Properties

Label 196.10.e.i.177.7
Level $196$
Weight $10$
Character 196.177
Analytic conductor $100.947$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,10,Mod(165,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.165"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.947023888\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 23330 x^{18} + 430207983 x^{16} + 2419104777826 x^{14} + \cdots + 51\!\cdots\!44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{8}\cdot 7^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.7
Root \(65.2870 + 113.080i\) of defining polynomial
Character \(\chi\) \(=\) 196.177
Dual form 196.10.e.i.165.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(35.1890 + 60.9492i) q^{3} +(-81.3880 + 140.968i) q^{5} +(7364.96 - 12756.5i) q^{9} +(-45434.4 - 78694.7i) q^{11} -167897. q^{13} -11455.9 q^{15} +(-4913.47 - 8510.38i) q^{17} +(-237764. + 411820. i) q^{19} +(110522. - 191430. i) q^{23} +(963314. + 1.66851e6i) q^{25} +2.42191e6 q^{27} +820028. q^{29} +(1.41587e6 + 2.45236e6i) q^{31} +(3.19758e6 - 5.53838e6i) q^{33} +(1.35653e6 - 2.34957e6i) q^{37} +(-5.90813e6 - 1.02332e7i) q^{39} -1.90289e7 q^{41} +2.58212e7 q^{43} +(1.19884e6 + 2.07645e6i) q^{45} +(-1.75526e7 + 3.04019e7i) q^{47} +(345801. - 598944. i) q^{51} +(4.10462e7 + 7.10941e7i) q^{53} +1.47913e7 q^{55} -3.34668e7 q^{57} +(6.69928e7 + 1.16035e8i) q^{59} +(5.08262e7 - 8.80335e7i) q^{61} +(1.36648e7 - 2.36681e7i) q^{65} +(-7.40102e7 - 1.28190e8i) q^{67} +1.55567e7 q^{69} +1.94170e8 q^{71} +(-3.10493e7 - 5.37790e7i) q^{73} +(-6.77962e7 + 1.17426e8i) q^{75} +(-2.00722e8 + 3.47660e8i) q^{79} +(-5.97398e7 - 1.03472e8i) q^{81} -1.49637e8 q^{83} +1.59959e6 q^{85} +(2.88560e7 + 4.99801e7i) q^{87} +(-3.27085e8 + 5.66527e8i) q^{89} +(-9.96462e7 + 1.72592e8i) q^{93} +(-3.87023e7 - 6.70344e7i) q^{95} +1.51683e9 q^{97} -1.33849e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 93550 q^{9} - 27740 q^{11} + 1824176 q^{15} + 2921096 q^{23} - 3484998 q^{25} - 1671496 q^{29} + 31928756 q^{37} + 4930944 q^{39} + 26828680 q^{43} - 206013028 q^{51} - 137301788 q^{53} + 144492664 q^{57}+ \cdots + 10632134024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 35.1890 + 60.9492i 0.250820 + 0.434432i 0.963752 0.266801i \(-0.0859665\pi\)
−0.712932 + 0.701233i \(0.752633\pi\)
\(4\) 0 0
\(5\) −81.3880 + 140.968i −0.0582365 + 0.100869i −0.893674 0.448717i \(-0.851881\pi\)
0.835437 + 0.549586i \(0.185214\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 7364.96 12756.5i 0.374179 0.648097i
\(10\) 0 0
\(11\) −45434.4 78694.7i −0.935659 1.62061i −0.773454 0.633852i \(-0.781473\pi\)
−0.162205 0.986757i \(-0.551860\pi\)
\(12\) 0 0
\(13\) −167897. −1.63041 −0.815206 0.579171i \(-0.803377\pi\)
−0.815206 + 0.579171i \(0.803377\pi\)
\(14\) 0 0
\(15\) −11455.9 −0.0584275
\(16\) 0 0
\(17\) −4913.47 8510.38i −0.0142682 0.0247132i 0.858803 0.512306i \(-0.171209\pi\)
−0.873071 + 0.487593i \(0.837875\pi\)
\(18\) 0 0
\(19\) −237764. + 411820.i −0.418558 + 0.724963i −0.995795 0.0916137i \(-0.970798\pi\)
0.577237 + 0.816577i \(0.304131\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 110522. 191430.i 0.0823519 0.142638i −0.821908 0.569621i \(-0.807090\pi\)
0.904260 + 0.426983i \(0.140424\pi\)
\(24\) 0 0
\(25\) 963314. + 1.66851e6i 0.493217 + 0.854277i
\(26\) 0 0
\(27\) 2.42191e6 0.877045
\(28\) 0 0
\(29\) 820028. 0.215297 0.107648 0.994189i \(-0.465668\pi\)
0.107648 + 0.994189i \(0.465668\pi\)
\(30\) 0 0
\(31\) 1.41587e6 + 2.45236e6i 0.275357 + 0.476932i 0.970225 0.242205i \(-0.0778707\pi\)
−0.694868 + 0.719137i \(0.744537\pi\)
\(32\) 0 0
\(33\) 3.19758e6 5.53838e6i 0.469363 0.812961i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.35653e6 2.34957e6i 0.118993 0.206102i −0.800376 0.599498i \(-0.795367\pi\)
0.919369 + 0.393397i \(0.128700\pi\)
\(38\) 0 0
\(39\) −5.90813e6 1.02332e7i −0.408940 0.708304i
\(40\) 0 0
\(41\) −1.90289e7 −1.05169 −0.525845 0.850581i \(-0.676251\pi\)
−0.525845 + 0.850581i \(0.676251\pi\)
\(42\) 0 0
\(43\) 2.58212e7 1.15178 0.575889 0.817528i \(-0.304656\pi\)
0.575889 + 0.817528i \(0.304656\pi\)
\(44\) 0 0
\(45\) 1.19884e6 + 2.07645e6i 0.0435818 + 0.0754858i
\(46\) 0 0
\(47\) −1.75526e7 + 3.04019e7i −0.524687 + 0.908784i 0.474900 + 0.880040i \(0.342484\pi\)
−0.999587 + 0.0287443i \(0.990849\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 345801. 598944.i 0.00715748 0.0123971i
\(52\) 0 0
\(53\) 4.10462e7 + 7.10941e7i 0.714549 + 1.23763i 0.963133 + 0.269024i \(0.0867012\pi\)
−0.248585 + 0.968610i \(0.579965\pi\)
\(54\) 0 0
\(55\) 1.47913e7 0.217958
\(56\) 0 0
\(57\) −3.34668e7 −0.419930
\(58\) 0 0
\(59\) 6.69928e7 + 1.16035e8i 0.719770 + 1.24668i 0.961091 + 0.276233i \(0.0890861\pi\)
−0.241321 + 0.970445i \(0.577581\pi\)
\(60\) 0 0
\(61\) 5.08262e7 8.80335e7i 0.470006 0.814074i −0.529406 0.848369i \(-0.677585\pi\)
0.999412 + 0.0342948i \(0.0109185\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.36648e7 2.36681e7i 0.0949496 0.164457i
\(66\) 0 0
\(67\) −7.40102e7 1.28190e8i −0.448699 0.777170i 0.549603 0.835426i \(-0.314779\pi\)
−0.998302 + 0.0582566i \(0.981446\pi\)
\(68\) 0 0
\(69\) 1.55567e7 0.0826219
\(70\) 0 0
\(71\) 1.94170e8 0.906816 0.453408 0.891303i \(-0.350208\pi\)
0.453408 + 0.891303i \(0.350208\pi\)
\(72\) 0 0
\(73\) −3.10493e7 5.37790e7i −0.127967 0.221646i 0.794922 0.606712i \(-0.207512\pi\)
−0.922889 + 0.385066i \(0.874179\pi\)
\(74\) 0 0
\(75\) −6.77962e7 + 1.17426e8i −0.247417 + 0.428539i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.00722e8 + 3.47660e8i −0.579793 + 1.00423i 0.415710 + 0.909497i \(0.363533\pi\)
−0.995503 + 0.0947332i \(0.969800\pi\)
\(80\) 0 0
\(81\) −5.97398e7 1.03472e8i −0.154199 0.267080i
\(82\) 0 0
\(83\) −1.49637e8 −0.346088 −0.173044 0.984914i \(-0.555360\pi\)
−0.173044 + 0.984914i \(0.555360\pi\)
\(84\) 0 0
\(85\) 1.59959e6 0.00332372
\(86\) 0 0
\(87\) 2.88560e7 + 4.99801e7i 0.0540007 + 0.0935320i
\(88\) 0 0
\(89\) −3.27085e8 + 5.66527e8i −0.552593 + 0.957119i 0.445494 + 0.895285i \(0.353028\pi\)
−0.998086 + 0.0618336i \(0.980305\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9.96462e7 + 1.72592e8i −0.138130 + 0.239248i
\(94\) 0 0
\(95\) −3.87023e7 6.70344e7i −0.0487507 0.0844386i
\(96\) 0 0
\(97\) 1.51683e9 1.73966 0.869830 0.493352i \(-0.164229\pi\)
0.869830 + 0.493352i \(0.164229\pi\)
\(98\) 0 0
\(99\) −1.33849e9 −1.40042
\(100\) 0 0
\(101\) 8.29097e8 + 1.43604e9i 0.792792 + 1.37316i 0.924232 + 0.381831i \(0.124706\pi\)
−0.131441 + 0.991324i \(0.541960\pi\)
\(102\) 0 0
\(103\) 2.62915e8 4.55382e8i 0.230169 0.398665i −0.727688 0.685908i \(-0.759405\pi\)
0.957858 + 0.287243i \(0.0927386\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.63007e8 + 4.55542e8i −0.193973 + 0.335971i −0.946563 0.322518i \(-0.895471\pi\)
0.752590 + 0.658489i \(0.228804\pi\)
\(108\) 0 0
\(109\) −9.93973e8 1.72161e9i −0.674459 1.16820i −0.976627 0.214942i \(-0.931044\pi\)
0.302168 0.953255i \(-0.402290\pi\)
\(110\) 0 0
\(111\) 1.90940e8 0.119383
\(112\) 0 0
\(113\) 1.09466e9 0.631577 0.315789 0.948830i \(-0.397731\pi\)
0.315789 + 0.948830i \(0.397731\pi\)
\(114\) 0 0
\(115\) 1.79903e7 + 3.11602e7i 0.00959178 + 0.0166134i
\(116\) 0 0
\(117\) −1.23655e9 + 2.14178e9i −0.610066 + 1.05667i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.94959e9 + 5.10885e9i −1.25092 + 2.16665i
\(122\) 0 0
\(123\) −6.69610e8 1.15980e9i −0.263784 0.456888i
\(124\) 0 0
\(125\) −6.31531e8 −0.231366
\(126\) 0 0
\(127\) 3.18245e9 1.08554 0.542769 0.839882i \(-0.317376\pi\)
0.542769 + 0.839882i \(0.317376\pi\)
\(128\) 0 0
\(129\) 9.08624e8 + 1.57378e9i 0.288889 + 0.500370i
\(130\) 0 0
\(131\) −1.23548e9 + 2.13991e9i −0.366534 + 0.634856i −0.989021 0.147774i \(-0.952789\pi\)
0.622487 + 0.782630i \(0.286122\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.97115e8 + 3.41413e8i −0.0510761 + 0.0884663i
\(136\) 0 0
\(137\) −5.13765e8 8.89867e8i −0.124601 0.215816i 0.796976 0.604011i \(-0.206432\pi\)
−0.921577 + 0.388196i \(0.873098\pi\)
\(138\) 0 0
\(139\) 6.01240e9 1.36610 0.683048 0.730373i \(-0.260654\pi\)
0.683048 + 0.730373i \(0.260654\pi\)
\(140\) 0 0
\(141\) −2.47063e9 −0.526407
\(142\) 0 0
\(143\) 7.62829e9 + 1.32126e10i 1.52551 + 2.64226i
\(144\) 0 0
\(145\) −6.67405e7 + 1.15598e8i −0.0125381 + 0.0217167i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.50531e9 + 2.60727e9i −0.250200 + 0.433359i −0.963581 0.267418i \(-0.913830\pi\)
0.713381 + 0.700777i \(0.247163\pi\)
\(150\) 0 0
\(151\) −2.29534e9 3.97565e9i −0.359295 0.622317i 0.628548 0.777771i \(-0.283649\pi\)
−0.987843 + 0.155453i \(0.950316\pi\)
\(152\) 0 0
\(153\) −1.44750e8 −0.0213554
\(154\) 0 0
\(155\) −4.60939e8 −0.0641433
\(156\) 0 0
\(157\) 4.14966e9 + 7.18742e9i 0.545085 + 0.944115i 0.998602 + 0.0528670i \(0.0168359\pi\)
−0.453517 + 0.891248i \(0.649831\pi\)
\(158\) 0 0
\(159\) −2.88875e9 + 5.00347e9i −0.358446 + 0.620846i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.15907e9 + 1.06678e10i −0.683393 + 1.18367i 0.290546 + 0.956861i \(0.406163\pi\)
−0.973939 + 0.226811i \(0.927170\pi\)
\(164\) 0 0
\(165\) 5.20490e8 + 9.01515e8i 0.0546682 + 0.0946881i
\(166\) 0 0
\(167\) 1.95830e9 0.194830 0.0974150 0.995244i \(-0.468943\pi\)
0.0974150 + 0.995244i \(0.468943\pi\)
\(168\) 0 0
\(169\) 1.75849e10 1.65825
\(170\) 0 0
\(171\) 3.50225e9 + 6.06607e9i 0.313231 + 0.542532i
\(172\) 0 0
\(173\) −7.51032e9 + 1.30083e10i −0.637457 + 1.10411i 0.348531 + 0.937297i \(0.386680\pi\)
−0.985989 + 0.166811i \(0.946653\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.71482e9 + 8.16631e9i −0.361065 + 0.625383i
\(178\) 0 0
\(179\) −1.06544e10 1.84539e10i −0.775692 1.34354i −0.934405 0.356213i \(-0.884068\pi\)
0.158713 0.987325i \(-0.449266\pi\)
\(180\) 0 0
\(181\) 6.65134e9 0.460634 0.230317 0.973116i \(-0.426024\pi\)
0.230317 + 0.973116i \(0.426024\pi\)
\(182\) 0 0
\(183\) 7.15409e9 0.471547
\(184\) 0 0
\(185\) 2.20810e8 + 3.82454e8i 0.0138595 + 0.0240053i
\(186\) 0 0
\(187\) −4.46481e8 + 7.73328e8i −0.0267003 + 0.0462463i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.91524e9 + 1.54417e10i −0.484711 + 0.839544i −0.999846 0.0175649i \(-0.994409\pi\)
0.515134 + 0.857109i \(0.327742\pi\)
\(192\) 0 0
\(193\) −2.20117e8 3.81254e8i −0.0114195 0.0197791i 0.860259 0.509857i \(-0.170302\pi\)
−0.871679 + 0.490078i \(0.836968\pi\)
\(194\) 0 0
\(195\) 1.92340e9 0.0952609
\(196\) 0 0
\(197\) −2.01458e10 −0.952988 −0.476494 0.879178i \(-0.658093\pi\)
−0.476494 + 0.879178i \(0.658093\pi\)
\(198\) 0 0
\(199\) 1.61733e10 + 2.80130e10i 0.731071 + 1.26625i 0.956426 + 0.291975i \(0.0943125\pi\)
−0.225355 + 0.974277i \(0.572354\pi\)
\(200\) 0 0
\(201\) 5.20870e9 9.02173e9i 0.225085 0.389859i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.54873e9 2.68248e9i 0.0612467 0.106082i
\(206\) 0 0
\(207\) −1.62798e9 2.81975e9i −0.0616287 0.106744i
\(208\) 0 0
\(209\) 4.32107e10 1.56651
\(210\) 0 0
\(211\) −3.85763e10 −1.33983 −0.669915 0.742438i \(-0.733670\pi\)
−0.669915 + 0.742438i \(0.733670\pi\)
\(212\) 0 0
\(213\) 6.83265e9 + 1.18345e10i 0.227447 + 0.393950i
\(214\) 0 0
\(215\) −2.10154e9 + 3.63997e9i −0.0670755 + 0.116178i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.18519e9 3.78486e9i 0.0641935 0.111186i
\(220\) 0 0
\(221\) 8.24957e8 + 1.42887e9i 0.0232630 + 0.0402927i
\(222\) 0 0
\(223\) −3.40626e10 −0.922371 −0.461186 0.887304i \(-0.652576\pi\)
−0.461186 + 0.887304i \(0.652576\pi\)
\(224\) 0 0
\(225\) 2.83791e10 0.738206
\(226\) 0 0
\(227\) −3.46901e10 6.00851e10i −0.867141 1.50193i −0.864905 0.501935i \(-0.832622\pi\)
−0.00223565 0.999998i \(-0.500712\pi\)
\(228\) 0 0
\(229\) −3.53379e10 + 6.12070e10i −0.849142 + 1.47076i 0.0328320 + 0.999461i \(0.489547\pi\)
−0.881975 + 0.471297i \(0.843786\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.66624e10 + 4.61806e10i −0.592649 + 1.02650i 0.401225 + 0.915979i \(0.368584\pi\)
−0.993874 + 0.110518i \(0.964749\pi\)
\(234\) 0 0
\(235\) −2.85714e9 4.94870e9i −0.0611119 0.105849i
\(236\) 0 0
\(237\) −2.82528e10 −0.581694
\(238\) 0 0
\(239\) 2.61227e10 0.517878 0.258939 0.965894i \(-0.416627\pi\)
0.258939 + 0.965894i \(0.416627\pi\)
\(240\) 0 0
\(241\) −1.21886e10 2.11112e10i −0.232743 0.403122i 0.725872 0.687830i \(-0.241437\pi\)
−0.958614 + 0.284708i \(0.908103\pi\)
\(242\) 0 0
\(243\) 2.80396e10 4.85661e10i 0.515875 0.893521i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.99199e10 6.91432e10i 0.682422 1.18199i
\(248\) 0 0
\(249\) −5.26557e9 9.12024e9i −0.0868058 0.150352i
\(250\) 0 0
\(251\) 6.65520e9 0.105835 0.0529175 0.998599i \(-0.483148\pi\)
0.0529175 + 0.998599i \(0.483148\pi\)
\(252\) 0 0
\(253\) −2.00860e10 −0.308213
\(254\) 0 0
\(255\) 5.62880e7 + 9.74938e7i 0.000833653 + 0.00144393i
\(256\) 0 0
\(257\) 6.10651e10 1.05768e11i 0.873160 1.51236i 0.0144509 0.999896i \(-0.495400\pi\)
0.858710 0.512463i \(-0.171267\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.03948e9 1.04607e10i 0.0805596 0.139533i
\(262\) 0 0
\(263\) 1.56994e10 + 2.71922e10i 0.202340 + 0.350463i 0.949282 0.314426i \(-0.101812\pi\)
−0.746942 + 0.664889i \(0.768479\pi\)
\(264\) 0 0
\(265\) −1.33627e10 −0.166451
\(266\) 0 0
\(267\) −4.60392e10 −0.554405
\(268\) 0 0
\(269\) −6.34832e9 1.09956e10i −0.0739220 0.128037i 0.826695 0.562650i \(-0.190218\pi\)
−0.900617 + 0.434614i \(0.856885\pi\)
\(270\) 0 0
\(271\) −3.21118e9 + 5.56193e9i −0.0361662 + 0.0626417i −0.883542 0.468352i \(-0.844848\pi\)
0.847376 + 0.530994i \(0.178181\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.75352e10 1.51615e11i 0.922966 1.59862i
\(276\) 0 0
\(277\) 7.71451e10 + 1.33619e11i 0.787317 + 1.36367i 0.927605 + 0.373562i \(0.121864\pi\)
−0.140288 + 0.990111i \(0.544803\pi\)
\(278\) 0 0
\(279\) 4.17113e10 0.412131
\(280\) 0 0
\(281\) 6.22022e10 0.595151 0.297576 0.954698i \(-0.403822\pi\)
0.297576 + 0.954698i \(0.403822\pi\)
\(282\) 0 0
\(283\) −2.60820e10 4.51753e10i −0.241714 0.418661i 0.719489 0.694504i \(-0.244376\pi\)
−0.961203 + 0.275843i \(0.911043\pi\)
\(284\) 0 0
\(285\) 2.72379e9 4.71775e9i 0.0244553 0.0423577i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.92457e10 1.02616e11i 0.499593 0.865320i
\(290\) 0 0
\(291\) 5.33758e10 + 9.24496e10i 0.436341 + 0.755765i
\(292\) 0 0
\(293\) −1.98645e11 −1.57461 −0.787307 0.616561i \(-0.788525\pi\)
−0.787307 + 0.616561i \(0.788525\pi\)
\(294\) 0 0
\(295\) −2.18096e10 −0.167668
\(296\) 0 0
\(297\) −1.10038e11 1.90592e11i −0.820615 1.42135i
\(298\) 0 0
\(299\) −1.85563e10 + 3.21405e10i −0.134268 + 0.232558i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −5.83502e10 + 1.01066e11i −0.397695 + 0.688829i
\(304\) 0 0
\(305\) 8.27328e9 + 1.43297e10i 0.0547430 + 0.0948177i
\(306\) 0 0
\(307\) −1.72725e11 −1.10977 −0.554885 0.831927i \(-0.687238\pi\)
−0.554885 + 0.831927i \(0.687238\pi\)
\(308\) 0 0
\(309\) 3.70069e10 0.230924
\(310\) 0 0
\(311\) −6.52862e9 1.13079e10i −0.0395731 0.0685426i 0.845560 0.533880i \(-0.179266\pi\)
−0.885134 + 0.465337i \(0.845933\pi\)
\(312\) 0 0
\(313\) 8.42354e10 1.45900e11i 0.496072 0.859223i −0.503917 0.863752i \(-0.668108\pi\)
0.999990 + 0.00452927i \(0.00144171\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.62020e11 2.80626e11i 0.901157 1.56085i 0.0751637 0.997171i \(-0.476052\pi\)
0.825994 0.563679i \(-0.190615\pi\)
\(318\) 0 0
\(319\) −3.72575e10 6.45319e10i −0.201445 0.348912i
\(320\) 0 0
\(321\) −3.70199e10 −0.194609
\(322\) 0 0
\(323\) 4.67299e9 0.0238882
\(324\) 0 0
\(325\) −1.61738e11 2.80138e11i −0.804147 1.39282i
\(326\) 0 0
\(327\) 6.99539e10 1.21164e11i 0.338335 0.586014i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.12778e10 7.14952e10i 0.189012 0.327379i −0.755909 0.654677i \(-0.772805\pi\)
0.944921 + 0.327298i \(0.106138\pi\)
\(332\) 0 0
\(333\) −1.99816e10 3.46091e10i −0.0890492 0.154238i
\(334\) 0 0
\(335\) 2.40942e10 0.104523
\(336\) 0 0
\(337\) −5.14965e10 −0.217492 −0.108746 0.994070i \(-0.534683\pi\)
−0.108746 + 0.994070i \(0.534683\pi\)
\(338\) 0 0
\(339\) 3.85201e10 + 6.67187e10i 0.158412 + 0.274378i
\(340\) 0 0
\(341\) 1.28658e11 2.22843e11i 0.515280 0.892491i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.26613e9 + 2.19299e9i −0.00481161 + 0.00833396i
\(346\) 0 0
\(347\) 1.99939e11 + 3.46305e11i 0.740312 + 1.28226i 0.952353 + 0.304998i \(0.0986557\pi\)
−0.212041 + 0.977261i \(0.568011\pi\)
\(348\) 0 0
\(349\) 5.32897e11 1.92278 0.961388 0.275195i \(-0.0887426\pi\)
0.961388 + 0.275195i \(0.0887426\pi\)
\(350\) 0 0
\(351\) −4.06632e11 −1.42995
\(352\) 0 0
\(353\) −1.41693e10 2.45420e10i −0.0485694 0.0841246i 0.840719 0.541472i \(-0.182133\pi\)
−0.889288 + 0.457348i \(0.848800\pi\)
\(354\) 0 0
\(355\) −1.58031e10 + 2.73718e10i −0.0528098 + 0.0914693i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.66155e10 4.60993e10i 0.0845686 0.146477i −0.820639 0.571447i \(-0.806382\pi\)
0.905207 + 0.424970i \(0.139715\pi\)
\(360\) 0 0
\(361\) 4.82803e10 + 8.36239e10i 0.149619 + 0.259148i
\(362\) 0 0
\(363\) −4.15173e11 −1.25502
\(364\) 0 0
\(365\) 1.01082e10 0.0298095
\(366\) 0 0
\(367\) −2.58064e11 4.46980e11i −0.742557 1.28615i −0.951327 0.308182i \(-0.900279\pi\)
0.208770 0.977965i \(-0.433054\pi\)
\(368\) 0 0
\(369\) −1.40148e11 + 2.42743e11i −0.393520 + 0.681597i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.75926e11 + 3.04712e11i −0.470586 + 0.815079i −0.999434 0.0336374i \(-0.989291\pi\)
0.528848 + 0.848717i \(0.322624\pi\)
\(374\) 0 0
\(375\) −2.22230e10 3.84913e10i −0.0580312 0.100513i
\(376\) 0 0
\(377\) −1.37680e11 −0.351023
\(378\) 0 0
\(379\) 3.25484e11 0.810313 0.405157 0.914247i \(-0.367217\pi\)
0.405157 + 0.914247i \(0.367217\pi\)
\(380\) 0 0
\(381\) 1.11987e11 + 1.93968e11i 0.272274 + 0.471593i
\(382\) 0 0
\(383\) −3.82566e11 + 6.62624e11i −0.908473 + 1.57352i −0.0922870 + 0.995732i \(0.529418\pi\)
−0.816186 + 0.577789i \(0.803916\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.90172e11 3.29388e11i 0.430971 0.746464i
\(388\) 0 0
\(389\) −3.92948e11 6.80606e11i −0.870085 1.50703i −0.861908 0.507065i \(-0.830730\pi\)
−0.00817710 0.999967i \(-0.502603\pi\)
\(390\) 0 0
\(391\) −2.17219e9 −0.00470005
\(392\) 0 0
\(393\) −1.73901e11 −0.367736
\(394\) 0 0
\(395\) −3.26727e10 5.65908e10i −0.0675302 0.116966i
\(396\) 0 0
\(397\) 3.69607e11 6.40178e11i 0.746763 1.29343i −0.202603 0.979261i \(-0.564940\pi\)
0.949366 0.314171i \(-0.101727\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.64793e11 + 2.85430e11i −0.318266 + 0.551252i −0.980126 0.198375i \(-0.936434\pi\)
0.661861 + 0.749627i \(0.269767\pi\)
\(402\) 0 0
\(403\) −2.37720e11 4.11743e11i −0.448945 0.777596i
\(404\) 0 0
\(405\) 1.94484e10 0.0359200
\(406\) 0 0
\(407\) −2.46532e11 −0.445347
\(408\) 0 0
\(409\) 4.57022e11 + 7.91584e11i 0.807573 + 1.39876i 0.914540 + 0.404495i \(0.132553\pi\)
−0.106967 + 0.994263i \(0.534114\pi\)
\(410\) 0 0
\(411\) 3.61578e10 6.26271e10i 0.0625048 0.108262i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.21786e10 2.10940e10i 0.0201550 0.0349094i
\(416\) 0 0
\(417\) 2.11571e11 + 3.66451e11i 0.342644 + 0.593477i
\(418\) 0 0
\(419\) 6.65088e11 1.05418 0.527092 0.849808i \(-0.323282\pi\)
0.527092 + 0.849808i \(0.323282\pi\)
\(420\) 0 0
\(421\) 8.13818e11 1.26258 0.631288 0.775548i \(-0.282527\pi\)
0.631288 + 0.775548i \(0.282527\pi\)
\(422\) 0 0
\(423\) 2.58548e11 + 4.47818e11i 0.392653 + 0.680096i
\(424\) 0 0
\(425\) 9.46644e9 1.63964e10i 0.0140746 0.0243779i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.36864e11 + 9.29876e11i −0.765256 + 1.32546i
\(430\) 0 0
\(431\) 2.80790e11 + 4.86342e11i 0.391953 + 0.678882i 0.992707 0.120552i \(-0.0384664\pi\)
−0.600755 + 0.799434i \(0.705133\pi\)
\(432\) 0 0
\(433\) 5.13223e11 0.701633 0.350817 0.936444i \(-0.385904\pi\)
0.350817 + 0.936444i \(0.385904\pi\)
\(434\) 0 0
\(435\) −9.39413e9 −0.0125793
\(436\) 0 0
\(437\) 5.25564e10 + 9.10303e10i 0.0689380 + 0.119404i
\(438\) 0 0
\(439\) −5.17800e11 + 8.96855e11i −0.665382 + 1.15248i 0.313799 + 0.949489i \(0.398398\pi\)
−0.979181 + 0.202987i \(0.934935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.28658e11 + 5.69252e11i −0.405441 + 0.702244i −0.994373 0.105939i \(-0.966215\pi\)
0.588932 + 0.808183i \(0.299549\pi\)
\(444\) 0 0
\(445\) −5.32415e10 9.22171e10i −0.0643622 0.111479i
\(446\) 0 0
\(447\) −2.11881e11 −0.251020
\(448\) 0 0
\(449\) 2.82701e11 0.328260 0.164130 0.986439i \(-0.447518\pi\)
0.164130 + 0.986439i \(0.447518\pi\)
\(450\) 0 0
\(451\) 8.64569e11 + 1.49748e12i 0.984023 + 1.70438i
\(452\) 0 0
\(453\) 1.61542e11 2.79798e11i 0.180237 0.312179i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.99859e10 5.19372e10i 0.0321584 0.0557000i −0.849498 0.527591i \(-0.823095\pi\)
0.881657 + 0.471891i \(0.156429\pi\)
\(458\) 0 0
\(459\) −1.19000e10 2.06114e10i −0.0125138 0.0216746i
\(460\) 0 0
\(461\) 5.38434e11 0.555237 0.277618 0.960691i \(-0.410455\pi\)
0.277618 + 0.960691i \(0.410455\pi\)
\(462\) 0 0
\(463\) 4.90683e10 0.0496234 0.0248117 0.999692i \(-0.492101\pi\)
0.0248117 + 0.999692i \(0.492101\pi\)
\(464\) 0 0
\(465\) −1.62200e10 2.80939e10i −0.0160884 0.0278659i
\(466\) 0 0
\(467\) −7.57287e11 + 1.31166e12i −0.736774 + 1.27613i 0.217166 + 0.976135i \(0.430319\pi\)
−0.953941 + 0.299996i \(0.903015\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.92045e11 + 5.05837e11i −0.273436 + 0.473605i
\(472\) 0 0
\(473\) −1.17317e12 2.03199e12i −1.07767 1.86658i
\(474\) 0 0
\(475\) −9.16167e11 −0.825759
\(476\) 0 0
\(477\) 1.20922e12 1.06948
\(478\) 0 0
\(479\) 7.20659e11 + 1.24822e12i 0.625490 + 1.08338i 0.988446 + 0.151574i \(0.0484341\pi\)
−0.362956 + 0.931806i \(0.618233\pi\)
\(480\) 0 0
\(481\) −2.27757e11 + 3.94486e11i −0.194007 + 0.336031i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.23452e11 + 2.13825e11i −0.101312 + 0.175477i
\(486\) 0 0
\(487\) −3.76261e11 6.51703e11i −0.303116 0.525012i 0.673724 0.738983i \(-0.264694\pi\)
−0.976840 + 0.213971i \(0.931360\pi\)
\(488\) 0 0
\(489\) −8.66926e11 −0.685634
\(490\) 0 0
\(491\) −1.05719e12 −0.820896 −0.410448 0.911884i \(-0.634628\pi\)
−0.410448 + 0.911884i \(0.634628\pi\)
\(492\) 0 0
\(493\) −4.02919e9 6.97876e9i −0.00307189 0.00532068i
\(494\) 0 0
\(495\) 1.08937e11 1.88685e11i 0.0815553 0.141258i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.55433e11 + 7.88833e11i −0.328830 + 0.569551i −0.982280 0.187419i \(-0.939988\pi\)
0.653450 + 0.756970i \(0.273321\pi\)
\(500\) 0 0
\(501\) 6.89108e10 + 1.19357e11i 0.0488672 + 0.0846404i
\(502\) 0 0
\(503\) 7.10909e11 0.495174 0.247587 0.968866i \(-0.420362\pi\)
0.247587 + 0.968866i \(0.420362\pi\)
\(504\) 0 0
\(505\) −2.69914e11 −0.184678
\(506\) 0 0
\(507\) 6.18794e11 + 1.07178e12i 0.415921 + 0.720396i
\(508\) 0 0
\(509\) 6.10984e11 1.05826e12i 0.403459 0.698812i −0.590681 0.806905i \(-0.701141\pi\)
0.994141 + 0.108093i \(0.0344744\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.75845e11 + 9.97392e11i −0.367094 + 0.635825i
\(514\) 0 0
\(515\) 4.27962e10 + 7.41253e10i 0.0268085 + 0.0464338i
\(516\) 0 0
\(517\) 3.18996e12 1.96371
\(518\) 0 0
\(519\) −1.05712e12 −0.639547
\(520\) 0 0
\(521\) −3.22589e11 5.58740e11i −0.191814 0.332231i 0.754038 0.656831i \(-0.228104\pi\)
−0.945851 + 0.324600i \(0.894770\pi\)
\(522\) 0 0
\(523\) −1.28063e12 + 2.21812e12i −0.748456 + 1.29636i 0.200106 + 0.979774i \(0.435871\pi\)
−0.948563 + 0.316590i \(0.897462\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.39137e10 2.40992e10i 0.00785768 0.0136099i
\(528\) 0 0
\(529\) 8.76146e11 + 1.51753e12i 0.486436 + 0.842532i
\(530\) 0 0
\(531\) 1.97360e12 1.07729
\(532\) 0 0
\(533\) 3.19490e12 1.71469
\(534\) 0 0
\(535\) −4.28113e10 7.41514e10i −0.0225926 0.0391316i
\(536\) 0 0
\(537\) 7.49834e11 1.29875e12i 0.389118 0.673971i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.81287e10 6.60408e10i 0.0191366 0.0331455i −0.856299 0.516481i \(-0.827242\pi\)
0.875435 + 0.483336i \(0.160575\pi\)
\(542\) 0 0
\(543\) 2.34054e11 + 4.05394e11i 0.115536 + 0.200114i
\(544\) 0 0
\(545\) 3.23590e11 0.157113
\(546\) 0 0
\(547\) −3.32708e12 −1.58899 −0.794494 0.607272i \(-0.792264\pi\)
−0.794494 + 0.607272i \(0.792264\pi\)
\(548\) 0 0
\(549\) −7.48666e11 1.29673e12i −0.351733 0.609219i
\(550\) 0 0
\(551\) −1.94973e11 + 3.37704e11i −0.0901142 + 0.156082i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.55402e10 + 2.69164e10i −0.00695245 + 0.0120420i
\(556\) 0 0
\(557\) −8.26743e11 1.43196e12i −0.363933 0.630351i 0.624671 0.780888i \(-0.285233\pi\)
−0.988604 + 0.150537i \(0.951900\pi\)
\(558\) 0 0
\(559\) −4.33530e12 −1.87787
\(560\) 0 0
\(561\) −6.28450e10 −0.0267878
\(562\) 0 0
\(563\) −7.21635e11 1.24991e12i −0.302712 0.524313i 0.674037 0.738697i \(-0.264559\pi\)
−0.976749 + 0.214385i \(0.931225\pi\)
\(564\) 0 0
\(565\) −8.90923e10 + 1.54312e11i −0.0367809 + 0.0637063i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.83240e11 + 1.70302e12i −0.393237 + 0.681107i −0.992874 0.119165i \(-0.961978\pi\)
0.599637 + 0.800272i \(0.295312\pi\)
\(570\) 0 0
\(571\) −1.77482e12 3.07408e12i −0.698701 1.21019i −0.968917 0.247386i \(-0.920428\pi\)
0.270216 0.962800i \(-0.412905\pi\)
\(572\) 0 0
\(573\) −1.25488e12 −0.486300
\(574\) 0 0
\(575\) 4.25870e11 0.162469
\(576\) 0 0
\(577\) 1.65508e11 + 2.86669e11i 0.0621625 + 0.107669i 0.895432 0.445199i \(-0.146867\pi\)
−0.833269 + 0.552867i \(0.813534\pi\)
\(578\) 0 0
\(579\) 1.54914e10 2.68319e10i 0.00572845 0.00992197i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.72982e12 6.46024e12i 1.33715 2.31601i
\(584\) 0 0
\(585\) −2.01281e11 3.48630e11i −0.0710563 0.123073i
\(586\) 0 0
\(587\) −3.23387e12 −1.12422 −0.562109 0.827063i \(-0.690010\pi\)
−0.562109 + 0.827063i \(0.690010\pi\)
\(588\) 0 0
\(589\) −1.34657e12 −0.461011
\(590\) 0 0
\(591\) −7.08912e11 1.22787e12i −0.239028 0.414009i
\(592\) 0 0
\(593\) 1.64086e12 2.84205e12i 0.544911 0.943814i −0.453702 0.891154i \(-0.649897\pi\)
0.998613 0.0526598i \(-0.0167699\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.13824e12 + 1.97150e12i −0.366734 + 0.635202i
\(598\) 0 0
\(599\) 2.41478e12 + 4.18251e12i 0.766401 + 1.32745i 0.939503 + 0.342542i \(0.111288\pi\)
−0.173101 + 0.984904i \(0.555379\pi\)
\(600\) 0 0
\(601\) 2.74359e12 0.857797 0.428898 0.903353i \(-0.358902\pi\)
0.428898 + 0.903353i \(0.358902\pi\)
\(602\) 0 0
\(603\) −2.18033e12 −0.671575
\(604\) 0 0
\(605\) −4.80123e11 8.31598e11i −0.145698 0.252356i
\(606\) 0 0
\(607\) −2.94896e11 + 5.10775e11i −0.0881698 + 0.152715i −0.906738 0.421695i \(-0.861435\pi\)
0.818568 + 0.574410i \(0.194768\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.94702e12 5.10439e12i 0.855456 1.48169i
\(612\) 0 0
\(613\) 2.46640e12 + 4.27193e12i 0.705491 + 1.22195i 0.966514 + 0.256614i \(0.0826069\pi\)
−0.261023 + 0.965333i \(0.584060\pi\)
\(614\) 0 0
\(615\) 2.17993e11 0.0614475
\(616\) 0 0
\(617\) 4.74933e12 1.31932 0.659658 0.751566i \(-0.270701\pi\)
0.659658 + 0.751566i \(0.270701\pi\)
\(618\) 0 0
\(619\) −1.77433e12 3.07324e12i −0.485766 0.841372i 0.514100 0.857730i \(-0.328126\pi\)
−0.999866 + 0.0163586i \(0.994793\pi\)
\(620\) 0 0
\(621\) 2.67675e11 4.63627e11i 0.0722263 0.125100i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.83007e12 + 3.16978e12i −0.479743 + 0.830939i
\(626\) 0 0
\(627\) 1.52054e12 + 2.63366e12i 0.392911 + 0.680542i
\(628\) 0 0
\(629\) −2.66610e10 −0.00679124
\(630\) 0 0
\(631\) 1.34343e11 0.0337351 0.0168676 0.999858i \(-0.494631\pi\)
0.0168676 + 0.999858i \(0.494631\pi\)
\(632\) 0 0
\(633\) −1.35746e12 2.35120e12i −0.336056 0.582066i
\(634\) 0 0
\(635\) −2.59013e11 + 4.48624e11i −0.0632179 + 0.109497i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.43005e12 2.47693e12i 0.339311 0.587705i
\(640\) 0 0
\(641\) 1.91377e12 + 3.31475e12i 0.447743 + 0.775514i 0.998239 0.0593244i \(-0.0188946\pi\)
−0.550496 + 0.834838i \(0.685561\pi\)
\(642\) 0 0
\(643\) −1.30004e12 −0.299921 −0.149960 0.988692i \(-0.547915\pi\)
−0.149960 + 0.988692i \(0.547915\pi\)
\(644\) 0 0
\(645\) −2.95804e11 −0.0672955
\(646\) 0 0
\(647\) 1.13102e12 + 1.95899e12i 0.253747 + 0.439503i 0.964554 0.263884i \(-0.0850035\pi\)
−0.710807 + 0.703387i \(0.751670\pi\)
\(648\) 0 0
\(649\) 6.08755e12 1.05439e13i 1.34692 2.33293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.02541e12 6.97222e12i 0.866365 1.50059i 0.000680147 1.00000i \(-0.499784\pi\)
0.865685 0.500589i \(-0.166883\pi\)
\(654\) 0 0
\(655\) −2.01106e11 3.48326e11i −0.0426913 0.0739436i
\(656\) 0 0
\(657\) −9.14709e11 −0.191531
\(658\) 0 0
\(659\) −3.50688e12 −0.724330 −0.362165 0.932114i \(-0.617962\pi\)
−0.362165 + 0.932114i \(0.617962\pi\)
\(660\) 0 0
\(661\) −3.43112e12 5.94287e12i −0.699084 1.21085i −0.968784 0.247905i \(-0.920258\pi\)
0.269701 0.962944i \(-0.413075\pi\)
\(662\) 0 0
\(663\) −5.80588e10 + 1.00561e11i −0.0116696 + 0.0202124i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.06312e10 1.56978e11i 0.0177301 0.0307095i
\(668\) 0 0
\(669\) −1.19863e12 2.07609e12i −0.231349 0.400708i
\(670\) 0 0
\(671\) −9.23702e12 −1.75906
\(672\) 0 0
\(673\) 8.29182e12 1.55805 0.779026 0.626991i \(-0.215714\pi\)
0.779026 + 0.626991i \(0.215714\pi\)
\(674\) 0 0
\(675\) 2.33307e12 + 4.04099e12i 0.432574 + 0.749239i
\(676\) 0 0
\(677\) −2.00277e12 + 3.46889e12i −0.366422 + 0.634661i −0.989003 0.147894i \(-0.952751\pi\)
0.622582 + 0.782555i \(0.286084\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.44142e12 4.22867e12i 0.434992 0.753428i
\(682\) 0 0
\(683\) −2.18361e12 3.78213e12i −0.383957 0.665033i 0.607667 0.794192i \(-0.292106\pi\)
−0.991624 + 0.129159i \(0.958772\pi\)
\(684\) 0 0
\(685\) 1.67257e11 0.0290254
\(686\) 0 0
\(687\) −4.97402e12 −0.851927
\(688\) 0 0
\(689\) −6.89153e12 1.19365e13i −1.16501 2.01786i
\(690\) 0 0
\(691\) 2.30265e11 3.98831e11i 0.0384218 0.0665485i −0.846175 0.532905i \(-0.821100\pi\)
0.884597 + 0.466357i \(0.154434\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.89338e11 + 8.47558e11i −0.0795567 + 0.137796i
\(696\) 0 0
\(697\) 9.34982e10 + 1.61944e11i 0.0150057 + 0.0259906i
\(698\) 0 0
\(699\) −3.75289e12 −0.594592
\(700\) 0 0
\(701\) −8.47672e11 −0.132586 −0.0662928 0.997800i \(-0.521117\pi\)
−0.0662928 + 0.997800i \(0.521117\pi\)
\(702\) 0 0
\(703\) 6.45067e11 + 1.11729e12i 0.0996107 + 0.172531i
\(704\) 0 0
\(705\) 2.01080e11 3.48280e11i 0.0306561 0.0530979i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.88463e12 4.99633e12i 0.428728 0.742580i −0.568032 0.823006i \(-0.692295\pi\)
0.996761 + 0.0804269i \(0.0256284\pi\)
\(710\) 0 0
\(711\) 2.95662e12 + 5.12101e12i 0.433892 + 0.751524i
\(712\) 0 0
\(713\) 6.25940e11 0.0907046
\(714\) 0 0
\(715\) −2.48341e12 −0.355362
\(716\) 0 0
\(717\) 9.19232e11 + 1.59216e12i 0.129894 + 0.224983i
\(718\) 0 0
\(719\) −3.76918e12 + 6.52842e12i −0.525978 + 0.911020i 0.473564 + 0.880759i \(0.342967\pi\)
−0.999542 + 0.0302608i \(0.990366\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.57808e11 1.48577e12i 0.116753 0.202222i
\(724\) 0 0
\(725\) 7.89945e11 + 1.36823e12i 0.106188 + 0.183923i
\(726\) 0 0
\(727\) 9.73268e12 1.29219 0.646097 0.763255i \(-0.276400\pi\)
0.646097 + 0.763255i \(0.276400\pi\)
\(728\) 0 0
\(729\) 1.59504e12 0.209169
\(730\) 0 0
\(731\) −1.26872e11 2.19748e11i −0.0164338 0.0284641i
\(732\) 0 0
\(733\) 4.17735e12 7.23539e12i 0.534482 0.925750i −0.464706 0.885465i \(-0.653840\pi\)
0.999188 0.0402852i \(-0.0128267\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.72522e12 + 1.16484e13i −0.839659 + 1.45433i
\(738\) 0 0
\(739\) 7.13682e12 + 1.23613e13i 0.880248 + 1.52463i 0.851066 + 0.525059i \(0.175957\pi\)
0.0291821 + 0.999574i \(0.490710\pi\)
\(740\) 0 0
\(741\) 5.61896e12 0.684659
\(742\) 0 0
\(743\) −1.54557e13 −1.86054 −0.930271 0.366873i \(-0.880428\pi\)
−0.930271 + 0.366873i \(0.880428\pi\)
\(744\) 0 0
\(745\) −2.45028e11 4.24401e11i −0.0291415 0.0504746i
\(746\) 0 0
\(747\) −1.10207e12 + 1.90884e12i −0.129499 + 0.224299i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.92223e12 + 3.32940e12i −0.220509 + 0.381932i −0.954963 0.296726i \(-0.904105\pi\)
0.734454 + 0.678659i \(0.237438\pi\)
\(752\) 0 0
\(753\) 2.34190e11 + 4.05629e11i 0.0265455 + 0.0459781i
\(754\) 0 0
\(755\) 7.47253e11 0.0836964
\(756\) 0 0
\(757\) 5.43161e12 0.601169 0.300585 0.953755i \(-0.402818\pi\)
0.300585 + 0.953755i \(0.402818\pi\)
\(758\) 0 0
\(759\) −7.06807e11 1.22423e12i −0.0773059 0.133898i
\(760\) 0 0
\(761\) 4.20380e12 7.28119e12i 0.454371 0.786994i −0.544281 0.838903i \(-0.683197\pi\)
0.998652 + 0.0519094i \(0.0165307\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.17809e10 2.04052e10i 0.00124366 0.00215409i
\(766\) 0 0
\(767\) −1.12479e13 1.94819e13i −1.17352 2.03260i
\(768\) 0 0
\(769\) −1.01254e12 −0.104411 −0.0522053 0.998636i \(-0.516625\pi\)
−0.0522053 + 0.998636i \(0.516625\pi\)
\(770\) 0 0
\(771\) 8.59529e12 0.876023
\(772\) 0 0
\(773\) 7.08876e11 + 1.22781e12i 0.0714106 + 0.123687i 0.899520 0.436880i \(-0.143917\pi\)
−0.828109 + 0.560567i \(0.810583\pi\)
\(774\) 0 0
\(775\) −2.72786e12 + 4.72479e12i −0.271621 + 0.470462i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.52440e12 7.83649e12i 0.440192 0.762436i
\(780\) 0 0
\(781\) −8.82199e12 1.52801e13i −0.848470 1.46959i
\(782\) 0 0
\(783\) 1.98604e12 0.188825
\(784\) 0 0
\(785\) −1.35093e12 −0.126975
\(786\) 0 0
\(787\) 2.95831e12 + 5.12394e12i 0.274889 + 0.476121i 0.970107 0.242677i \(-0.0780257\pi\)
−0.695218 + 0.718799i \(0.744692\pi\)
\(788\) 0 0
\(789\) −1.10489e12 + 1.91373e12i −0.101502 + 0.175806i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.53356e12 + 1.47806e13i −0.766303 + 1.32728i
\(794\) 0 0
\(795\) −4.70220e11 8.14445e11i −0.0417493 0.0723118i
\(796\) 0 0
\(797\) −3.00078e12 −0.263434 −0.131717 0.991287i \(-0.542049\pi\)
−0.131717 + 0.991287i \(0.542049\pi\)
\(798\) 0 0
\(799\) 3.44976e11 0.0299453
\(800\) 0 0
\(801\) 4.81793e12 + 8.34491e12i 0.413537 + 0.716267i
\(802\) 0 0
\(803\) −2.82141e12 + 4.88683e12i −0.239468 + 0.414770i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.46782e11 7.73850e11i 0.0370822 0.0642282i
\(808\) 0 0
\(809\) −2.66409e12 4.61433e12i −0.218665 0.378739i 0.735735 0.677270i \(-0.236837\pi\)
−0.954400 + 0.298530i \(0.903504\pi\)
\(810\) 0 0
\(811\) −1.28093e13 −1.03976 −0.519878 0.854241i \(-0.674022\pi\)
−0.519878 + 0.854241i \(0.674022\pi\)
\(812\) 0 0
\(813\) −4.51993e11 −0.0362848
\(814\) 0 0
\(815\) −1.00255e12 1.73646e12i −0.0795969 0.137866i
\(816\) 0 0
\(817\) −6.13936e12 + 1.06337e13i −0.482085 + 0.834996i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.12246e13 + 1.94416e13i −0.862237 + 1.49344i 0.00752701 + 0.999972i \(0.497604\pi\)
−0.869764 + 0.493467i \(0.835729\pi\)
\(822\) 0 0
\(823\) 6.73031e12 + 1.16572e13i 0.511371 + 0.885720i 0.999913 + 0.0131801i \(0.00419548\pi\)
−0.488542 + 0.872540i \(0.662471\pi\)
\(824\) 0 0
\(825\) 1.23211e13 0.925992
\(826\) 0 0
\(827\) 1.35017e13 1.00372 0.501861 0.864948i \(-0.332649\pi\)
0.501861 + 0.864948i \(0.332649\pi\)
\(828\) 0 0
\(829\) 9.08459e12 + 1.57350e13i 0.668052 + 1.15710i 0.978448 + 0.206492i \(0.0662048\pi\)
−0.310397 + 0.950607i \(0.600462\pi\)
\(830\) 0 0
\(831\) −5.42932e12 + 9.40386e12i −0.394949 + 0.684072i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.59382e11 + 2.76058e11i −0.0113462 + 0.0196522i
\(836\) 0 0
\(837\) 3.42912e12 + 5.93941e12i 0.241500 + 0.418291i
\(838\) 0 0
\(839\) 6.58386e12 0.458724 0.229362 0.973341i \(-0.426336\pi\)
0.229362 + 0.973341i \(0.426336\pi\)
\(840\) 0 0
\(841\) −1.38347e13 −0.953647
\(842\) 0 0
\(843\) 2.18883e12 + 3.79117e12i 0.149276 + 0.258553i
\(844\) 0 0
\(845\) −1.43120e12 + 2.47891e12i −0.0965705 + 0.167265i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.83560e12 3.17935e12i 0.121253 0.210017i
\(850\) 0 0
\(851\) −2.99852e11 5.19360e11i −0.0195986 0.0339457i
\(852\) 0 0
\(853\) 2.09998e13 1.35814 0.679070 0.734073i \(-0.262383\pi\)
0.679070 + 0.734073i \(0.262383\pi\)
\(854\) 0 0
\(855\) −1.14016e12 −0.0729659
\(856\) 0 0
\(857\) 1.25399e13 + 2.17197e13i 0.794108 + 1.37544i 0.923404 + 0.383830i \(0.125395\pi\)
−0.129296 + 0.991606i \(0.541272\pi\)
\(858\) 0 0
\(859\) −8.93336e12 + 1.54730e13i −0.559816 + 0.969630i 0.437695 + 0.899123i \(0.355795\pi\)
−0.997511 + 0.0705065i \(0.977538\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.85522e12 + 1.36056e13i −0.482070 + 0.834969i −0.999788 0.0205819i \(-0.993448\pi\)
0.517719 + 0.855551i \(0.326781\pi\)
\(864\) 0 0
\(865\) −1.22250e12 2.11743e12i −0.0742466 0.128599i
\(866\) 0 0
\(867\) 8.33919e12 0.501231
\(868\) 0 0
\(869\) 3.64787e13 2.16995
\(870\) 0 0
\(871\) 1.24261e13 + 2.15226e13i 0.731565 + 1.26711i
\(872\) 0 0
\(873\) 1.11714e13 1.93494e13i 0.650944 1.12747i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.37494e12 1.10417e13i 0.363896 0.630287i −0.624702 0.780863i \(-0.714780\pi\)
0.988598 + 0.150576i \(0.0481129\pi\)
\(878\) 0 0
\(879\) −6.99014e12 1.21073e13i −0.394944 0.684064i
\(880\) 0 0
\(881\) −1.77457e13 −0.992432 −0.496216 0.868199i \(-0.665278\pi\)
−0.496216 + 0.868199i \(0.665278\pi\)
\(882\) 0 0
\(883\) −2.35402e13 −1.30313 −0.651565 0.758593i \(-0.725887\pi\)
−0.651565 + 0.758593i \(0.725887\pi\)
\(884\) 0 0
\(885\) −7.67460e11 1.32928e12i −0.0420543 0.0728403i
\(886\) 0 0
\(887\) 3.52995e12 6.11405e12i 0.191475 0.331644i −0.754264 0.656571i \(-0.772006\pi\)
0.945739 + 0.324927i \(0.105340\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.42848e12 + 9.40240e12i −0.288555 + 0.499792i
\(892\) 0 0
\(893\) −8.34674e12 1.44570e13i −0.439223 0.760757i
\(894\) 0 0
\(895\) 3.46855e12 0.180694
\(896\) 0 0
\(897\) −2.61191e12 −0.134708
\(898\) 0 0
\(899\) 1.16105e12 + 2.01100e12i 0.0592835 + 0.102682i
\(900\) 0 0
\(901\) 4.03359e11 6.98638e11i 0.0203906 0.0353176i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.41340e11 + 9.37628e11i −0.0268257 + 0.0464635i
\(906\) 0 0
\(907\) −2.34149e12 4.05559e12i −0.114884 0.198985i 0.802849 0.596182i \(-0.203316\pi\)
−0.917733 + 0.397197i \(0.869983\pi\)
\(908\) 0 0
\(909\) 2.44251e13 1.18658
\(910\) 0 0
\(911\) 2.77029e13 1.33258 0.666289 0.745694i \(-0.267882\pi\)
0.666289 + 0.745694i \(0.267882\pi\)
\(912\) 0 0
\(913\) 6.79866e12 + 1.17756e13i 0.323821 + 0.560874i
\(914\) 0 0
\(915\) −5.82257e11 + 1.00850e12i −0.0274612 + 0.0475643i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.67172e13 + 2.89550e13i −0.773112 + 1.33907i 0.162737 + 0.986669i \(0.447968\pi\)
−0.935849 + 0.352400i \(0.885366\pi\)
\(920\) 0 0
\(921\) −6.07803e12 1.05275e13i −0.278352 0.482120i
\(922\) 0 0
\(923\) −3.26005e13 −1.47848
\(924\) 0 0
\(925\) 5.22705e12 0.234757
\(926\) 0 0
\(927\) −3.87272e12 6.70774e12i −0.172249 0.298344i
\(928\) 0 0
\(929\) −1.71914e13 + 2.97764e13i −0.757252 + 1.31160i 0.186995 + 0.982361i \(0.440125\pi\)
−0.944247 + 0.329238i \(0.893208\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.59472e11 7.95828e11i 0.0198514 0.0343837i
\(934\) 0 0
\(935\) −7.26764e10 1.25879e11i −0.00310986 0.00538644i
\(936\) 0 0
\(937\) −2.90342e13 −1.23050 −0.615250 0.788332i \(-0.710945\pi\)
−0.615250 + 0.788332i \(0.710945\pi\)
\(938\) 0 0
\(939\) 1.18566e13 0.497699
\(940\) 0 0
\(941\) −1.15681e13 2.00365e13i −0.480958 0.833044i 0.518803 0.854894i \(-0.326378\pi\)
−0.999761 + 0.0218500i \(0.993044\pi\)
\(942\) 0 0
\(943\) −2.10312e12 + 3.64271e12i −0.0866086 + 0.150011i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.92132e12 + 1.19881e13i −0.279649 + 0.484367i −0.971298 0.237868i \(-0.923552\pi\)
0.691648 + 0.722235i \(0.256885\pi\)
\(948\) 0 0
\(949\) 5.21308e12 + 9.02933e12i 0.208640 + 0.361374i
\(950\) 0 0
\(951\) 2.28052e13 0.904112
\(952\) 0 0
\(953\) −1.60424e13 −0.630016 −0.315008 0.949089i \(-0.602007\pi\)
−0.315008 + 0.949089i \(0.602007\pi\)
\(954\) 0 0
\(955\) −1.45119e12 2.51353e12i −0.0564558 0.0977843i
\(956\) 0 0
\(957\) 2.62211e12 4.54163e12i 0.101053 0.175028i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.21043e12 1.59529e13i 0.348357 0.603372i
\(962\) 0 0
\(963\) 3.87408e12 + 6.71011e12i 0.145161 + 0.251427i
\(964\) 0 0
\(965\) 7.16595e10 0.00266012
\(966\) 0 0
\(967\) −2.69595e13 −0.991502 −0.495751 0.868465i \(-0.665107\pi\)
−0.495751 + 0.868465i \(0.665107\pi\)
\(968\) 0 0
\(969\) 1.64438e11 + 2.84815e11i 0.00599163 + 0.0103778i
\(970\) 0 0
\(971\) −6.33963e11 + 1.09806e12i −0.0228864 + 0.0396404i −0.877242 0.480049i \(-0.840619\pi\)
0.854355 + 0.519689i \(0.173952\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.13828e13 1.97155e13i 0.403392 0.698695i
\(976\) 0 0
\(977\) 1.04355e13 + 1.80748e13i 0.366428 + 0.634671i 0.989004 0.147888i \(-0.0472474\pi\)
−0.622577 + 0.782559i \(0.713914\pi\)
\(978\) 0 0
\(979\) 5.94436e13 2.06815
\(980\) 0 0
\(981\) −2.92823e13 −1.00947
\(982\) 0 0
\(983\) 1.31973e13 + 2.28584e13i 0.450811 + 0.780828i 0.998437 0.0558955i \(-0.0178014\pi\)
−0.547625 + 0.836724i \(0.684468\pi\)
\(984\) 0 0
\(985\) 1.63963e12 2.83992e12i 0.0554987 0.0961265i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.85381e12 4.94295e12i 0.0948511 0.164287i
\(990\) 0 0
\(991\) 1.16642e13 + 2.02029e13i 0.384169 + 0.665400i 0.991654 0.128931i \(-0.0411546\pi\)
−0.607484 + 0.794332i \(0.707821\pi\)
\(992\) 0 0
\(993\) 5.81010e12 0.189632
\(994\) 0 0
\(995\) −5.26525e12 −0.170300
\(996\) 0 0
\(997\) −1.81120e13 3.13709e13i −0.580548 1.00554i −0.995414 0.0956566i \(-0.969505\pi\)
0.414866 0.909882i \(-0.363828\pi\)
\(998\) 0 0
\(999\) 3.28539e12 5.69047e12i 0.104362 0.180760i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.10.e.i.177.7 20
7.2 even 3 196.10.a.g.1.4 10
7.3 odd 6 inner 196.10.e.i.165.4 20
7.4 even 3 inner 196.10.e.i.165.7 20
7.5 odd 6 196.10.a.g.1.7 yes 10
7.6 odd 2 inner 196.10.e.i.177.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.10.a.g.1.4 10 7.2 even 3
196.10.a.g.1.7 yes 10 7.5 odd 6
196.10.e.i.165.4 20 7.3 odd 6 inner
196.10.e.i.165.7 20 7.4 even 3 inner
196.10.e.i.177.4 20 7.6 odd 2 inner
196.10.e.i.177.7 20 1.1 even 1 trivial