Properties

Label 28.8.a.a.1.1
Level $28$
Weight $8$
Character 28.1
Self dual yes
Analytic conductor $8.747$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [28,8,Mod(1,28)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("28.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 28.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.74678071356\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3529}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 882 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(30.2027\) of defining polynomial
Character \(\chi\) \(=\) 28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-66.4054 q^{3} -157.216 q^{5} +343.000 q^{7} +2222.68 q^{9} +6209.03 q^{11} +5380.35 q^{13} +10440.0 q^{15} -10994.9 q^{17} +11703.1 q^{19} -22777.0 q^{21} +106141. q^{23} -53408.1 q^{25} -2369.04 q^{27} -51562.7 q^{29} -247557. q^{31} -412313. q^{33} -53925.1 q^{35} +433678. q^{37} -357284. q^{39} +322819. q^{41} +878703. q^{43} -349440. q^{45} +655126. q^{47} +117649. q^{49} +730121. q^{51} -444837. q^{53} -976159. q^{55} -777146. q^{57} +2.14545e6 q^{59} +592902. q^{61} +762378. q^{63} -845878. q^{65} +1.72866e6 q^{67} -7.04833e6 q^{69} +1.58060e6 q^{71} -4.33164e6 q^{73} +3.54658e6 q^{75} +2.12970e6 q^{77} -6.08518e6 q^{79} -4.70367e6 q^{81} -8.10357e6 q^{83} +1.72858e6 q^{85} +3.42404e6 q^{87} +9.86032e6 q^{89} +1.84546e6 q^{91} +1.64391e7 q^{93} -1.83991e6 q^{95} -171786. q^{97} +1.38007e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 42 q^{5} + 686 q^{7} + 2782 q^{9} + 7428 q^{11} + 11830 q^{13} + 20880 q^{15} + 15792 q^{17} + 26614 q^{19} - 4802 q^{21} + 32640 q^{23} - 91846 q^{25} - 87668 q^{27} - 158016 q^{29} - 180740 q^{31}+ \cdots + 14482452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −66.4054 −1.41997 −0.709985 0.704217i \(-0.751298\pi\)
−0.709985 + 0.704217i \(0.751298\pi\)
\(4\) 0 0
\(5\) −157.216 −0.562474 −0.281237 0.959638i \(-0.590745\pi\)
−0.281237 + 0.959638i \(0.590745\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 2222.68 1.01631
\(10\) 0 0
\(11\) 6209.03 1.40653 0.703265 0.710928i \(-0.251725\pi\)
0.703265 + 0.710928i \(0.251725\pi\)
\(12\) 0 0
\(13\) 5380.35 0.679218 0.339609 0.940567i \(-0.389705\pi\)
0.339609 + 0.940567i \(0.389705\pi\)
\(14\) 0 0
\(15\) 10440.0 0.798695
\(16\) 0 0
\(17\) −10994.9 −0.542776 −0.271388 0.962470i \(-0.587483\pi\)
−0.271388 + 0.962470i \(0.587483\pi\)
\(18\) 0 0
\(19\) 11703.1 0.391437 0.195718 0.980660i \(-0.437296\pi\)
0.195718 + 0.980660i \(0.437296\pi\)
\(20\) 0 0
\(21\) −22777.0 −0.536698
\(22\) 0 0
\(23\) 106141. 1.81901 0.909506 0.415691i \(-0.136460\pi\)
0.909506 + 0.415691i \(0.136460\pi\)
\(24\) 0 0
\(25\) −53408.1 −0.683623
\(26\) 0 0
\(27\) −2369.04 −0.0231632
\(28\) 0 0
\(29\) −51562.7 −0.392593 −0.196297 0.980545i \(-0.562892\pi\)
−0.196297 + 0.980545i \(0.562892\pi\)
\(30\) 0 0
\(31\) −247557. −1.49248 −0.746240 0.665677i \(-0.768143\pi\)
−0.746240 + 0.665677i \(0.768143\pi\)
\(32\) 0 0
\(33\) −412313. −1.99723
\(34\) 0 0
\(35\) −53925.1 −0.212595
\(36\) 0 0
\(37\) 433678. 1.40754 0.703771 0.710427i \(-0.251498\pi\)
0.703771 + 0.710427i \(0.251498\pi\)
\(38\) 0 0
\(39\) −357284. −0.964468
\(40\) 0 0
\(41\) 322819. 0.731501 0.365751 0.930713i \(-0.380812\pi\)
0.365751 + 0.930713i \(0.380812\pi\)
\(42\) 0 0
\(43\) 878703. 1.68540 0.842699 0.538385i \(-0.180965\pi\)
0.842699 + 0.538385i \(0.180965\pi\)
\(44\) 0 0
\(45\) −349440. −0.571649
\(46\) 0 0
\(47\) 655126. 0.920413 0.460206 0.887812i \(-0.347775\pi\)
0.460206 + 0.887812i \(0.347775\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 730121. 0.770725
\(52\) 0 0
\(53\) −444837. −0.410426 −0.205213 0.978717i \(-0.565789\pi\)
−0.205213 + 0.978717i \(0.565789\pi\)
\(54\) 0 0
\(55\) −976159. −0.791136
\(56\) 0 0
\(57\) −777146. −0.555828
\(58\) 0 0
\(59\) 2.14545e6 1.35999 0.679996 0.733216i \(-0.261981\pi\)
0.679996 + 0.733216i \(0.261981\pi\)
\(60\) 0 0
\(61\) 592902. 0.334448 0.167224 0.985919i \(-0.446520\pi\)
0.167224 + 0.985919i \(0.446520\pi\)
\(62\) 0 0
\(63\) 762378. 0.384130
\(64\) 0 0
\(65\) −845878. −0.382042
\(66\) 0 0
\(67\) 1.72866e6 0.702180 0.351090 0.936342i \(-0.385811\pi\)
0.351090 + 0.936342i \(0.385811\pi\)
\(68\) 0 0
\(69\) −7.04833e6 −2.58294
\(70\) 0 0
\(71\) 1.58060e6 0.524105 0.262052 0.965054i \(-0.415601\pi\)
0.262052 + 0.965054i \(0.415601\pi\)
\(72\) 0 0
\(73\) −4.33164e6 −1.30323 −0.651617 0.758548i \(-0.725909\pi\)
−0.651617 + 0.758548i \(0.725909\pi\)
\(74\) 0 0
\(75\) 3.54658e6 0.970724
\(76\) 0 0
\(77\) 2.12970e6 0.531618
\(78\) 0 0
\(79\) −6.08518e6 −1.38860 −0.694302 0.719684i \(-0.744287\pi\)
−0.694302 + 0.719684i \(0.744287\pi\)
\(80\) 0 0
\(81\) −4.70367e6 −0.983421
\(82\) 0 0
\(83\) −8.10357e6 −1.55562 −0.777809 0.628500i \(-0.783669\pi\)
−0.777809 + 0.628500i \(0.783669\pi\)
\(84\) 0 0
\(85\) 1.72858e6 0.305297
\(86\) 0 0
\(87\) 3.42404e6 0.557470
\(88\) 0 0
\(89\) 9.86032e6 1.48261 0.741303 0.671170i \(-0.234208\pi\)
0.741303 + 0.671170i \(0.234208\pi\)
\(90\) 0 0
\(91\) 1.84546e6 0.256720
\(92\) 0 0
\(93\) 1.64391e7 2.11928
\(94\) 0 0
\(95\) −1.83991e6 −0.220173
\(96\) 0 0
\(97\) −171786. −0.0191111 −0.00955555 0.999954i \(-0.503042\pi\)
−0.00955555 + 0.999954i \(0.503042\pi\)
\(98\) 0 0
\(99\) 1.38007e7 1.42947
\(100\) 0 0
\(101\) 1.50137e6 0.144998 0.0724991 0.997368i \(-0.476903\pi\)
0.0724991 + 0.997368i \(0.476903\pi\)
\(102\) 0 0
\(103\) −1.40099e7 −1.26330 −0.631648 0.775256i \(-0.717621\pi\)
−0.631648 + 0.775256i \(0.717621\pi\)
\(104\) 0 0
\(105\) 3.58092e6 0.301878
\(106\) 0 0
\(107\) 2.36510e7 1.86641 0.933203 0.359348i \(-0.117001\pi\)
0.933203 + 0.359348i \(0.117001\pi\)
\(108\) 0 0
\(109\) −1.82455e7 −1.34947 −0.674736 0.738059i \(-0.735743\pi\)
−0.674736 + 0.738059i \(0.735743\pi\)
\(110\) 0 0
\(111\) −2.87985e7 −1.99867
\(112\) 0 0
\(113\) 6.85019e6 0.446610 0.223305 0.974749i \(-0.428315\pi\)
0.223305 + 0.974749i \(0.428315\pi\)
\(114\) 0 0
\(115\) −1.66871e7 −1.02315
\(116\) 0 0
\(117\) 1.19588e7 0.690297
\(118\) 0 0
\(119\) −3.77126e6 −0.205150
\(120\) 0 0
\(121\) 1.90648e7 0.978328
\(122\) 0 0
\(123\) −2.14369e7 −1.03871
\(124\) 0 0
\(125\) 2.06791e7 0.946994
\(126\) 0 0
\(127\) 2.93488e7 1.27139 0.635693 0.771942i \(-0.280714\pi\)
0.635693 + 0.771942i \(0.280714\pi\)
\(128\) 0 0
\(129\) −5.83506e7 −2.39321
\(130\) 0 0
\(131\) −1.03093e7 −0.400663 −0.200332 0.979728i \(-0.564202\pi\)
−0.200332 + 0.979728i \(0.564202\pi\)
\(132\) 0 0
\(133\) 4.01415e6 0.147949
\(134\) 0 0
\(135\) 372451. 0.0130287
\(136\) 0 0
\(137\) 1.13507e7 0.377138 0.188569 0.982060i \(-0.439615\pi\)
0.188569 + 0.982060i \(0.439615\pi\)
\(138\) 0 0
\(139\) −5.67661e7 −1.79282 −0.896412 0.443222i \(-0.853835\pi\)
−0.896412 + 0.443222i \(0.853835\pi\)
\(140\) 0 0
\(141\) −4.35039e7 −1.30696
\(142\) 0 0
\(143\) 3.34067e7 0.955340
\(144\) 0 0
\(145\) 8.10649e6 0.220823
\(146\) 0 0
\(147\) −7.81253e6 −0.202853
\(148\) 0 0
\(149\) 2.71126e7 0.671458 0.335729 0.941959i \(-0.391017\pi\)
0.335729 + 0.941959i \(0.391017\pi\)
\(150\) 0 0
\(151\) 3.23586e6 0.0764839 0.0382420 0.999269i \(-0.487824\pi\)
0.0382420 + 0.999269i \(0.487824\pi\)
\(152\) 0 0
\(153\) −2.44381e7 −0.551630
\(154\) 0 0
\(155\) 3.89199e7 0.839481
\(156\) 0 0
\(157\) 8.43843e7 1.74025 0.870127 0.492827i \(-0.164036\pi\)
0.870127 + 0.492827i \(0.164036\pi\)
\(158\) 0 0
\(159\) 2.95395e7 0.582792
\(160\) 0 0
\(161\) 3.64063e7 0.687522
\(162\) 0 0
\(163\) −6.28796e7 −1.13724 −0.568622 0.822599i \(-0.692523\pi\)
−0.568622 + 0.822599i \(0.692523\pi\)
\(164\) 0 0
\(165\) 6.48222e7 1.12339
\(166\) 0 0
\(167\) 7.14808e7 1.18763 0.593816 0.804601i \(-0.297621\pi\)
0.593816 + 0.804601i \(0.297621\pi\)
\(168\) 0 0
\(169\) −3.38003e7 −0.538663
\(170\) 0 0
\(171\) 2.60121e7 0.397822
\(172\) 0 0
\(173\) 6.60131e7 0.969323 0.484662 0.874702i \(-0.338943\pi\)
0.484662 + 0.874702i \(0.338943\pi\)
\(174\) 0 0
\(175\) −1.83190e7 −0.258385
\(176\) 0 0
\(177\) −1.42470e8 −1.93115
\(178\) 0 0
\(179\) −9.42206e6 −0.122789 −0.0613946 0.998114i \(-0.519555\pi\)
−0.0613946 + 0.998114i \(0.519555\pi\)
\(180\) 0 0
\(181\) 3.65024e7 0.457558 0.228779 0.973478i \(-0.426527\pi\)
0.228779 + 0.973478i \(0.426527\pi\)
\(182\) 0 0
\(183\) −3.93719e7 −0.474906
\(184\) 0 0
\(185\) −6.81812e7 −0.791705
\(186\) 0 0
\(187\) −6.82677e7 −0.763431
\(188\) 0 0
\(189\) −812581. −0.00875488
\(190\) 0 0
\(191\) −8.40614e7 −0.872930 −0.436465 0.899721i \(-0.643770\pi\)
−0.436465 + 0.899721i \(0.643770\pi\)
\(192\) 0 0
\(193\) −6.67421e7 −0.668266 −0.334133 0.942526i \(-0.608443\pi\)
−0.334133 + 0.942526i \(0.608443\pi\)
\(194\) 0 0
\(195\) 5.61709e7 0.542488
\(196\) 0 0
\(197\) −5.11607e7 −0.476765 −0.238383 0.971171i \(-0.576617\pi\)
−0.238383 + 0.971171i \(0.576617\pi\)
\(198\) 0 0
\(199\) 1.18167e8 1.06294 0.531471 0.847076i \(-0.321639\pi\)
0.531471 + 0.847076i \(0.321639\pi\)
\(200\) 0 0
\(201\) −1.14793e8 −0.997075
\(202\) 0 0
\(203\) −1.76860e7 −0.148386
\(204\) 0 0
\(205\) −5.07523e7 −0.411450
\(206\) 0 0
\(207\) 2.35917e8 1.84868
\(208\) 0 0
\(209\) 7.26646e7 0.550568
\(210\) 0 0
\(211\) −8.10808e7 −0.594196 −0.297098 0.954847i \(-0.596019\pi\)
−0.297098 + 0.954847i \(0.596019\pi\)
\(212\) 0 0
\(213\) −1.04960e8 −0.744212
\(214\) 0 0
\(215\) −1.38146e8 −0.947992
\(216\) 0 0
\(217\) −8.49119e7 −0.564105
\(218\) 0 0
\(219\) 2.87644e8 1.85055
\(220\) 0 0
\(221\) −5.91565e7 −0.368663
\(222\) 0 0
\(223\) 2.40244e8 1.45072 0.725362 0.688368i \(-0.241672\pi\)
0.725362 + 0.688368i \(0.241672\pi\)
\(224\) 0 0
\(225\) −1.18709e8 −0.694775
\(226\) 0 0
\(227\) 7.63393e7 0.433170 0.216585 0.976264i \(-0.430508\pi\)
0.216585 + 0.976264i \(0.430508\pi\)
\(228\) 0 0
\(229\) −6.92500e7 −0.381062 −0.190531 0.981681i \(-0.561021\pi\)
−0.190531 + 0.981681i \(0.561021\pi\)
\(230\) 0 0
\(231\) −1.41423e8 −0.754882
\(232\) 0 0
\(233\) −6.15262e7 −0.318650 −0.159325 0.987226i \(-0.550932\pi\)
−0.159325 + 0.987226i \(0.550932\pi\)
\(234\) 0 0
\(235\) −1.02996e8 −0.517708
\(236\) 0 0
\(237\) 4.04089e8 1.97178
\(238\) 0 0
\(239\) −9.93248e7 −0.470614 −0.235307 0.971921i \(-0.575610\pi\)
−0.235307 + 0.971921i \(0.575610\pi\)
\(240\) 0 0
\(241\) −1.54605e8 −0.711480 −0.355740 0.934585i \(-0.615771\pi\)
−0.355740 + 0.934585i \(0.615771\pi\)
\(242\) 0 0
\(243\) 3.17530e8 1.41959
\(244\) 0 0
\(245\) −1.84963e7 −0.0803534
\(246\) 0 0
\(247\) 6.29665e7 0.265871
\(248\) 0 0
\(249\) 5.38121e8 2.20893
\(250\) 0 0
\(251\) 8.53238e7 0.340575 0.170287 0.985394i \(-0.445530\pi\)
0.170287 + 0.985394i \(0.445530\pi\)
\(252\) 0 0
\(253\) 6.59032e8 2.55850
\(254\) 0 0
\(255\) −1.14787e8 −0.433513
\(256\) 0 0
\(257\) −4.27723e8 −1.57180 −0.785900 0.618354i \(-0.787800\pi\)
−0.785900 + 0.618354i \(0.787800\pi\)
\(258\) 0 0
\(259\) 1.48751e8 0.532001
\(260\) 0 0
\(261\) −1.14607e8 −0.398997
\(262\) 0 0
\(263\) −4.67109e8 −1.58333 −0.791667 0.610953i \(-0.790787\pi\)
−0.791667 + 0.610953i \(0.790787\pi\)
\(264\) 0 0
\(265\) 6.99355e7 0.230854
\(266\) 0 0
\(267\) −6.54778e8 −2.10526
\(268\) 0 0
\(269\) 2.00003e8 0.626474 0.313237 0.949675i \(-0.398587\pi\)
0.313237 + 0.949675i \(0.398587\pi\)
\(270\) 0 0
\(271\) −2.32905e8 −0.710864 −0.355432 0.934702i \(-0.615666\pi\)
−0.355432 + 0.934702i \(0.615666\pi\)
\(272\) 0 0
\(273\) −1.22549e8 −0.364535
\(274\) 0 0
\(275\) −3.31612e8 −0.961537
\(276\) 0 0
\(277\) 4.46817e7 0.126314 0.0631569 0.998004i \(-0.479883\pi\)
0.0631569 + 0.998004i \(0.479883\pi\)
\(278\) 0 0
\(279\) −5.50238e8 −1.51683
\(280\) 0 0
\(281\) −1.38876e8 −0.373385 −0.186692 0.982418i \(-0.559777\pi\)
−0.186692 + 0.982418i \(0.559777\pi\)
\(282\) 0 0
\(283\) 3.28528e8 0.861627 0.430814 0.902441i \(-0.358227\pi\)
0.430814 + 0.902441i \(0.358227\pi\)
\(284\) 0 0
\(285\) 1.22180e8 0.312639
\(286\) 0 0
\(287\) 1.10727e8 0.276482
\(288\) 0 0
\(289\) −2.89451e8 −0.705394
\(290\) 0 0
\(291\) 1.14075e7 0.0271372
\(292\) 0 0
\(293\) −1.91796e8 −0.445455 −0.222727 0.974881i \(-0.571496\pi\)
−0.222727 + 0.974881i \(0.571496\pi\)
\(294\) 0 0
\(295\) −3.37300e8 −0.764960
\(296\) 0 0
\(297\) −1.47094e7 −0.0325798
\(298\) 0 0
\(299\) 5.71076e8 1.23550
\(300\) 0 0
\(301\) 3.01395e8 0.637021
\(302\) 0 0
\(303\) −9.96990e7 −0.205893
\(304\) 0 0
\(305\) −9.32138e7 −0.188118
\(306\) 0 0
\(307\) 1.98092e8 0.390734 0.195367 0.980730i \(-0.437410\pi\)
0.195367 + 0.980730i \(0.437410\pi\)
\(308\) 0 0
\(309\) 9.30333e8 1.79384
\(310\) 0 0
\(311\) 4.00719e8 0.755403 0.377701 0.925927i \(-0.376715\pi\)
0.377701 + 0.925927i \(0.376715\pi\)
\(312\) 0 0
\(313\) 5.31343e8 0.979421 0.489711 0.871885i \(-0.337102\pi\)
0.489711 + 0.871885i \(0.337102\pi\)
\(314\) 0 0
\(315\) −1.19858e8 −0.216063
\(316\) 0 0
\(317\) −4.38248e7 −0.0772702 −0.0386351 0.999253i \(-0.512301\pi\)
−0.0386351 + 0.999253i \(0.512301\pi\)
\(318\) 0 0
\(319\) −3.20154e8 −0.552194
\(320\) 0 0
\(321\) −1.57055e9 −2.65024
\(322\) 0 0
\(323\) −1.28674e8 −0.212462
\(324\) 0 0
\(325\) −2.87354e8 −0.464329
\(326\) 0 0
\(327\) 1.21160e9 1.91621
\(328\) 0 0
\(329\) 2.24708e8 0.347883
\(330\) 0 0
\(331\) 3.64466e8 0.552407 0.276204 0.961099i \(-0.410924\pi\)
0.276204 + 0.961099i \(0.410924\pi\)
\(332\) 0 0
\(333\) 9.63925e8 1.43050
\(334\) 0 0
\(335\) −2.71774e8 −0.394958
\(336\) 0 0
\(337\) 9.00453e8 1.28161 0.640806 0.767703i \(-0.278600\pi\)
0.640806 + 0.767703i \(0.278600\pi\)
\(338\) 0 0
\(339\) −4.54890e8 −0.634172
\(340\) 0 0
\(341\) −1.53709e9 −2.09922
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 1.10811e9 1.45284
\(346\) 0 0
\(347\) −2.69630e8 −0.346429 −0.173215 0.984884i \(-0.555415\pi\)
−0.173215 + 0.984884i \(0.555415\pi\)
\(348\) 0 0
\(349\) 6.42732e8 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(350\) 0 0
\(351\) −1.27463e7 −0.0157329
\(352\) 0 0
\(353\) −9.97045e8 −1.20643 −0.603217 0.797577i \(-0.706115\pi\)
−0.603217 + 0.797577i \(0.706115\pi\)
\(354\) 0 0
\(355\) −2.48496e8 −0.294795
\(356\) 0 0
\(357\) 2.50432e8 0.291307
\(358\) 0 0
\(359\) 1.66135e9 1.89509 0.947545 0.319622i \(-0.103556\pi\)
0.947545 + 0.319622i \(0.103556\pi\)
\(360\) 0 0
\(361\) −7.56910e8 −0.846777
\(362\) 0 0
\(363\) −1.26601e9 −1.38919
\(364\) 0 0
\(365\) 6.81004e8 0.733034
\(366\) 0 0
\(367\) 7.20860e8 0.761237 0.380618 0.924732i \(-0.375711\pi\)
0.380618 + 0.924732i \(0.375711\pi\)
\(368\) 0 0
\(369\) 7.17521e8 0.743434
\(370\) 0 0
\(371\) −1.52579e8 −0.155126
\(372\) 0 0
\(373\) −4.78878e8 −0.477798 −0.238899 0.971044i \(-0.576786\pi\)
−0.238899 + 0.971044i \(0.576786\pi\)
\(374\) 0 0
\(375\) −1.37321e9 −1.34470
\(376\) 0 0
\(377\) −2.77426e8 −0.266656
\(378\) 0 0
\(379\) −1.03267e9 −0.974373 −0.487186 0.873298i \(-0.661977\pi\)
−0.487186 + 0.873298i \(0.661977\pi\)
\(380\) 0 0
\(381\) −1.94892e9 −1.80533
\(382\) 0 0
\(383\) −5.93443e8 −0.539738 −0.269869 0.962897i \(-0.586980\pi\)
−0.269869 + 0.962897i \(0.586980\pi\)
\(384\) 0 0
\(385\) −3.34823e8 −0.299021
\(386\) 0 0
\(387\) 1.95307e9 1.71289
\(388\) 0 0
\(389\) −2.15324e9 −1.85468 −0.927340 0.374220i \(-0.877911\pi\)
−0.927340 + 0.374220i \(0.877911\pi\)
\(390\) 0 0
\(391\) −1.16701e9 −0.987316
\(392\) 0 0
\(393\) 6.84593e8 0.568930
\(394\) 0 0
\(395\) 9.56688e8 0.781053
\(396\) 0 0
\(397\) 1.88246e8 0.150994 0.0754969 0.997146i \(-0.475946\pi\)
0.0754969 + 0.997146i \(0.475946\pi\)
\(398\) 0 0
\(399\) −2.66561e8 −0.210083
\(400\) 0 0
\(401\) −7.58165e8 −0.587162 −0.293581 0.955934i \(-0.594847\pi\)
−0.293581 + 0.955934i \(0.594847\pi\)
\(402\) 0 0
\(403\) −1.33194e9 −1.01372
\(404\) 0 0
\(405\) 7.39494e8 0.553149
\(406\) 0 0
\(407\) 2.69272e9 1.97975
\(408\) 0 0
\(409\) −1.50707e9 −1.08919 −0.544593 0.838701i \(-0.683316\pi\)
−0.544593 + 0.838701i \(0.683316\pi\)
\(410\) 0 0
\(411\) −7.53747e8 −0.535524
\(412\) 0 0
\(413\) 7.35890e8 0.514029
\(414\) 0 0
\(415\) 1.27401e9 0.874994
\(416\) 0 0
\(417\) 3.76958e9 2.54575
\(418\) 0 0
\(419\) 1.51449e9 1.00581 0.502907 0.864341i \(-0.332264\pi\)
0.502907 + 0.864341i \(0.332264\pi\)
\(420\) 0 0
\(421\) −1.05648e9 −0.690037 −0.345019 0.938596i \(-0.612127\pi\)
−0.345019 + 0.938596i \(0.612127\pi\)
\(422\) 0 0
\(423\) 1.45613e9 0.935427
\(424\) 0 0
\(425\) 5.87217e8 0.371054
\(426\) 0 0
\(427\) 2.03365e8 0.126409
\(428\) 0 0
\(429\) −2.21839e9 −1.35655
\(430\) 0 0
\(431\) 2.52464e9 1.51890 0.759450 0.650565i \(-0.225468\pi\)
0.759450 + 0.650565i \(0.225468\pi\)
\(432\) 0 0
\(433\) 4.25297e8 0.251759 0.125879 0.992046i \(-0.459825\pi\)
0.125879 + 0.992046i \(0.459825\pi\)
\(434\) 0 0
\(435\) −5.38315e8 −0.313562
\(436\) 0 0
\(437\) 1.24217e9 0.712028
\(438\) 0 0
\(439\) 1.07323e9 0.605433 0.302717 0.953081i \(-0.402106\pi\)
0.302717 + 0.953081i \(0.402106\pi\)
\(440\) 0 0
\(441\) 2.61496e8 0.145187
\(442\) 0 0
\(443\) −5.79179e8 −0.316519 −0.158259 0.987398i \(-0.550588\pi\)
−0.158259 + 0.987398i \(0.550588\pi\)
\(444\) 0 0
\(445\) −1.55020e9 −0.833927
\(446\) 0 0
\(447\) −1.80042e9 −0.953450
\(448\) 0 0
\(449\) −2.44352e9 −1.27396 −0.636978 0.770882i \(-0.719816\pi\)
−0.636978 + 0.770882i \(0.719816\pi\)
\(450\) 0 0
\(451\) 2.00439e9 1.02888
\(452\) 0 0
\(453\) −2.14878e8 −0.108605
\(454\) 0 0
\(455\) −2.90136e8 −0.144398
\(456\) 0 0
\(457\) −5.73498e8 −0.281077 −0.140538 0.990075i \(-0.544883\pi\)
−0.140538 + 0.990075i \(0.544883\pi\)
\(458\) 0 0
\(459\) 2.60474e7 0.0125724
\(460\) 0 0
\(461\) 4.58794e8 0.218105 0.109052 0.994036i \(-0.465218\pi\)
0.109052 + 0.994036i \(0.465218\pi\)
\(462\) 0 0
\(463\) −3.14598e8 −0.147307 −0.0736533 0.997284i \(-0.523466\pi\)
−0.0736533 + 0.997284i \(0.523466\pi\)
\(464\) 0 0
\(465\) −2.58449e9 −1.19204
\(466\) 0 0
\(467\) 9.42124e8 0.428054 0.214027 0.976828i \(-0.431342\pi\)
0.214027 + 0.976828i \(0.431342\pi\)
\(468\) 0 0
\(469\) 5.92932e8 0.265399
\(470\) 0 0
\(471\) −5.60357e9 −2.47111
\(472\) 0 0
\(473\) 5.45589e9 2.37056
\(474\) 0 0
\(475\) −6.25038e8 −0.267595
\(476\) 0 0
\(477\) −9.88727e8 −0.417121
\(478\) 0 0
\(479\) 3.10364e9 1.29032 0.645160 0.764048i \(-0.276791\pi\)
0.645160 + 0.764048i \(0.276791\pi\)
\(480\) 0 0
\(481\) 2.33334e9 0.956027
\(482\) 0 0
\(483\) −2.41758e9 −0.976260
\(484\) 0 0
\(485\) 2.70075e7 0.0107495
\(486\) 0 0
\(487\) −1.89934e9 −0.745162 −0.372581 0.928000i \(-0.621527\pi\)
−0.372581 + 0.928000i \(0.621527\pi\)
\(488\) 0 0
\(489\) 4.17555e9 1.61485
\(490\) 0 0
\(491\) −1.74671e9 −0.665940 −0.332970 0.942937i \(-0.608051\pi\)
−0.332970 + 0.942937i \(0.608051\pi\)
\(492\) 0 0
\(493\) 5.66928e8 0.213090
\(494\) 0 0
\(495\) −2.16969e9 −0.804042
\(496\) 0 0
\(497\) 5.42146e8 0.198093
\(498\) 0 0
\(499\) −3.80758e9 −1.37182 −0.685910 0.727687i \(-0.740595\pi\)
−0.685910 + 0.727687i \(0.740595\pi\)
\(500\) 0 0
\(501\) −4.74671e9 −1.68640
\(502\) 0 0
\(503\) −3.25718e8 −0.114118 −0.0570589 0.998371i \(-0.518172\pi\)
−0.0570589 + 0.998371i \(0.518172\pi\)
\(504\) 0 0
\(505\) −2.36040e8 −0.0815577
\(506\) 0 0
\(507\) 2.24452e9 0.764886
\(508\) 0 0
\(509\) −3.90181e9 −1.31146 −0.655728 0.754997i \(-0.727638\pi\)
−0.655728 + 0.754997i \(0.727638\pi\)
\(510\) 0 0
\(511\) −1.48575e9 −0.492576
\(512\) 0 0
\(513\) −2.77250e7 −0.00906694
\(514\) 0 0
\(515\) 2.20258e9 0.710570
\(516\) 0 0
\(517\) 4.06770e9 1.29459
\(518\) 0 0
\(519\) −4.38362e9 −1.37641
\(520\) 0 0
\(521\) −2.92867e9 −0.907275 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(522\) 0 0
\(523\) −4.49793e9 −1.37486 −0.687428 0.726253i \(-0.741260\pi\)
−0.687428 + 0.726253i \(0.741260\pi\)
\(524\) 0 0
\(525\) 1.21648e9 0.366899
\(526\) 0 0
\(527\) 2.72186e9 0.810082
\(528\) 0 0
\(529\) 7.86107e9 2.30880
\(530\) 0 0
\(531\) 4.76864e9 1.38218
\(532\) 0 0
\(533\) 1.73688e9 0.496849
\(534\) 0 0
\(535\) −3.71832e9 −1.04980
\(536\) 0 0
\(537\) 6.25676e8 0.174357
\(538\) 0 0
\(539\) 7.30486e8 0.200933
\(540\) 0 0
\(541\) 1.17772e9 0.319779 0.159889 0.987135i \(-0.448886\pi\)
0.159889 + 0.987135i \(0.448886\pi\)
\(542\) 0 0
\(543\) −2.42395e9 −0.649718
\(544\) 0 0
\(545\) 2.86849e9 0.759042
\(546\) 0 0
\(547\) 3.94940e9 1.03175 0.515877 0.856663i \(-0.327466\pi\)
0.515877 + 0.856663i \(0.327466\pi\)
\(548\) 0 0
\(549\) 1.31783e9 0.339904
\(550\) 0 0
\(551\) −6.03441e8 −0.153675
\(552\) 0 0
\(553\) −2.08722e9 −0.524843
\(554\) 0 0
\(555\) 4.52760e9 1.12420
\(556\) 0 0
\(557\) −4.20743e9 −1.03163 −0.515815 0.856700i \(-0.672511\pi\)
−0.515815 + 0.856700i \(0.672511\pi\)
\(558\) 0 0
\(559\) 4.72773e9 1.14475
\(560\) 0 0
\(561\) 4.53334e9 1.08405
\(562\) 0 0
\(563\) 3.97322e9 0.938347 0.469174 0.883106i \(-0.344552\pi\)
0.469174 + 0.883106i \(0.344552\pi\)
\(564\) 0 0
\(565\) −1.07696e9 −0.251206
\(566\) 0 0
\(567\) −1.61336e9 −0.371698
\(568\) 0 0
\(569\) 5.06019e9 1.15153 0.575763 0.817617i \(-0.304705\pi\)
0.575763 + 0.817617i \(0.304705\pi\)
\(570\) 0 0
\(571\) 4.24104e8 0.0953336 0.0476668 0.998863i \(-0.484821\pi\)
0.0476668 + 0.998863i \(0.484821\pi\)
\(572\) 0 0
\(573\) 5.58213e9 1.23953
\(574\) 0 0
\(575\) −5.66878e9 −1.24352
\(576\) 0 0
\(577\) −5.02389e9 −1.08874 −0.544371 0.838845i \(-0.683232\pi\)
−0.544371 + 0.838845i \(0.683232\pi\)
\(578\) 0 0
\(579\) 4.43204e9 0.948917
\(580\) 0 0
\(581\) −2.77953e9 −0.587969
\(582\) 0 0
\(583\) −2.76200e9 −0.577277
\(584\) 0 0
\(585\) −1.88011e9 −0.388274
\(586\) 0 0
\(587\) −8.56543e9 −1.74790 −0.873948 0.486019i \(-0.838449\pi\)
−0.873948 + 0.486019i \(0.838449\pi\)
\(588\) 0 0
\(589\) −2.89717e9 −0.584212
\(590\) 0 0
\(591\) 3.39735e9 0.676992
\(592\) 0 0
\(593\) −5.79211e9 −1.14063 −0.570315 0.821426i \(-0.693179\pi\)
−0.570315 + 0.821426i \(0.693179\pi\)
\(594\) 0 0
\(595\) 5.92902e8 0.115391
\(596\) 0 0
\(597\) −7.84691e9 −1.50935
\(598\) 0 0
\(599\) 1.74446e9 0.331641 0.165820 0.986156i \(-0.446973\pi\)
0.165820 + 0.986156i \(0.446973\pi\)
\(600\) 0 0
\(601\) −8.05605e9 −1.51378 −0.756888 0.653545i \(-0.773281\pi\)
−0.756888 + 0.653545i \(0.773281\pi\)
\(602\) 0 0
\(603\) 3.84226e9 0.713635
\(604\) 0 0
\(605\) −2.99730e9 −0.550283
\(606\) 0 0
\(607\) 4.69926e9 0.852842 0.426421 0.904525i \(-0.359774\pi\)
0.426421 + 0.904525i \(0.359774\pi\)
\(608\) 0 0
\(609\) 1.17445e9 0.210704
\(610\) 0 0
\(611\) 3.52481e9 0.625160
\(612\) 0 0
\(613\) 2.30662e9 0.404449 0.202225 0.979339i \(-0.435183\pi\)
0.202225 + 0.979339i \(0.435183\pi\)
\(614\) 0 0
\(615\) 3.37023e9 0.584247
\(616\) 0 0
\(617\) −8.81255e9 −1.51044 −0.755220 0.655471i \(-0.772470\pi\)
−0.755220 + 0.655471i \(0.772470\pi\)
\(618\) 0 0
\(619\) −5.51648e9 −0.934857 −0.467428 0.884031i \(-0.654819\pi\)
−0.467428 + 0.884031i \(0.654819\pi\)
\(620\) 0 0
\(621\) −2.51452e8 −0.0421342
\(622\) 0 0
\(623\) 3.38209e9 0.560373
\(624\) 0 0
\(625\) 9.21413e8 0.150964
\(626\) 0 0
\(627\) −4.82532e9 −0.781789
\(628\) 0 0
\(629\) −4.76825e9 −0.763980
\(630\) 0 0
\(631\) 4.00663e9 0.634857 0.317429 0.948282i \(-0.397181\pi\)
0.317429 + 0.948282i \(0.397181\pi\)
\(632\) 0 0
\(633\) 5.38420e9 0.843740
\(634\) 0 0
\(635\) −4.61411e9 −0.715121
\(636\) 0 0
\(637\) 6.32993e8 0.0970311
\(638\) 0 0
\(639\) 3.51316e9 0.532654
\(640\) 0 0
\(641\) 7.52357e9 1.12829 0.564145 0.825676i \(-0.309206\pi\)
0.564145 + 0.825676i \(0.309206\pi\)
\(642\) 0 0
\(643\) −1.08744e10 −1.61311 −0.806557 0.591156i \(-0.798672\pi\)
−0.806557 + 0.591156i \(0.798672\pi\)
\(644\) 0 0
\(645\) 9.17366e9 1.34612
\(646\) 0 0
\(647\) −3.17336e9 −0.460632 −0.230316 0.973116i \(-0.573976\pi\)
−0.230316 + 0.973116i \(0.573976\pi\)
\(648\) 0 0
\(649\) 1.33212e10 1.91287
\(650\) 0 0
\(651\) 5.63861e9 0.801011
\(652\) 0 0
\(653\) −7.94853e9 −1.11710 −0.558549 0.829472i \(-0.688642\pi\)
−0.558549 + 0.829472i \(0.688642\pi\)
\(654\) 0 0
\(655\) 1.62079e9 0.225363
\(656\) 0 0
\(657\) −9.62783e9 −1.32449
\(658\) 0 0
\(659\) −1.08219e10 −1.47301 −0.736504 0.676433i \(-0.763525\pi\)
−0.736504 + 0.676433i \(0.763525\pi\)
\(660\) 0 0
\(661\) 9.86108e9 1.32807 0.664033 0.747704i \(-0.268844\pi\)
0.664033 + 0.747704i \(0.268844\pi\)
\(662\) 0 0
\(663\) 3.92831e9 0.523490
\(664\) 0 0
\(665\) −6.31089e8 −0.0832175
\(666\) 0 0
\(667\) −5.47291e9 −0.714132
\(668\) 0 0
\(669\) −1.59535e10 −2.05998
\(670\) 0 0
\(671\) 3.68135e9 0.470411
\(672\) 0 0
\(673\) 1.48659e10 1.87992 0.939959 0.341288i \(-0.110863\pi\)
0.939959 + 0.341288i \(0.110863\pi\)
\(674\) 0 0
\(675\) 1.26526e8 0.0158349
\(676\) 0 0
\(677\) −5.71127e9 −0.707412 −0.353706 0.935357i \(-0.615079\pi\)
−0.353706 + 0.935357i \(0.615079\pi\)
\(678\) 0 0
\(679\) −5.89225e7 −0.00722332
\(680\) 0 0
\(681\) −5.06934e9 −0.615087
\(682\) 0 0
\(683\) 9.40673e9 1.12971 0.564854 0.825191i \(-0.308932\pi\)
0.564854 + 0.825191i \(0.308932\pi\)
\(684\) 0 0
\(685\) −1.78451e9 −0.212130
\(686\) 0 0
\(687\) 4.59857e9 0.541096
\(688\) 0 0
\(689\) −2.39338e9 −0.278769
\(690\) 0 0
\(691\) 1.63111e10 1.88066 0.940331 0.340262i \(-0.110516\pi\)
0.940331 + 0.340262i \(0.110516\pi\)
\(692\) 0 0
\(693\) 4.73362e9 0.540291
\(694\) 0 0
\(695\) 8.92455e9 1.00842
\(696\) 0 0
\(697\) −3.54936e9 −0.397041
\(698\) 0 0
\(699\) 4.08567e9 0.452473
\(700\) 0 0
\(701\) 1.18926e10 1.30396 0.651979 0.758237i \(-0.273939\pi\)
0.651979 + 0.758237i \(0.273939\pi\)
\(702\) 0 0
\(703\) 5.07536e9 0.550963
\(704\) 0 0
\(705\) 6.83952e9 0.735129
\(706\) 0 0
\(707\) 5.14970e8 0.0548042
\(708\) 0 0
\(709\) 1.49941e10 1.58000 0.790002 0.613104i \(-0.210080\pi\)
0.790002 + 0.613104i \(0.210080\pi\)
\(710\) 0 0
\(711\) −1.35254e10 −1.41126
\(712\) 0 0
\(713\) −2.62759e10 −2.71484
\(714\) 0 0
\(715\) −5.25208e9 −0.537354
\(716\) 0 0
\(717\) 6.59570e9 0.668257
\(718\) 0 0
\(719\) 4.35637e9 0.437093 0.218546 0.975827i \(-0.429869\pi\)
0.218546 + 0.975827i \(0.429869\pi\)
\(720\) 0 0
\(721\) −4.80540e9 −0.477481
\(722\) 0 0
\(723\) 1.02666e10 1.01028
\(724\) 0 0
\(725\) 2.75387e9 0.268386
\(726\) 0 0
\(727\) 4.64655e9 0.448498 0.224249 0.974532i \(-0.428007\pi\)
0.224249 + 0.974532i \(0.428007\pi\)
\(728\) 0 0
\(729\) −1.07988e10 −1.03235
\(730\) 0 0
\(731\) −9.66126e9 −0.914793
\(732\) 0 0
\(733\) −1.67128e10 −1.56742 −0.783710 0.621126i \(-0.786675\pi\)
−0.783710 + 0.621126i \(0.786675\pi\)
\(734\) 0 0
\(735\) 1.22826e9 0.114099
\(736\) 0 0
\(737\) 1.07333e10 0.987638
\(738\) 0 0
\(739\) −1.04179e10 −0.949561 −0.474781 0.880104i \(-0.657473\pi\)
−0.474781 + 0.880104i \(0.657473\pi\)
\(740\) 0 0
\(741\) −4.18132e9 −0.377528
\(742\) 0 0
\(743\) 1.42061e8 0.0127061 0.00635307 0.999980i \(-0.497978\pi\)
0.00635307 + 0.999980i \(0.497978\pi\)
\(744\) 0 0
\(745\) −4.26254e9 −0.377678
\(746\) 0 0
\(747\) −1.80116e10 −1.58099
\(748\) 0 0
\(749\) 8.11229e9 0.705436
\(750\) 0 0
\(751\) −2.69386e9 −0.232078 −0.116039 0.993245i \(-0.537020\pi\)
−0.116039 + 0.993245i \(0.537020\pi\)
\(752\) 0 0
\(753\) −5.66596e9 −0.483605
\(754\) 0 0
\(755\) −5.08729e8 −0.0430202
\(756\) 0 0
\(757\) −4.63791e8 −0.0388585 −0.0194293 0.999811i \(-0.506185\pi\)
−0.0194293 + 0.999811i \(0.506185\pi\)
\(758\) 0 0
\(759\) −4.37633e10 −3.63298
\(760\) 0 0
\(761\) −1.71497e10 −1.41062 −0.705311 0.708898i \(-0.749193\pi\)
−0.705311 + 0.708898i \(0.749193\pi\)
\(762\) 0 0
\(763\) −6.25822e9 −0.510052
\(764\) 0 0
\(765\) 3.84207e9 0.310277
\(766\) 0 0
\(767\) 1.15433e10 0.923731
\(768\) 0 0
\(769\) 2.83370e9 0.224705 0.112352 0.993668i \(-0.464161\pi\)
0.112352 + 0.993668i \(0.464161\pi\)
\(770\) 0 0
\(771\) 2.84031e10 2.23191
\(772\) 0 0
\(773\) 7.20359e9 0.560946 0.280473 0.959862i \(-0.409509\pi\)
0.280473 + 0.959862i \(0.409509\pi\)
\(774\) 0 0
\(775\) 1.32215e10 1.02029
\(776\) 0 0
\(777\) −9.87790e9 −0.755424
\(778\) 0 0
\(779\) 3.77796e9 0.286337
\(780\) 0 0
\(781\) 9.81399e9 0.737169
\(782\) 0 0
\(783\) 1.22154e8 0.00909373
\(784\) 0 0
\(785\) −1.32666e10 −0.978848
\(786\) 0 0
\(787\) −6.82062e9 −0.498784 −0.249392 0.968403i \(-0.580231\pi\)
−0.249392 + 0.968403i \(0.580231\pi\)
\(788\) 0 0
\(789\) 3.10185e10 2.24829
\(790\) 0 0
\(791\) 2.34962e9 0.168803
\(792\) 0 0
\(793\) 3.19002e9 0.227163
\(794\) 0 0
\(795\) −4.64409e9 −0.327805
\(796\) 0 0
\(797\) 1.38571e10 0.969544 0.484772 0.874641i \(-0.338903\pi\)
0.484772 + 0.874641i \(0.338903\pi\)
\(798\) 0 0
\(799\) −7.20306e9 −0.499578
\(800\) 0 0
\(801\) 2.19163e10 1.50679
\(802\) 0 0
\(803\) −2.68953e10 −1.83304
\(804\) 0 0
\(805\) −5.72367e9 −0.386713
\(806\) 0 0
\(807\) −1.32813e10 −0.889573
\(808\) 0 0
\(809\) −5.20582e9 −0.345676 −0.172838 0.984950i \(-0.555294\pi\)
−0.172838 + 0.984950i \(0.555294\pi\)
\(810\) 0 0
\(811\) 1.44908e9 0.0953938 0.0476969 0.998862i \(-0.484812\pi\)
0.0476969 + 0.998862i \(0.484812\pi\)
\(812\) 0 0
\(813\) 1.54662e10 1.00941
\(814\) 0 0
\(815\) 9.88570e9 0.639669
\(816\) 0 0
\(817\) 1.02835e10 0.659727
\(818\) 0 0
\(819\) 4.10186e9 0.260908
\(820\) 0 0
\(821\) 2.69442e10 1.69928 0.849638 0.527366i \(-0.176820\pi\)
0.849638 + 0.527366i \(0.176820\pi\)
\(822\) 0 0
\(823\) −1.12034e10 −0.700568 −0.350284 0.936643i \(-0.613915\pi\)
−0.350284 + 0.936643i \(0.613915\pi\)
\(824\) 0 0
\(825\) 2.20208e10 1.36535
\(826\) 0 0
\(827\) −7.78707e9 −0.478746 −0.239373 0.970928i \(-0.576942\pi\)
−0.239373 + 0.970928i \(0.576942\pi\)
\(828\) 0 0
\(829\) −1.08875e10 −0.663722 −0.331861 0.943328i \(-0.607677\pi\)
−0.331861 + 0.943328i \(0.607677\pi\)
\(830\) 0 0
\(831\) −2.96711e9 −0.179362
\(832\) 0 0
\(833\) −1.29354e9 −0.0775394
\(834\) 0 0
\(835\) −1.12379e10 −0.668012
\(836\) 0 0
\(837\) 5.86472e8 0.0345707
\(838\) 0 0
\(839\) −8.20806e9 −0.479815 −0.239907 0.970796i \(-0.577117\pi\)
−0.239907 + 0.970796i \(0.577117\pi\)
\(840\) 0 0
\(841\) −1.45912e10 −0.845871
\(842\) 0 0
\(843\) 9.22215e9 0.530195
\(844\) 0 0
\(845\) 5.31396e9 0.302984
\(846\) 0 0
\(847\) 6.53924e9 0.369773
\(848\) 0 0
\(849\) −2.18160e10 −1.22348
\(850\) 0 0
\(851\) 4.60310e10 2.56033
\(852\) 0 0
\(853\) 4.95254e9 0.273216 0.136608 0.990625i \(-0.456380\pi\)
0.136608 + 0.990625i \(0.456380\pi\)
\(854\) 0 0
\(855\) −4.08952e9 −0.223764
\(856\) 0 0
\(857\) 3.38165e10 1.83525 0.917625 0.397446i \(-0.130104\pi\)
0.917625 + 0.397446i \(0.130104\pi\)
\(858\) 0 0
\(859\) −6.49803e9 −0.349788 −0.174894 0.984587i \(-0.555958\pi\)
−0.174894 + 0.984587i \(0.555958\pi\)
\(860\) 0 0
\(861\) −7.35286e9 −0.392595
\(862\) 0 0
\(863\) −2.14007e10 −1.13342 −0.566709 0.823918i \(-0.691784\pi\)
−0.566709 + 0.823918i \(0.691784\pi\)
\(864\) 0 0
\(865\) −1.03783e10 −0.545219
\(866\) 0 0
\(867\) 1.92211e10 1.00164
\(868\) 0 0
\(869\) −3.77830e10 −1.95311
\(870\) 0 0
\(871\) 9.30082e9 0.476933
\(872\) 0 0
\(873\) −3.81824e8 −0.0194229
\(874\) 0 0
\(875\) 7.09294e9 0.357930
\(876\) 0 0
\(877\) −2.81094e10 −1.40719 −0.703595 0.710601i \(-0.748423\pi\)
−0.703595 + 0.710601i \(0.748423\pi\)
\(878\) 0 0
\(879\) 1.27363e10 0.632532
\(880\) 0 0
\(881\) 8.82922e9 0.435017 0.217509 0.976058i \(-0.430207\pi\)
0.217509 + 0.976058i \(0.430207\pi\)
\(882\) 0 0
\(883\) 2.59216e10 1.26707 0.633534 0.773715i \(-0.281604\pi\)
0.633534 + 0.773715i \(0.281604\pi\)
\(884\) 0 0
\(885\) 2.23985e10 1.08622
\(886\) 0 0
\(887\) −1.89397e10 −0.911258 −0.455629 0.890170i \(-0.650586\pi\)
−0.455629 + 0.890170i \(0.650586\pi\)
\(888\) 0 0
\(889\) 1.00666e10 0.480539
\(890\) 0 0
\(891\) −2.92052e10 −1.38321
\(892\) 0 0
\(893\) 7.66698e9 0.360283
\(894\) 0 0
\(895\) 1.48130e9 0.0690657
\(896\) 0 0
\(897\) −3.79225e10 −1.75438
\(898\) 0 0
\(899\) 1.27647e10 0.585938
\(900\) 0 0
\(901\) 4.89094e9 0.222769
\(902\) 0 0
\(903\) −2.00143e10 −0.904550
\(904\) 0 0
\(905\) −5.73876e9 −0.257364
\(906\) 0 0
\(907\) 9.02019e9 0.401412 0.200706 0.979652i \(-0.435676\pi\)
0.200706 + 0.979652i \(0.435676\pi\)
\(908\) 0 0
\(909\) 3.33706e9 0.147364
\(910\) 0 0
\(911\) 3.38470e10 1.48322 0.741610 0.670831i \(-0.234062\pi\)
0.741610 + 0.670831i \(0.234062\pi\)
\(912\) 0 0
\(913\) −5.03153e10 −2.18802
\(914\) 0 0
\(915\) 6.18990e9 0.267122
\(916\) 0 0
\(917\) −3.53609e9 −0.151437
\(918\) 0 0
\(919\) −3.50778e10 −1.49083 −0.745415 0.666601i \(-0.767749\pi\)
−0.745415 + 0.666601i \(0.767749\pi\)
\(920\) 0 0
\(921\) −1.31543e10 −0.554831
\(922\) 0 0
\(923\) 8.50419e9 0.355981
\(924\) 0 0
\(925\) −2.31619e10 −0.962228
\(926\) 0 0
\(927\) −3.11395e10 −1.28390
\(928\) 0 0
\(929\) −2.37377e10 −0.971369 −0.485685 0.874134i \(-0.661430\pi\)
−0.485685 + 0.874134i \(0.661430\pi\)
\(930\) 0 0
\(931\) 1.37685e9 0.0559195
\(932\) 0 0
\(933\) −2.66099e10 −1.07265
\(934\) 0 0
\(935\) 1.07328e10 0.429410
\(936\) 0 0
\(937\) 2.48298e9 0.0986017 0.0493009 0.998784i \(-0.484301\pi\)
0.0493009 + 0.998784i \(0.484301\pi\)
\(938\) 0 0
\(939\) −3.52840e10 −1.39075
\(940\) 0 0
\(941\) 1.70549e10 0.667245 0.333623 0.942707i \(-0.391729\pi\)
0.333623 + 0.942707i \(0.391729\pi\)
\(942\) 0 0
\(943\) 3.42643e10 1.33061
\(944\) 0 0
\(945\) 1.27751e8 0.00492439
\(946\) 0 0
\(947\) 1.95521e10 0.748114 0.374057 0.927406i \(-0.377966\pi\)
0.374057 + 0.927406i \(0.377966\pi\)
\(948\) 0 0
\(949\) −2.33057e10 −0.885179
\(950\) 0 0
\(951\) 2.91020e9 0.109721
\(952\) 0 0
\(953\) 1.99979e10 0.748444 0.374222 0.927339i \(-0.377910\pi\)
0.374222 + 0.927339i \(0.377910\pi\)
\(954\) 0 0
\(955\) 1.32158e10 0.491000
\(956\) 0 0
\(957\) 2.12600e10 0.784099
\(958\) 0 0
\(959\) 3.89329e9 0.142545
\(960\) 0 0
\(961\) 3.37717e10 1.22750
\(962\) 0 0
\(963\) 5.25685e10 1.89685
\(964\) 0 0
\(965\) 1.04929e10 0.375882
\(966\) 0 0
\(967\) 2.36717e10 0.841853 0.420927 0.907095i \(-0.361705\pi\)
0.420927 + 0.907095i \(0.361705\pi\)
\(968\) 0 0
\(969\) 8.54465e9 0.301690
\(970\) 0 0
\(971\) −5.49876e10 −1.92751 −0.963757 0.266781i \(-0.914040\pi\)
−0.963757 + 0.266781i \(0.914040\pi\)
\(972\) 0 0
\(973\) −1.94708e10 −0.677624
\(974\) 0 0
\(975\) 1.90819e10 0.659333
\(976\) 0 0
\(977\) −5.44353e9 −0.186745 −0.0933727 0.995631i \(-0.529765\pi\)
−0.0933727 + 0.995631i \(0.529765\pi\)
\(978\) 0 0
\(979\) 6.12230e10 2.08533
\(980\) 0 0
\(981\) −4.05539e10 −1.37149
\(982\) 0 0
\(983\) 3.66356e10 1.23017 0.615086 0.788460i \(-0.289121\pi\)
0.615086 + 0.788460i \(0.289121\pi\)
\(984\) 0 0
\(985\) 8.04329e9 0.268168
\(986\) 0 0
\(987\) −1.49218e10 −0.493983
\(988\) 0 0
\(989\) 9.32664e10 3.06576
\(990\) 0 0
\(991\) 1.36900e9 0.0446832 0.0223416 0.999750i \(-0.492888\pi\)
0.0223416 + 0.999750i \(0.492888\pi\)
\(992\) 0 0
\(993\) −2.42025e10 −0.784401
\(994\) 0 0
\(995\) −1.85777e10 −0.597877
\(996\) 0 0
\(997\) 1.36331e10 0.435673 0.217837 0.975985i \(-0.430100\pi\)
0.217837 + 0.975985i \(0.430100\pi\)
\(998\) 0 0
\(999\) −1.02740e9 −0.0326032
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 28.8.a.a.1.1 2
3.2 odd 2 252.8.a.e.1.2 2
4.3 odd 2 112.8.a.i.1.2 2
7.2 even 3 196.8.e.d.165.2 4
7.3 odd 6 196.8.e.a.177.1 4
7.4 even 3 196.8.e.d.177.2 4
7.5 odd 6 196.8.e.a.165.1 4
7.6 odd 2 196.8.a.b.1.2 2
8.3 odd 2 448.8.a.n.1.1 2
8.5 even 2 448.8.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.a.a.1.1 2 1.1 even 1 trivial
112.8.a.i.1.2 2 4.3 odd 2
196.8.a.b.1.2 2 7.6 odd 2
196.8.e.a.165.1 4 7.5 odd 6
196.8.e.a.177.1 4 7.3 odd 6
196.8.e.d.165.2 4 7.2 even 3
196.8.e.d.177.2 4 7.4 even 3
252.8.a.e.1.2 2 3.2 odd 2
448.8.a.n.1.1 2 8.3 odd 2
448.8.a.p.1.2 2 8.5 even 2