.608443\pi\)
−0.334133 + 0.942526i \(0.608443\pi\)
\(194\) 0 0
\(195\) −5.61709e7 −0.542488
\(196\) 0 0
\(197\) −5.11607e7 −0.476765 −0.238383 0.971171i \(-0.576617\pi\)
−0.238383 + 0.971171i \(0.576617\pi\)
\(198\) 0 0
\(199\) −1.18167e8 −1.06294 −0.531471 0.847076i \(-0.678361\pi\)
−0.531471 + 0.847076i \(0.678361\pi\)
\(200\) 0 0
\(201\) −1.14793e8 −0.997075
\(202\) 0 0
\(203\) 1.76860e7 0.148386
\(204\) 0 0
\(205\) −5.07523e7 −0.411450
\(206\) 0 0
\(207\) −2.35917e8 −1.84868
\(208\) 0 0
\(209\) 7.26646e7 0.550568
\(210\) 0 0
\(211\) 8.10808e7 0.594196 0.297098 0.954847i \(-0.403981\pi\)
0.297098 + 0.954847i \(0.403981\pi\)
\(212\) 0 0
\(213\) −1.04960e8 −0.744212
\(214\) 0 0
\(215\) 1.38146e8 0.947992
\(216\) 0 0
\(217\) −8.49119e7 −0.564105
\(218\) 0 0
\(219\) −2.87644e8 −1.85055
\(220\) 0 0
\(221\) −5.91565e7 −0.368663
\(222\) 0 0
\(223\) −2.40244e8 −1.45072 −0.725362 0.688368i \(-0.758328\pi\)
−0.725362 + 0.688368i \(0.758328\pi\)
\(224\) 0 0
\(225\) −1.18709e8 −0.694775
\(226\) 0 0
\(227\) −7.63393e7 −0.433170 −0.216585 0.976264i \(-0.569492\pi\)
−0.216585 + 0.976264i \(0.569492\pi\)
\(228\) 0 0
\(229\) −6.92500e7 −0.381062 −0.190531 0.981681i \(-0.561021\pi\)
−0.190531 + 0.981681i \(0.561021\pi\)
\(230\) 0 0
\(231\) 1.41423e8 0.754882
\(232\) 0 0
\(233\) −6.15262e7 −0.318650 −0.159325 0.987226i \(-0.550932\pi\)
−0.159325 + 0.987226i \(0.550932\pi\)
\(234\) 0 0
\(235\) 1.02996e8 0.517708
\(236\) 0 0
\(237\) 4.04089e8 1.97178
\(238\) 0 0
\(239\) 9.93248e7 0.470614 0.235307 0.971921i \(-0.424390\pi\)
0.235307 + 0.971921i \(0.424390\pi\)
\(240\) 0 0
\(241\) −1.54605e8 −0.711480 −0.355740 0.934585i \(-0.615771\pi\)
−0.355740 + 0.934585i \(0.615771\pi\)
\(242\) 0 0
\(243\) −3.17530e8 −1.41959
\(244\) 0 0
\(245\) −1.84963e7 −0.0803534
\(246\) 0 0
\(247\) −6.29665e7 −0.265871
\(248\) 0 0
\(249\) 5.38121e8 2.20893
\(250\) 0 0
\(251\) −8.53238e7 −0.340575 −0.170287 0.985394i \(-0.554470\pi\)
−0.170287 + 0.985394i \(0.554470\pi\)
\(252\) 0 0
\(253\) 6.59032e8 2.55850
\(254\) 0 0
\(255\) 1.14787e8 0.433513
\(256\) 0 0
\(257\) −4.27723e8 −1.57180 −0.785900 0.618354i \(-0.787800\pi\)
−0.785900 + 0.618354i \(0.787800\pi\)
\(258\) 0 0
\(259\) −1.48751e8 −0.532001
\(260\) 0 0
\(261\) −1.14607e8 −0.398997
\(262\) 0 0
\(263\) 4.67109e8 1.58333 0.791667 0.610953i \(-0.209213\pi\)
0.791667 + 0.610953i \(0.209213\pi\)
\(264\) 0 0
\(265\) 6.99355e7 0.230854
\(266\) 0 0
\(267\) 6.54778e8 2.10526
\(268\) 0 0
\(269\) 2.00003e8 0.626474 0.313237 0.949675i \(-0.398587\pi\)
0.313237 + 0.949675i \(0.398587\pi\)
\(270\) 0 0
\(271\) 2.32905e8 0.710864 0.355432 0.934702i \(-0.384334\pi\)
0.355432 + 0.934702i \(0.384334\pi\)
\(272\) 0 0
\(273\) −1.22549e8 −0.364535
\(274\) 0 0
\(275\) 3.31612e8 0.961537
\(276\) 0 0
\(277\) 4.46817e7 0.126314 0.0631569 0.998004i \(-0.479883\pi\)
0.0631569 + 0.998004i \(0.479883\pi\)
\(278\) 0 0
\(279\) 5.50238e8 1.51683
\(280\) 0 0
\(281\) −1.38876e8 −0.373385 −0.186692 0.982418i \(-0.559777\pi\)
−0.186692 + 0.982418i \(0.559777\pi\)
\(282\) 0 0
\(283\) −3.28528e8 −0.861627 −0.430814 0.902441i \(-0.641773\pi\)
−0.430814 + 0.902441i \(0.641773\pi\)
\(284\) 0 0
\(285\) 1.22180e8 0.312639
\(286\) 0 0
\(287\) −1.10727e8 −0.276482
\(288\) 0 0
\(289\) −2.89451e8 −0.705394
\(290\) 0 0
\(291\) −1.14075e7 −0.0271372
\(292\) 0 0
\(293\) −1.91796e8 −0.445455 −0.222727 0.974881i \(-0.571496\pi\)
−0.222727 + 0.974881i \(0.571496\pi\)
\(294\) 0 0
\(295\) 3.37300e8 0.764960
\(296\) 0 0
\(297\) −1.47094e7 −0.0325798
\(298\) 0 0
\(299\) −5.71076e8 −1.23550
\(300\) 0 0
\(301\) 3.01395e8 0.637021
\(302\) 0 0
\(303\) 9.96990e7 0.205893
\(304\) 0 0
\(305\) −9.32138e7 −0.188118
\(306\) 0 0
\(307\) −1.98092e8 −0.390734 −0.195367 0.980730i \(-0.562590\pi\)
−0.195367 + 0.980730i \(0.562590\pi\)
\(308\) 0 0
\(309\) 9.30333e8 1.79384
\(310\) 0 0
\(311\) −4.00719e8 −0.755403 −0.377701 0.925927i \(-0.623285\pi\)
−0.377701 + 0.925927i \(0.623285\pi\)
\(312\) 0 0
\(313\) 5.31343e8 0.979421 0.489711 0.871885i \(-0.337102\pi\)
0.489711 + 0.871885i \(0.337102\pi\)
\(314\) 0 0
\(315\) 1.19858e8 0.216063
\(316\) 0 0
\(317\) −4.38248e7 −0.0772702 −0.0386351 0.999253i \(-0.512301\pi\)
−0.0386351 + 0.999253i \(0.512301\pi\)
\(318\) 0 0
\(319\) 3.20154e8 0.552194
\(320\) 0 0
\(321\) −1.57055e9 −2.65024
\(322\) 0 0
\(323\) 1.28674e8 0.212462
\(324\) 0 0
\(325\) −2.87354e8 −0.464329
\(326\) 0 0
\(327\) −1.21160e9 −1.91621
\(328\) 0 0
\(329\) 2.24708e8 0.347883
\(330\) 0 0
\(331\) −3.64466e8 −0.552407 −0.276204 0.961099i \(-0.589076\pi\)
−0.276204 + 0.961099i \(0.589076\pi\)
\(332\) 0 0
\(333\) 9.63925e8 1.43050
\(334\) 0 0
\(335\) 2.71774e8 0.394958
\(336\) 0 0
\(337\) 9.00453e8 1.28161 0.640806 0.767703i \(-0.278600\pi\)
0.640806 + 0.767703i \(0.278600\pi\)
\(338\) 0 0
\(339\) 4.54890e8 0.634172
\(340\) 0 0
\(341\) −1.53709e9 −2.09922
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) 1.10811e9 1.45284
\(346\) 0 0
\(347\) 2.69630e8 0.346429 0.173215 0.984884i \(-0.444585\pi\)
0.173215 + 0.984884i \(0.444585\pi\)
\(348\) 0 0
\(349\) 6.42732e8 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(350\) 0 0
\(351\) 1.27463e7 0.0157329
\(352\) 0 0
\(353\) −9.97045e8 −1.20643 −0.603217 0.797577i \(-0.706115\pi\)
−0.603217 + 0.797577i \(0.706115\pi\)
\(354\) 0 0
\(355\) 2.48496e8 0.294795
\(356\) 0 0
\(357\) 2.50432e8 0.291307
\(358\) 0 0
\(359\) −1.66135e9 −1.89509 −0.947545 0.319622i \(-0.896444\pi\)
−0.947545 + 0.319622i \(0.896444\pi\)
\(360\) 0 0
\(361\) −7.56910e8 −0.846777
\(362\) 0 0
\(363\) 1.26601e9 1.38919
\(364\) 0 0
\(365\) 6.81004e8 0.733034
\(366\) 0 0
\(367\) −7.20860e8 −0.761237 −0.380618 0.924732i \(-0.624289\pi\)
−0.380618 + 0.924732i \(0.624289\pi\)
\(368\) 0 0
\(369\) 7.17521e8 0.743434
\(370\) 0 0
\(371\) 1.52579e8 0.155126
\(372\) 0 0
\(373\) −4.78878e8 −0.477798 −0.238899 0.971044i \(-0.576786\pi\)
−0.238899 + 0.971044i \(0.576786\pi\)
\(374\) 0 0
\(375\) 1.37321e9 1.34470
\(376\) 0 0
\(377\) −2.77426e8 −0.266656
\(378\) 0 0
\(379\) 1.03267e9 0.974373 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(380\) 0 0
\(381\) −1.94892e9 −1.80533
\(382\) 0 0
\(383\) 5.93443e8 0.539738 0.269869 0.962897i \(-0.413020\pi\)
0.269869 + 0.962897i \(0.413020\pi\)
\(384\) 0 0
\(385\) −3.34823e8 −0.299021
\(386\) 0 0
\(387\) −1.95307e9 −1.71289
\(388\) 0 0
\(389\) −2.15324e9 −1.85468 −0.927340 0.374220i \(-0.877911\pi\)
−0.927340 + 0.374220i \(0.877911\pi\)
\(390\) 0 0
\(391\) 1.16701e9 0.987316
\(392\) 0 0
\(393\) 6.84593e8 0.568930
\(394\) 0 0
\(395\) −9.56688e8 −0.781053
\(396\) 0 0
\(397\) 1.88246e8 0.150994 0.0754969 0.997146i \(-0.475946\pi\)
0.0754969 + 0.997146i \(0.475946\pi\)
\(398\) 0 0
\(399\) 2.66561e8 0.210083
\(400\) 0 0
\(401\) −7.58165e8 −0.587162 −0.293581 0.955934i \(-0.594847\pi\)
−0.293581 + 0.955934i \(0.594847\pi\)
\(402\) 0 0
\(403\) 1.33194e9 1.01372
\(404\) 0 0
\(405\) 7.39494e8 0.553149
\(406\) 0 0
\(407\) −2.69272e9 −1.97975
\(408\) 0 0
\(409\) −1.50707e9 −1.08919 −0.544593 0.838701i \(-0.683316\pi\)
−0.544593 + 0.838701i \(0.683316\pi\)
\(410\) 0 0
\(411\) 7.53747e8 0.535524
\(412\) 0 0
\(413\) 7.35890e8 0.514029
\(414\) 0 0
\(415\) −1.27401e9 −0.874994
\(416\) 0 0
\(417\) 3.76958e9 2.54575
\(418\) 0 0
\(419\) −1.51449e9 −1.00581 −0.502907 0.864341i \(-0.667736\pi\)
−0.502907 + 0.864341i \(0.667736\pi\)
\(420\) 0 0
\(421\) −1.05648e9 −0.690037 −0.345019 0.938596i \(-0.612127\pi\)
−0.345019 + 0.938596i \(0.612127\pi\)
\(422\) 0 0
\(423\) −1.45613e9 −0.935427
\(424\) 0 0
\(425\) 5.87217e8 0.371054
\(426\) 0 0
\(427\) −2.03365e8 −0.126409
\(428\) 0 0
\(429\) −2.21839e9 −1.35655
\(430\) 0 0
\(431\) −2.52464e9 −1.51890 −0.759450 0.650565i \(-0.774532\pi\)
−0.759450 + 0.650565i \(0.774532\pi\)
\(432\) 0 0
\(433\) 4.25297e8 0.251759 0.125879 0.992046i \(-0.459825\pi\)
0.125879 + 0.992046i \(0.459825\pi\)
\(434\) 0 0
\(435\) 5.38315e8 0.313562
\(436\) 0 0
\(437\) 1.24217e9 0.712028
\(438\) 0 0
\(439\) −1.07323e9 −0.605433 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(440\) 0 0
\(441\) 2.61496e8 0.145187
\(442\) 0 0
\(443\) 5.79179e8 0.316519 0.158259 0.987398i \(-0.449412\pi\)
0.158259 + 0.987398i \(0.449412\pi\)
\(444\) 0 0
\(445\) −1.55020e9 −0.833927
\(446\) 0 0
\(447\) 1.80042e9 0.953450
\(448\) 0 0
\(449\) −2.44352e9 −1.27396 −0.636978 0.770882i \(-0.719816\pi\)
−0.636978 + 0.770882i \(0.719816\pi\)
\(450\) 0 0
\(451\) −2.00439e9 −1.02888
\(452\) 0 0
\(453\) −2.14878e8 −0.108605
\(454\) 0 0
\(455\) 2.90136e8 0.144398
\(456\) 0 0
\(457\) −5.73498e8 −0.281077 −0.140538 0.990075i \(-0.544883\pi\)
−0.140538 + 0.990075i \(0.544883\pi\)
\(458\) 0 0
\(459\) −2.60474e7 −0.0125724
\(460\) 0 0
\(461\) 4.58794e8 0.218105 0.109052 0.994036i \(-0.465218\pi\)
0.109052 + 0.994036i \(0.465218\pi\)
\(462\) 0 0
\(463\) 3.14598e8 0.147307 0.0736533 0.997284i \(-0.476534\pi\)
0.0736533 + 0.997284i \(0.476534\pi\)
\(464\) 0 0
\(465\) −2.58449e9 −1.19204
\(466\) 0 0
\(467\) −9.42124e8 −0.428054 −0.214027 0.976828i \(-0.568658\pi\)
−0.214027 + 0.976828i \(0.568658\pi\)
\(468\) 0 0
\(469\) 5.92932e8 0.265399
\(470\) 0 0
\(471\) 5.60357e9 2.47111
\(472\) 0 0
\(473\) 5.45589e9 2.37056
\(474\) 0 0
\(475\) 6.25038e8 0.267595
\(476\) 0 0
\(477\) −9.88727e8 −0.417121
\(478\) 0 0
\(479\) −3.10364e9 −1.29032 −0.645160 0.764048i \(-0.723209\pi\)
−0.645160 + 0.764048i \(0.723209\pi\)
\(480\) 0 0
\(481\) 2.33334e9 0.956027
\(482\) 0 0
\(483\) 2.41758e9 0.976260
\(484\) 0 0
\(485\) 2.70075e7 0.0107495
\(486\) 0 0
\(487\) 1.89934e9 0.745162 0.372581 0.928000i \(-0.378473\pi\)
0.372581 + 0.928000i \(0.378473\pi\)
\(488\) 0 0
\(489\) 4.17555e9 1.61485
\(490\) 0 0
\(491\) 1.74671e9 0.665940 0.332970 0.942937i \(-0.391949\pi\)
0.332970 + 0.942937i \(0.391949\pi\)
\(492\) 0 0
\(493\) 5.66928e8 0.213090
\(494\) 0 0
\(495\) 2.16969e9 0.804042
\(496\) 0 0
\(497\) 5.42146e8 0.198093
\(498\) 0 0
\(499\) 3.80758e9 1.37182 0.685910 0.727687i \(-0.259405\pi\)
0.685910 + 0.727687i \(0.259405\pi\)
\(500\) 0 0
\(501\) −4.74671e9 −1.68640
\(502\) 0 0
\(503\) 3.25718e8 0.114118 0.0570589 0.998371i \(-0.481828\pi\)
0.0570589 + 0.998371i \(0.481828\pi\)
\(504\) 0 0
\(505\) −2.36040e8 −0.0815577
\(506\) 0 0
\(507\) −2.24452e9 −0.764886
\(508\) 0 0
\(509\) −3.90181e9 −1.31146 −0.655728 0.754997i \(-0.727638\pi\)
−0.655728 + 0.754997i \(0.727638\pi\)
\(510\) 0 0
\(511\) 1.48575e9 0.492576
\(512\) 0 0
\(513\) −2.77250e7 −0.00906694
\(514\) 0 0
\(515\) −2.20258e9 −0.710570
\(516\) 0 0
\(517\) 4.06770e9 1.29459
\(518\) 0 0
\(519\) 4.38362e9 1.37641
\(520\) 0 0
\(521\) −2.92867e9 −0.907275 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(522\) 0 0
\(523\) 4.49793e9 1.37486 0.687428 0.726253i \(-0.258740\pi\)
0.687428 + 0.726253i \(0.258740\pi\)
\(524\) 0 0
\(525\) 1.21648e9 0.366899
\(526\) 0 0
\(527\) −2.72186e9 −0.810082
\(528\) 0 0
\(529\) 7.86107e9 2.30880
\(530\) 0 0
\(531\) −4.76864e9 −1.38218
\(532\) 0 0
\(533\) 1.73688e9 0.496849
\(534\) 0 0
\(535\) 3.71832e9 1.04980
\(536\) 0 0
\(537\) 6.25676e8 0.174357
\(538\) 0 0
\(539\) −7.30486e8 −0.200933
\(540\) 0 0
\(541\) 1.17772e9 0.319779 0.159889 0.987135i \(-0.448886\pi\)
0.159889 + 0.987135i \(0.448886\pi\)
\(542\) 0 0
\(543\) 2.42395e9 0.649718
\(544\) 0 0
\(545\) 2.86849e9 0.759042
\(546\) 0 0
\(547\) −3.94940e9 −1.03175 −0.515877 0.856663i \(-0.672534\pi\)
−0.515877 + 0.856663i \(0.672534\pi\)
\(548\) 0 0
\(549\) 1.31783e9 0.339904
\(550\) 0 0
\(551\) 6.03441e8 0.153675
\(552\) 0 0
\(553\) −2.08722e9 −0.524843
\(554\) 0 0
\(555\) −4.52760e9 −1.12420
\(556\) 0 0
\(557\) −4.20743e9 −1.03163 −0.515815 0.856700i \(-0.672511\pi\)
−0.515815 + 0.856700i \(0.672511\pi\)
\(558\) 0 0
\(559\) −4.72773e9 −1.14475
\(560\) 0 0
\(561\) 4.53334e9 1.08405
\(562\) 0 0
\(563\) −3.97322e9 −0.938347 −0.469174 0.883106i \(-0.655448\pi\)
−0.469174 + 0.883106i \(0.655448\pi\)
\(564\) 0 0
\(565\) −1.07696e9 −0.251206
\(566\) 0 0
\(567\) 1.61336e9 0.371698
\(568\) 0 0
\(569\) 5.06019e9 1.15153 0.575763 0.817617i \(-0.304705\pi\)
0.575763 + 0.817617i \(0.304705\pi\)
\(570\) 0 0
\(571\) −4.24104e8 −0.0953336 −0.0476668 0.998863i \(-0.515179\pi\)
−0.0476668 + 0.998863i \(0.515179\pi\)
\(572\) 0 0
\(573\) 5.58213e9 1.23953
\(574\) 0 0
\(575\) 5.66878e9 1.24352
\(576\) 0 0
\(577\) −5.02389e9 −1.08874 −0.544371 0.838845i \(-0.683232\pi\)
−0.544371 + 0.838845i \(0.683232\pi\)
\(578\) 0 0
\(579\) −4.43204e9 −0.948917
\(580\) 0 0
\(581\) −2.77953e9 −0.587969
\(582\) 0 0
\(583\) 2.76200e9 0.577277
\(584\) 0 0
\(585\) −1.88011e9 −0.388274
\(586\) 0 0
\(587\) 8.56543e9 1.74790 0.873948 0.486019i \(-0.161551\pi\)
0.873948 + 0.486019i \(0.161551\pi\)
\(588\) 0 0
\(589\) −2.89717e9 −0.584212
\(590\) 0 0
\(591\) −3.39735e9 −0.676992
\(592\) 0 0
\(593\) −5.79211e9 −1.14063 −0.570315 0.821426i \(-0.693179\pi\)
−0.570315 + 0.821426i \(0.693179\pi\)
\(594\) 0 0
\(595\) −5.92902e8 −0.115391
\(596\) 0 0
\(597\) −7.84691e9 −1.50935
\(598\) 0 0
\(599\) −1.74446e9 −0.331641 −0.165820 0.986156i \(-0.553027\pi\)
−0.165820 + 0.986156i \(0.553027\pi\)
\(600\) 0 0
\(601\) −8.05605e9 −1.51378 −0.756888 0.653545i \(-0.773281\pi\)
−0.756888 + 0.653545i \(0.773281\pi\)
\(602\) 0 0
\(603\) −3.84226e9 −0.713635
\(604\) 0 0
\(605\) −2.99730e9 −0.550283
\(606\) 0 0
\(607\) −4.69926e9 −0.852842 −0.426421 0.904525i \(-0.640226\pi\)
−0.426421 + 0.904525i \(0.640226\pi\)
\(608\) 0 0
\(609\) 1.17445e9 0.210704
\(610\) 0 0
\(611\) −3.52481e9 −0.625160
\(612\) 0 0
\(613\) 2.30662e9 0.404449 0.202225 0.979339i \(-0.435183\pi\)
0.202225 + 0.979339i \(0.435183\pi\)
\(614\) 0 0
\(615\) −3.37023e9 −0.584247
\(616\) 0 0
\(617\) −8.81255e9 −1.51044 −0.755220 0.655471i \(-0.772470\pi\)
−0.755220 + 0.655471i \(0.772470\pi\)
\(618\) 0 0
\(619\) 5.51648e9 0.934857 0.467428 0.884031i \(-0.345181\pi\)
0.467428 + 0.884031i \(0.345181\pi\)
\(620\) 0 0
\(621\) −2.51452e8 −0.0421342
\(622\) 0 0
\(623\) −3.38209e9 −0.560373
\(624\) 0 0
\(625\) 9.21413e8 0.150964
\(626\) 0 0
\(627\) 4.82532e9 0.781789
\(628\) 0 0
\(629\) −4.76825e9 −0.763980
\(630\) 0 0
\(631\) −4.00663e9 −0.634857 −0.317429 0.948282i \(-0.602819\pi\)
−0.317429 + 0.948282i \(0.602819\pi\)
\(632\) 0 0
\(633\) 5.38420e9 0.843740
\(634\) 0 0
\(635\) 4.61411e9 0.715121
\(636\) 0 0
\(637\) 6.32993e8 0.0970311
\(638\) 0 0
\(639\) −3.51316e9 −0.532654
\(640\) 0 0
\(641\) 7.52357e9 1.12829 0.564145 0.825676i \(-0.309206\pi\)
0.564145 + 0.825676i \(0.309206\pi\)
\(642\) 0 0
\(643\) 1.08744e10 1.61311 0.806557 0.591156i \(-0.201328\pi\)
0.806557 + 0.591156i \(0.201328\pi\)
\(644\) 0 0
\(645\) 9.17366e9 1.34612
\(646\) 0 0
\(647\) 3.17336e9 0.460632 0.230316 0.973116i \(-0.426024\pi\)
0.230316 + 0.973116i \(0.426024\pi\)
\(648\) 0 0
\(649\) 1.33212e10 1.91287
\(650\) 0 0
\(651\) −5.63861e9 −0.801011
\(652\) 0 0
\(653\) −7.94853e9 −1.11710 −0.558549 0.829472i \(-0.688642\pi\)
−0.558549 + 0.829472i \(0.688642\pi\)
\(654\) 0 0
\(655\) −1.62079e9 −0.225363
\(656\) 0 0
\(657\) −9.62783e9 −1.32449
\(658\) 0 0
\(659\) 1.08219e10 1.47301 0.736504 0.676433i \(-0.236475\pi\)
0.736504 + 0.676433i \(0.236475\pi\)
\(660\) 0 0
\(661\) 9.86108e9 1.32807 0.664033 0.747704i \(-0.268844\pi\)
0.664033 + 0.747704i \(0.268844\pi\)
\(662\) 0 0
\(663\) −3.92831e9 −0.523490
\(664\) 0 0
\(665\) −6.31089e8 −0.0832175
\(666\) 0 0
\(667\) 5.47291e9 0.714132
\(668\) 0 0
\(669\) −1.59535e10 −2.05998
\(670\) 0 0
\(671\) −3.68135e9 −0.470411
\(672\) 0 0
\(673\) 1.48659e10 1.87992 0.939959 0.341288i \(-0.110863\pi\)
0.939959 + 0.341288i \(0.110863\pi\)
\(674\) 0 0
\(675\) −1.26526e8 −0.0158349
\(676\) 0 0
\(677\) −5.71127e9 −0.707412 −0.353706 0.935357i \(-0.615079\pi\)
−0.353706 + 0.935357i \(0.615079\pi\)
\(678\) 0 0
\(679\) 5.89225e7 0.00722332
\(680\) 0 0
\(681\) −5.06934e9 −0.615087
\(682\) 0 0
\(683\) −9.40673e9 −1.12971 −0.564854 0.825191i \(-0.691068\pi\)
−0.564854 + 0.825191i \(0.691068\pi\)
\(684\) 0 0
\(685\) −1.78451e9 −0.212130
\(686\) 0 0
\(687\) −4.59857e9 −0.541096
\(688\) 0 0
\(689\) −2.39338e9 −0.278769
\(690\) 0 0
\(691\) −1.63111e10 −1.88066 −0.940331 0.340262i \(-0.889484\pi\)
−0.940331 + 0.340262i \(0.889484\pi\)
\(692\) 0 0
\(693\) 4.73362e9 0.540291
\(694\) 0 0
\(695\) −8.92455e9 −1.00842
\(696\) 0 0
\(697\) −3.54936e9 −0.397041
\(698\) 0 0
\(699\) −4.08567e9 −0.452473
\(700\) 0 0
\(701\) 1.18926e10 1.30396 0.651979 0.758237i \(-0.273939\pi\)
0.651979 + 0.758237i \(0.273939\pi\)
\(702\) 0 0
\(703\) −5.07536e9 −0.550963
\(704\) 0 0
\(705\) 6.83952e9 0.735129
\(706\) 0 0
\(707\) −5.14970e8 −0.0548042
\(708\) 0 0
\(709\) 1.49941e10 1.58000 0.790002 0.613104i \(-0.210080\pi\)
0.790002 + 0.613104i \(0.210080\pi\)
\(710\) 0 0
\(711\) 1.35254e10 1.41126
\(712\) 0 0
\(713\) −2.62759e10 −2.71484
\(714\) 0 0
\(715\) 5.25208e9 0.537354
\(716\) 0 0
\(717\) 6.59570e9 0.668257
\(718\) 0 0
\(719\) −4.35637e9 −0.437093 −0.218546 0.975827i \(-0.570131\pi\)
−0.218546 + 0.975827i \(0.570131\pi\)
\(720\) 0 0
\(721\) −4.80540e9 −0.477481
\(722\) 0 0
\(723\) −1.02666e10 −1.01028
\(724\) 0 0
\(725\) 2.75387e9 0.268386
\(726\) 0 0
\(727\) −4.64655e9 −0.448498 −0.224249 0.974532i \(-0.571993\pi\)
−0.224249 + 0.974532i \(0.571993\pi\)
\(728\) 0 0
\(729\) −1.07988e10 −1.03235
\(730\) 0 0
\(731\) 9.66126e9 0.914793
\(732\) 0 0
\(733\) −1.67128e10 −1.56742 −0.783710 0.621126i \(-0.786675\pi\)
−0.783710 + 0.621126i \(0.786675\pi\)
\(734\) 0 0
\(735\) −1.22826e9 −0.114099
\(736\) 0 0
\(737\) 1.07333e10 0.987638
\(738\) 0 0
\(739\) 1.04179e10 0.949561 0.474781 0.880104i \(-0.342527\pi\)
0.474781 + 0.880104i \(0.342527\pi\)
\(740\) 0 0
\(741\) −4.18132e9 −0.377528
\(742\) 0 0
\(743\) −1.42061e8 −0.0127061 −0.00635307 0.999980i \(-0.502022\pi\)
−0.00635307 + 0.999980i \(0.502022\pi\)
\(744\) 0 0
\(745\) −4.26254e9 −0.377678
\(746\) 0 0
\(747\) 1.80116e10 1.58099
\(748\) 0 0
\(749\) 8.11229e9 0.705436
\(750\) 0 0
\(751\) 2.69386e9 0.232078 0.116039 0.993245i \(-0.462980\pi\)
0.116039 + 0.993245i \(0.462980\pi\)
\(752\) 0 0
\(753\) −5.66596e9 −0.483605
\(754\) 0 0
\(755\) 5.08729e8 0.0430202
\(756\) 0 0
\(757\) −4.63791e8 −0.0388585 −0.0194293 0.999811i \(-0.506185\pi\)
−0.0194293 + 0.999811i \(0.506185\pi\)
\(758\) 0 0
\(759\) 4.37633e10 3.63298
\(760\) 0 0
\(761\) −1.71497e10 −1.41062 −0.705311 0.708898i \(-0.749193\pi\)
−0.705311 + 0.708898i \(0.749193\pi\)
\(762\) 0 0
\(763\) 6.25822e9 0.510052
\(764\) 0 0
\(765\) 3.84207e9 0.310277
\(766\) 0 0
\(767\) −1.15433e10 −0.923731
\(768\) 0 0
\(769\) 2.83370e9 0.224705 0.112352 0.993668i \(-0.464161\pi\)
0.112352 + 0.993668i \(0.464161\pi\)
\(770\) 0 0
\(771\) −2.84031e10 −2.23191
\(772\) 0 0
\(773\) 7.20359e9 0.560946 0.280473 0.959862i \(-0.409509\pi\)
0.280473 + 0.959862i \(0.409509\pi\)
\(774\) 0 0
\(775\) −1.32215e10 −1.02029
\(776\) 0 0
\(777\) −9.87790e9 −0.755424
\(778\) 0 0
\(779\) −3.77796e9 −0.286337
\(780\) 0 0
\(781\) 9.81399e9 0.737169
\(782\) 0 0
\(783\) −1.22154e8 −0.00909373
\(784\) 0 0
\(785\) −1.32666e10 −0.978848
\(786\) 0 0
\(787\) 6.82062e9 0.498784 0.249392 0.968403i \(-0.419769\pi\)
0.249392 + 0.968403i \(0.419769\pi\)
\(788\) 0 0
\(789\) 3.10185e10 2.24829
\(790\) 0 0
\(791\) −2.34962e9 −0.168803
\(792\) 0 0
\(793\) 3.19002e9 0.227163
\(794\) 0 0
\(795\) 4.64409e9 0.327805
\(796\) 0 0
\(797\) 1.38571e10 0.969544 0.484772 0.874641i \(-0.338903\pi\)
0.484772 + 0.874641i \(0.338903\pi\)
\(798\) 0 0
\(799\) 7.20306e9 0.499578
\(800\) 0 0
\(801\) 2.19163e10 1.50679
\(802\) 0 0
\(803\) 2.68953e10 1.83304
\(804\) 0 0
\(805\) −5.72367e9 −0.386713
\(806\) 0 0
\(807\) 1.32813e10 0.889573
\(808\) 0 0
\(809\) −5.20582e9 −0.345676 −0.172838 0.984950i \(-0.555294\pi\)
−0.172838 + 0.984950i \(0.555294\pi\)
\(810\) 0 0
\(811\) −1.44908e9 −0.0953938 −0.0476969 0.998862i \(-0.515188\pi\)
−0.0476969 + 0.998862i \(0.515188\pi\)
\(812\) 0 0
\(813\) 1.54662e10 1.00941
\(814\) 0 0
\(815\) −9.88570e9 −0.639669
\(816\) 0 0
\(817\) 1.02835e10 0.659727
\(818\) 0 0
\(819\) −4.10186e9 −0.260908
\(820\) 0 0
\(821\) 2.69442e10 1.69928 0.849638 0.527366i \(-0.176820\pi\)
0.849638 + 0.527366i \(0.176820\pi\)
\(822\) 0 0
\(823\) 1.12034e10 0.700568 0.350284 0.936643i \(-0.386085\pi\)
0.350284 + 0.936643i \(0.386085\pi\)
\(824\) 0 0
\(825\) 2.20208e10 1.36535
\(826\) 0 0
\(827\) 7.78707e9 0.478746 0.239373 0.970928i \(-0.423058\pi\)
0.239373 + 0.970928i \(0.423058\pi\)
\(828\) 0 0
\(829\) −1.08875e10 −0.663722 −0.331861 0.943328i \(-0.607677\pi\)
−0.331861 + 0.943328i \(0.607677\pi\)
\(830\) 0 0
\(831\) 2.96711e9 0.179362
\(832\) 0 0
\(833\) −1.29354e9 −0.0775394
\(834\) 0 0
\(835\) 1.12379e10 0.668012
\(836\) 0 0
\(837\) 5.86472e8 0.0345707
\(838\) 0 0
\(839\) 8.20806e9 0.479815 0.239907 0.970796i \(-0.422883\pi\)
0.239907 + 0.970796i \(0.422883\pi\)
\(840\) 0 0
\(841\) −1.45912e10 −0.845871
\(842\) 0 0
\(843\) −9.22215e9 −0.530195
\(844\) 0 0
\(845\) 5.31396e9 0.302984
\(846\) 0 0
\(847\) −6.53924e9 −0.369773
\(848\) 0 0
\(849\) −2.18160e10 −1.22348
\(850\) 0 0
\(851\) −4.60310e10 −2.56033
\(852\) 0 0
\(853\) 4.95254e9 0.273216 0.136608 0.990625i \(-0.456380\pi\)
0.136608 + 0.990625i \(0.456380\pi\)
\(854\) 0 0
\(855\) 4.08952e9 0.223764
\(856\) 0 0
\(857\) 3.38165e10 1.83525 0.917625 0.397446i \(-0.130104\pi\)
0.917625 + 0.397446i \(0.130104\pi\)
\(858\) 0 0
\(859\) 6.49803e9 0.349788 0.174894 0.984587i \(-0.444042\pi\)
0.174894 + 0.984587i \(0.444042\pi\)
\(860\) 0 0
\(861\) −7.35286e9 −0.392595
\(862\) 0 0
\(863\) 2.14007e10 1.13342 0.566709 0.823918i \(-0.308216\pi\)
0.566709 + 0.823918i \(0.308216\pi\)
\(864\) 0 0
\(865\) −1.03783e10 −0.545219
\(866\) 0 0
\(867\) −1.92211e10 −1.00164
\(868\) 0 0
\(869\) −3.77830e10 −1.95311
\(870\) 0 0
\(871\) −9.30082e9 −0.476933
\(872\) 0 0
\(873\) −3.81824e8 −0.0194229
\(874\) 0 0
\(875\) −7.09294e9 −0.357930
\(876\) 0 0
\(877\) −2.81094e10 −1.40719 −0.703595 0.710601i \(-0.748423\pi\)
−0.703595 + 0.710601i \(0.748423\pi\)
\(878\) 0 0
\(879\) −1.27363e10 −0.632532
\(880\) 0 0
\(881\) 8.82922e9 0.435017 0.217509 0.976058i \(-0.430207\pi\)
0.217509 + 0.976058i \(0.430207\pi\)
\(882\) 0 0
\(883\) −2.59216e10 −1.26707 −0.633534 0.773715i \(-0.718396\pi\)
−0.633534 + 0.773715i \(0.718396\pi\)
\(884\) 0 0
\(885\) 2.23985e10 1.08622
\(886\) 0 0
\(887\) 1.89397e10 0.911258 0.455629 0.890170i \(-0.349414\pi\)
0.455629 + 0.890170i \(0.349414\pi\)
\(888\) 0 0
\(889\) 1.00666e10 0.480539
\(890\) 0 0
\(891\) 2.92052e10 1.38321
\(892\) 0 0
\(893\) 7.66698e9 0.360283
\(894\) 0 0
\(895\) −1.48130e9 −0.0690657
\(896\) 0 0
\(897\) −3.79225e10 −1.75438
\(898\) 0 0
\(899\) −1.27647e10 −0.585938
\(900\) 0 0
\(901\) 4.89094e9 0.222769
\(902\) 0 0
\(903\) 2.00143e10 0.904550
\(904\) 0 0
\(905\) −5.73876e9 −0.257364
\(906\) 0 0
\(907\) −9.02019e9 −0.401412 −0.200706 0.979652i \(-0.564324\pi\)
−0.200706 + 0.979652i \(0.564324\pi\)
\(908\) 0 0
\(909\) 3.33706e9 0.147364
\(910\) 0 0
\(911\) −3.38470e10 −1.48322 −0.741610 0.670831i \(-0.765938\pi\)
−0.741610 + 0.670831i \(0.765938\pi\)
\(912\) 0 0
\(913\) −5.03153e10 −2.18802
\(914\) 0 0
\(915\) −6.18990e9 −0.267122
\(916\) 0 0
\(917\) −3.53609e9 −0.151437
\(918\) 0 0
\(919\) 3.50778e10 1.49083 0.745415 0.666601i \(-0.232251\pi\)
0.745415 + 0.666601i \(0.232251\pi\)
\(920\) 0 0
\(921\) −1.31543e10 −0.554831
\(922\) 0 0
\(923\) −8.50419e9 −0.355981
\(924\) 0 0
\(925\) −2.31619e10 −0.962228
\(926\) 0 0
\(927\) 3.11395e10 1.28390
\(928\) 0 0
\(929\) −2.37377e10 −0.971369 −0.485685 0.874134i \(-0.661430\pi\)
−0.485685 + 0.874134i \(0.661430\pi\)
\(930\) 0 0
\(931\) −1.37685e9 −0.0559195
\(932\) 0 0
\(933\) −2.66099e10 −1.07265
\(934\) 0 0
\(935\) −1.07328e10 −0.429410
\(936\) 0 0
\(937\) 2.48298e9 0.0986017 0.0493009 0.998784i \(-0.484301\pi\)
0.0493009 + 0.998784i \(0.484301\pi\)
\(938\) 0 0
\(939\) 3.52840e10 1.39075
\(940\) 0 0
\(941\) 1.70549e10 0.667245 0.333623 0.942707i \(-0.391729\pi\)
0.333623 + 0.942707i \(0.391729\pi\)
\(942\) 0 0
\(943\) −3.42643e10 −1.33061
\(944\) 0 0
\(945\) 1.27751e8 0.00492439
\(946\) 0 0
\(947\) −1.95521e10 −0.748114 −0.374057 0.927406i \(-0.622034\pi\)
−0.374057 + 0.927406i \(0.622034\pi\)
\(948\) 0 0
\(949\) −2.33057e10 −0.885179
\(950\) 0 0
\(951\) −2.91020e9 −0.109721
\(952\) 0 0
\(953\) 1.99979e10 0.748444 0.374222 0.927339i \(-0.377910\pi\)
0.374222 + 0.927339i \(0.377910\pi\)
\(954\) 0 0
\(955\) −1.32158e10 −0.491000
\(956\) 0 0
\(957\) 2.12600e10 0.784099
\(958\) 0 0
\(959\) −3.89329e9 −0.142545
\(960\) 0 0
\(961\) 3.37717e10 1.22750
\(962\) 0 0
\(963\) −5.25685e10 −1.89685
\(964\) 0 0
\(965\) 1.04929e10 0.375882
\(966\) 0 0
\(967\) −2.36717e10 −0.841853 −0.420927 0.907095i \(-0.638295\pi\)
−0.420927 + 0.907095i \(0.638295\pi\)
\(968\) 0 0
\(969\) 8.54465e9 0.301690
\(970\) 0 0
\(971\) 5.49876e10 1.92751 0.963757 0.266781i \(-0.0859601\pi\)
0.963757 + 0.266781i \(0.0859601\pi\)
\(972\) 0 0
\(973\) −1.94708e10 −0.677624
\(974\) 0 0
\(975\) −1.90819e10 −0.659333
\(976\) 0 0
\(977\) −5.44353e9 −0.186745 −0.0933727 0.995631i \(-0.529765\pi\)
−0.0933727 + 0.995631i \(0.529765\pi\)
\(978\) 0 0
\(979\) −6.12230e10 −2.08533
\(980\) 0 0
\(981\) −4.05539e10 −1.37149
\(982\) 0 0
\(983\) −3.66356e10 −1.23017 −0.615086 0.788460i \(-0.710879\pi\)
−0.615086 + 0.788460i \(0.710879\pi\)
\(984\) 0 0
\(985\) 8.04329e9 0.268168
\(986\) 0 0
\(987\) 1.49218e10 0.493983
\(988\) 0 0
\(989\) 9.32664e10 3.06576
\(990\) 0 0
\(991\) −1.36900e9 −0.0446832 −0.0223416 0.999750i \(-0.507112\pi\)
−0.0223416 + 0.999750i \(0.507112\pi\)
\(992\) 0 0
\(993\) −2.42025e10 −0.784401
\(994\) 0 0
\(995\) 1.85777e10 0.597877
\(996\) 0 0
\(997\) 1.36331e10 0.435673 0.217837 0.975985i \(-0.430100\pi\)
0.217837 + 0.975985i \(0.430100\pi\)
\(998\) 0 0
\(999\) 1.02740e9 0.0326032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.8.a.i.1.2 2
4.3 odd 2 28.8.a.a.1.1 2
8.3 odd 2 448.8.a.p.1.2 2
8.5 even 2 448.8.a.n.1.1 2
12.11 even 2 252.8.a.e.1.2 2
28.3 even 6 196.8.e.a.177.1 4
28.11 odd 6 196.8.e.d.177.2 4
28.19 even 6 196.8.e.a.165.1 4
28.23 odd 6 196.8.e.d.165.2 4
28.27 even 2 196.8.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.a.1.1 2 4.3 odd 2
112.8.a.i.1.2 2 1.1 even 1 trivial
196.8.a.b.1.2 2 28.27 even 2
196.8.e.a.165.1 4 28.19 even 6
196.8.e.a.177.1 4 28.3 even 6
196.8.e.d.165.2 4 28.23 odd 6
196.8.e.d.177.2 4 28.11 odd 6
252.8.a.e.1.2 2 12.11 even 2
448.8.a.n.1.1 2 8.5 even 2
448.8.a.p.1.2 2 8.3 odd 2