Defining parameters
Level: | \( N \) | = | \( 196 = 2^{2} \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 10 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(23520\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(196))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10734 | 5971 | 4763 |
Cusp forms | 10434 | 5875 | 4559 |
Eisenstein series | 300 | 96 | 204 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(196))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
196.10.a | \(\chi_{196}(1, \cdot)\) | 196.10.a.a | 1 | 1 |
196.10.a.b | 2 | |||
196.10.a.c | 2 | |||
196.10.a.d | 4 | |||
196.10.a.e | 6 | |||
196.10.a.f | 6 | |||
196.10.a.g | 10 | |||
196.10.d | \(\chi_{196}(195, \cdot)\) | n/a | 176 | 1 |
196.10.e | \(\chi_{196}(165, \cdot)\) | 196.10.e.a | 2 | 2 |
196.10.e.b | 2 | |||
196.10.e.c | 4 | |||
196.10.e.d | 4 | |||
196.10.e.e | 4 | |||
196.10.e.f | 4 | |||
196.10.e.g | 8 | |||
196.10.e.h | 12 | |||
196.10.e.i | 20 | |||
196.10.f | \(\chi_{196}(19, \cdot)\) | n/a | 352 | 2 |
196.10.i | \(\chi_{196}(29, \cdot)\) | n/a | 252 | 6 |
196.10.j | \(\chi_{196}(27, \cdot)\) | n/a | 1500 | 6 |
196.10.m | \(\chi_{196}(9, \cdot)\) | n/a | 504 | 12 |
196.10.p | \(\chi_{196}(3, \cdot)\) | n/a | 3000 | 12 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(196))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(196)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)