Properties

Label 196.10
Level 196
Weight 10
Dimension 5875
Nonzero newspaces 8
Sturm bound 23520
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(23520\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(196))\).

Total New Old
Modular forms 10734 5971 4763
Cusp forms 10434 5875 4559
Eisenstein series 300 96 204

Trace form

\( 5875 q - 15 q^{2} - 96 q^{3} - 15 q^{4} - 2400 q^{5} - 21 q^{6} - 1368 q^{7} + 49647 q^{8} - 69117 q^{9} + 53427 q^{10} + 162948 q^{11} - 166005 q^{12} + 14120 q^{13} - 165846 q^{14} + 1527288 q^{15} + 1611609 q^{16}+ \cdots + 1994871564 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(196))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
196.10.a \(\chi_{196}(1, \cdot)\) 196.10.a.a 1 1
196.10.a.b 2
196.10.a.c 2
196.10.a.d 4
196.10.a.e 6
196.10.a.f 6
196.10.a.g 10
196.10.d \(\chi_{196}(195, \cdot)\) n/a 176 1
196.10.e \(\chi_{196}(165, \cdot)\) 196.10.e.a 2 2
196.10.e.b 2
196.10.e.c 4
196.10.e.d 4
196.10.e.e 4
196.10.e.f 4
196.10.e.g 8
196.10.e.h 12
196.10.e.i 20
196.10.f \(\chi_{196}(19, \cdot)\) n/a 352 2
196.10.i \(\chi_{196}(29, \cdot)\) n/a 252 6
196.10.j \(\chi_{196}(27, \cdot)\) n/a 1500 6
196.10.m \(\chi_{196}(9, \cdot)\) n/a 504 12
196.10.p \(\chi_{196}(3, \cdot)\) n/a 3000 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(196))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(196)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)