Properties

Label 196.10.a.g.1.4
Level $196$
Weight $10$
Character 196.1
Self dual yes
Analytic conductor $100.947$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,10,Mod(1,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.947023888\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 23330x^{8} + 114080917x^{6} - 121201507892x^{4} + 31086921022884x^{2} - 2278042380749088 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{4}\cdot 7^{12} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-130.574\) of defining polynomial
Character \(\chi\) \(=\) 196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-70.3781 q^{3} +162.776 q^{5} -14729.9 q^{9} +90868.8 q^{11} -167897. q^{13} -11455.9 q^{15} +9826.94 q^{17} +475528. q^{19} -221044. q^{23} -1.92663e6 q^{25} +2.42191e6 q^{27} +820028. q^{29} -2.83174e6 q^{31} -6.39517e6 q^{33} -2.71305e6 q^{37} +1.18163e7 q^{39} -1.90289e7 q^{41} +2.58212e7 q^{43} -2.39768e6 q^{45} +3.51051e7 q^{47} -691601. q^{51} -8.20924e7 q^{53} +1.47913e7 q^{55} -3.34668e7 q^{57} -1.33986e8 q^{59} -1.01652e8 q^{61} -2.73296e7 q^{65} +1.48020e8 q^{67} +1.55567e7 q^{69} +1.94170e8 q^{71} +6.20986e7 q^{73} +1.35592e8 q^{75} +4.01444e8 q^{79} +1.19480e8 q^{81} -1.49637e8 q^{83} +1.59959e6 q^{85} -5.77120e7 q^{87} +6.54169e8 q^{89} +1.99292e8 q^{93} +7.74046e7 q^{95} +1.51683e9 q^{97} -1.33849e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 93550 q^{9} + 27740 q^{11} + 912088 q^{15} - 2921096 q^{23} + 3484998 q^{25} - 835748 q^{29} - 31928756 q^{37} - 4930944 q^{39} + 13414340 q^{43} + 206013028 q^{51} + 137301788 q^{53} + 72246332 q^{57}+ \cdots + 5316067012 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −70.3781 −0.501639 −0.250820 0.968034i \(-0.580700\pi\)
−0.250820 + 0.968034i \(0.580700\pi\)
\(4\) 0 0
\(5\) 162.776 0.116473 0.0582365 0.998303i \(-0.481452\pi\)
0.0582365 + 0.998303i \(0.481452\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −14729.9 −0.748358
\(10\) 0 0
\(11\) 90868.8 1.87132 0.935659 0.352905i \(-0.114806\pi\)
0.935659 + 0.352905i \(0.114806\pi\)
\(12\) 0 0
\(13\) −167897. −1.63041 −0.815206 0.579171i \(-0.803377\pi\)
−0.815206 + 0.579171i \(0.803377\pi\)
\(14\) 0 0
\(15\) −11455.9 −0.0584275
\(16\) 0 0
\(17\) 9826.94 0.0285363 0.0142682 0.999898i \(-0.495458\pi\)
0.0142682 + 0.999898i \(0.495458\pi\)
\(18\) 0 0
\(19\) 475528. 0.837115 0.418558 0.908190i \(-0.362536\pi\)
0.418558 + 0.908190i \(0.362536\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −221044. −0.164704 −0.0823519 0.996603i \(-0.526243\pi\)
−0.0823519 + 0.996603i \(0.526243\pi\)
\(24\) 0 0
\(25\) −1.92663e6 −0.986434
\(26\) 0 0
\(27\) 2.42191e6 0.877045
\(28\) 0 0
\(29\) 820028. 0.215297 0.107648 0.994189i \(-0.465668\pi\)
0.107648 + 0.994189i \(0.465668\pi\)
\(30\) 0 0
\(31\) −2.83174e6 −0.550714 −0.275357 0.961342i \(-0.588796\pi\)
−0.275357 + 0.961342i \(0.588796\pi\)
\(32\) 0 0
\(33\) −6.39517e6 −0.938727
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.71305e6 −0.237986 −0.118993 0.992895i \(-0.537967\pi\)
−0.118993 + 0.992895i \(0.537967\pi\)
\(38\) 0 0
\(39\) 1.18163e7 0.817879
\(40\) 0 0
\(41\) −1.90289e7 −1.05169 −0.525845 0.850581i \(-0.676251\pi\)
−0.525845 + 0.850581i \(0.676251\pi\)
\(42\) 0 0
\(43\) 2.58212e7 1.15178 0.575889 0.817528i \(-0.304656\pi\)
0.575889 + 0.817528i \(0.304656\pi\)
\(44\) 0 0
\(45\) −2.39768e6 −0.0871635
\(46\) 0 0
\(47\) 3.51051e7 1.04937 0.524687 0.851295i \(-0.324182\pi\)
0.524687 + 0.851295i \(0.324182\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −691601. −0.0143150
\(52\) 0 0
\(53\) −8.20924e7 −1.42910 −0.714549 0.699586i \(-0.753368\pi\)
−0.714549 + 0.699586i \(0.753368\pi\)
\(54\) 0 0
\(55\) 1.47913e7 0.217958
\(56\) 0 0
\(57\) −3.34668e7 −0.419930
\(58\) 0 0
\(59\) −1.33986e8 −1.43954 −0.719770 0.694212i \(-0.755753\pi\)
−0.719770 + 0.694212i \(0.755753\pi\)
\(60\) 0 0
\(61\) −1.01652e8 −0.940011 −0.470006 0.882663i \(-0.655748\pi\)
−0.470006 + 0.882663i \(0.655748\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.73296e7 −0.189899
\(66\) 0 0
\(67\) 1.48020e8 0.897398 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(68\) 0 0
\(69\) 1.55567e7 0.0826219
\(70\) 0 0
\(71\) 1.94170e8 0.906816 0.453408 0.891303i \(-0.350208\pi\)
0.453408 + 0.891303i \(0.350208\pi\)
\(72\) 0 0
\(73\) 6.20986e7 0.255935 0.127967 0.991778i \(-0.459155\pi\)
0.127967 + 0.991778i \(0.459155\pi\)
\(74\) 0 0
\(75\) 1.35592e8 0.494834
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.01444e8 1.15959 0.579793 0.814764i \(-0.303134\pi\)
0.579793 + 0.814764i \(0.303134\pi\)
\(80\) 0 0
\(81\) 1.19480e8 0.308398
\(82\) 0 0
\(83\) −1.49637e8 −0.346088 −0.173044 0.984914i \(-0.555360\pi\)
−0.173044 + 0.984914i \(0.555360\pi\)
\(84\) 0 0
\(85\) 1.59959e6 0.00332372
\(86\) 0 0
\(87\) −5.77120e7 −0.108001
\(88\) 0 0
\(89\) 6.54169e8 1.10519 0.552593 0.833451i \(-0.313639\pi\)
0.552593 + 0.833451i \(0.313639\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.99292e8 0.276260
\(94\) 0 0
\(95\) 7.74046e7 0.0975013
\(96\) 0 0
\(97\) 1.51683e9 1.73966 0.869830 0.493352i \(-0.164229\pi\)
0.869830 + 0.493352i \(0.164229\pi\)
\(98\) 0 0
\(99\) −1.33849e9 −1.40042
\(100\) 0 0
\(101\) −1.65819e9 −1.58558 −0.792792 0.609493i \(-0.791373\pi\)
−0.792792 + 0.609493i \(0.791373\pi\)
\(102\) 0 0
\(103\) −5.25830e8 −0.460339 −0.230169 0.973151i \(-0.573928\pi\)
−0.230169 + 0.973151i \(0.573928\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.26015e8 0.387946 0.193973 0.981007i \(-0.437863\pi\)
0.193973 + 0.981007i \(0.437863\pi\)
\(108\) 0 0
\(109\) 1.98795e9 1.34892 0.674459 0.738312i \(-0.264377\pi\)
0.674459 + 0.738312i \(0.264377\pi\)
\(110\) 0 0
\(111\) 1.90940e8 0.119383
\(112\) 0 0
\(113\) 1.09466e9 0.631577 0.315789 0.948830i \(-0.397731\pi\)
0.315789 + 0.948830i \(0.397731\pi\)
\(114\) 0 0
\(115\) −3.59807e7 −0.0191836
\(116\) 0 0
\(117\) 2.47311e9 1.22013
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.89919e9 2.50183
\(122\) 0 0
\(123\) 1.33922e9 0.527569
\(124\) 0 0
\(125\) −6.31531e8 −0.231366
\(126\) 0 0
\(127\) 3.18245e9 1.08554 0.542769 0.839882i \(-0.317376\pi\)
0.542769 + 0.839882i \(0.317376\pi\)
\(128\) 0 0
\(129\) −1.81725e9 −0.577777
\(130\) 0 0
\(131\) 2.47096e9 0.733068 0.366534 0.930405i \(-0.380544\pi\)
0.366534 + 0.930405i \(0.380544\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.94230e8 0.102152
\(136\) 0 0
\(137\) 1.02753e9 0.249202 0.124601 0.992207i \(-0.460235\pi\)
0.124601 + 0.992207i \(0.460235\pi\)
\(138\) 0 0
\(139\) 6.01240e9 1.36610 0.683048 0.730373i \(-0.260654\pi\)
0.683048 + 0.730373i \(0.260654\pi\)
\(140\) 0 0
\(141\) −2.47063e9 −0.526407
\(142\) 0 0
\(143\) −1.52566e10 −3.05102
\(144\) 0 0
\(145\) 1.33481e8 0.0250763
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.01062e9 0.500400 0.250200 0.968194i \(-0.419504\pi\)
0.250200 + 0.968194i \(0.419504\pi\)
\(150\) 0 0
\(151\) 4.59068e9 0.718590 0.359295 0.933224i \(-0.383017\pi\)
0.359295 + 0.933224i \(0.383017\pi\)
\(152\) 0 0
\(153\) −1.44750e8 −0.0213554
\(154\) 0 0
\(155\) −4.60939e8 −0.0641433
\(156\) 0 0
\(157\) −8.29932e9 −1.09017 −0.545085 0.838381i \(-0.683503\pi\)
−0.545085 + 0.838381i \(0.683503\pi\)
\(158\) 0 0
\(159\) 5.77751e9 0.716891
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.23181e10 1.36679 0.683393 0.730051i \(-0.260503\pi\)
0.683393 + 0.730051i \(0.260503\pi\)
\(164\) 0 0
\(165\) −1.04098e9 −0.109336
\(166\) 0 0
\(167\) 1.95830e9 0.194830 0.0974150 0.995244i \(-0.468943\pi\)
0.0974150 + 0.995244i \(0.468943\pi\)
\(168\) 0 0
\(169\) 1.75849e10 1.65825
\(170\) 0 0
\(171\) −7.00450e9 −0.626462
\(172\) 0 0
\(173\) 1.50206e10 1.27491 0.637457 0.770486i \(-0.279986\pi\)
0.637457 + 0.770486i \(0.279986\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.42964e9 0.722130
\(178\) 0 0
\(179\) 2.13087e10 1.55138 0.775692 0.631112i \(-0.217401\pi\)
0.775692 + 0.631112i \(0.217401\pi\)
\(180\) 0 0
\(181\) 6.65134e9 0.460634 0.230317 0.973116i \(-0.426024\pi\)
0.230317 + 0.973116i \(0.426024\pi\)
\(182\) 0 0
\(183\) 7.15409e9 0.471547
\(184\) 0 0
\(185\) −4.41620e8 −0.0277189
\(186\) 0 0
\(187\) 8.92962e8 0.0534006
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.78305e10 0.969422 0.484711 0.874674i \(-0.338925\pi\)
0.484711 + 0.874674i \(0.338925\pi\)
\(192\) 0 0
\(193\) 4.40234e8 0.0228389 0.0114195 0.999935i \(-0.496365\pi\)
0.0114195 + 0.999935i \(0.496365\pi\)
\(194\) 0 0
\(195\) 1.92340e9 0.0952609
\(196\) 0 0
\(197\) −2.01458e10 −0.952988 −0.476494 0.879178i \(-0.658093\pi\)
−0.476494 + 0.879178i \(0.658093\pi\)
\(198\) 0 0
\(199\) −3.23466e10 −1.46214 −0.731071 0.682301i \(-0.760979\pi\)
−0.731071 + 0.682301i \(0.760979\pi\)
\(200\) 0 0
\(201\) −1.04174e10 −0.450170
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.09746e9 −0.122493
\(206\) 0 0
\(207\) 3.25596e9 0.123257
\(208\) 0 0
\(209\) 4.32107e10 1.56651
\(210\) 0 0
\(211\) −3.85763e10 −1.33983 −0.669915 0.742438i \(-0.733670\pi\)
−0.669915 + 0.742438i \(0.733670\pi\)
\(212\) 0 0
\(213\) −1.36653e10 −0.454894
\(214\) 0 0
\(215\) 4.20308e9 0.134151
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.37038e9 −0.128387
\(220\) 0 0
\(221\) −1.64991e9 −0.0465260
\(222\) 0 0
\(223\) −3.40626e10 −0.922371 −0.461186 0.887304i \(-0.652576\pi\)
−0.461186 + 0.887304i \(0.652576\pi\)
\(224\) 0 0
\(225\) 2.83791e10 0.738206
\(226\) 0 0
\(227\) 6.93803e10 1.73428 0.867141 0.498063i \(-0.165955\pi\)
0.867141 + 0.498063i \(0.165955\pi\)
\(228\) 0 0
\(229\) 7.06757e10 1.69828 0.849142 0.528164i \(-0.177119\pi\)
0.849142 + 0.528164i \(0.177119\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.33248e10 1.18530 0.592649 0.805461i \(-0.298082\pi\)
0.592649 + 0.805461i \(0.298082\pi\)
\(234\) 0 0
\(235\) 5.71427e9 0.122224
\(236\) 0 0
\(237\) −2.82528e10 −0.581694
\(238\) 0 0
\(239\) 2.61227e10 0.517878 0.258939 0.965894i \(-0.416627\pi\)
0.258939 + 0.965894i \(0.416627\pi\)
\(240\) 0 0
\(241\) 2.43771e10 0.465485 0.232743 0.972538i \(-0.425230\pi\)
0.232743 + 0.972538i \(0.425230\pi\)
\(242\) 0 0
\(243\) −5.60793e10 −1.03175
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.98397e10 −1.36484
\(248\) 0 0
\(249\) 1.05311e10 0.173612
\(250\) 0 0
\(251\) 6.65520e9 0.105835 0.0529175 0.998599i \(-0.483148\pi\)
0.0529175 + 0.998599i \(0.483148\pi\)
\(252\) 0 0
\(253\) −2.00860e10 −0.308213
\(254\) 0 0
\(255\) −1.12576e8 −0.00166731
\(256\) 0 0
\(257\) −1.22130e11 −1.74632 −0.873160 0.487433i \(-0.837933\pi\)
−0.873160 + 0.487433i \(0.837933\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.20790e10 −0.161119
\(262\) 0 0
\(263\) −3.13988e10 −0.404680 −0.202340 0.979315i \(-0.564855\pi\)
−0.202340 + 0.979315i \(0.564855\pi\)
\(264\) 0 0
\(265\) −1.33627e10 −0.166451
\(266\) 0 0
\(267\) −4.60392e10 −0.554405
\(268\) 0 0
\(269\) 1.26966e10 0.147844 0.0739220 0.997264i \(-0.476448\pi\)
0.0739220 + 0.997264i \(0.476448\pi\)
\(270\) 0 0
\(271\) 6.42236e9 0.0723324 0.0361662 0.999346i \(-0.488485\pi\)
0.0361662 + 0.999346i \(0.488485\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.75070e11 −1.84593
\(276\) 0 0
\(277\) −1.54290e11 −1.57463 −0.787317 0.616549i \(-0.788530\pi\)
−0.787317 + 0.616549i \(0.788530\pi\)
\(278\) 0 0
\(279\) 4.17113e10 0.412131
\(280\) 0 0
\(281\) 6.22022e10 0.595151 0.297576 0.954698i \(-0.403822\pi\)
0.297576 + 0.954698i \(0.403822\pi\)
\(282\) 0 0
\(283\) 5.21640e10 0.483428 0.241714 0.970348i \(-0.422290\pi\)
0.241714 + 0.970348i \(0.422290\pi\)
\(284\) 0 0
\(285\) −5.44759e9 −0.0489105
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.18491e11 −0.999186
\(290\) 0 0
\(291\) −1.06752e11 −0.872682
\(292\) 0 0
\(293\) −1.98645e11 −1.57461 −0.787307 0.616561i \(-0.788525\pi\)
−0.787307 + 0.616561i \(0.788525\pi\)
\(294\) 0 0
\(295\) −2.18096e10 −0.167668
\(296\) 0 0
\(297\) 2.20076e11 1.64123
\(298\) 0 0
\(299\) 3.71126e10 0.268535
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.16700e11 0.795391
\(304\) 0 0
\(305\) −1.65466e10 −0.109486
\(306\) 0 0
\(307\) −1.72725e11 −1.10977 −0.554885 0.831927i \(-0.687238\pi\)
−0.554885 + 0.831927i \(0.687238\pi\)
\(308\) 0 0
\(309\) 3.70069e10 0.230924
\(310\) 0 0
\(311\) 1.30572e10 0.0791462 0.0395731 0.999217i \(-0.487400\pi\)
0.0395731 + 0.999217i \(0.487400\pi\)
\(312\) 0 0
\(313\) −1.68471e11 −0.992145 −0.496072 0.868281i \(-0.665225\pi\)
−0.496072 + 0.868281i \(0.665225\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.24039e11 −1.80231 −0.901157 0.433492i \(-0.857281\pi\)
−0.901157 + 0.433492i \(0.857281\pi\)
\(318\) 0 0
\(319\) 7.45150e10 0.402889
\(320\) 0 0
\(321\) −3.70199e10 −0.194609
\(322\) 0 0
\(323\) 4.67299e9 0.0238882
\(324\) 0 0
\(325\) 3.23475e11 1.60829
\(326\) 0 0
\(327\) −1.39908e11 −0.676670
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.25555e10 −0.378025 −0.189012 0.981975i \(-0.560529\pi\)
−0.189012 + 0.981975i \(0.560529\pi\)
\(332\) 0 0
\(333\) 3.99631e10 0.178098
\(334\) 0 0
\(335\) 2.40942e10 0.104523
\(336\) 0 0
\(337\) −5.14965e10 −0.217492 −0.108746 0.994070i \(-0.534683\pi\)
−0.108746 + 0.994070i \(0.534683\pi\)
\(338\) 0 0
\(339\) −7.70401e10 −0.316824
\(340\) 0 0
\(341\) −2.57317e11 −1.03056
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.53225e9 0.00962323
\(346\) 0 0
\(347\) −3.99878e11 −1.48062 −0.740312 0.672263i \(-0.765322\pi\)
−0.740312 + 0.672263i \(0.765322\pi\)
\(348\) 0 0
\(349\) 5.32897e11 1.92278 0.961388 0.275195i \(-0.0887426\pi\)
0.961388 + 0.275195i \(0.0887426\pi\)
\(350\) 0 0
\(351\) −4.06632e11 −1.42995
\(352\) 0 0
\(353\) 2.83386e10 0.0971387 0.0485694 0.998820i \(-0.484534\pi\)
0.0485694 + 0.998820i \(0.484534\pi\)
\(354\) 0 0
\(355\) 3.16062e10 0.105620
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.32309e10 −0.169137 −0.0845686 0.996418i \(-0.526951\pi\)
−0.0845686 + 0.996418i \(0.526951\pi\)
\(360\) 0 0
\(361\) −9.65605e10 −0.299238
\(362\) 0 0
\(363\) −4.15173e11 −1.25502
\(364\) 0 0
\(365\) 1.01082e10 0.0298095
\(366\) 0 0
\(367\) 5.16128e11 1.48511 0.742557 0.669783i \(-0.233613\pi\)
0.742557 + 0.669783i \(0.233613\pi\)
\(368\) 0 0
\(369\) 2.80295e11 0.787040
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.51851e11 0.941173 0.470586 0.882354i \(-0.344042\pi\)
0.470586 + 0.882354i \(0.344042\pi\)
\(374\) 0 0
\(375\) 4.44459e10 0.116062
\(376\) 0 0
\(377\) −1.37680e11 −0.351023
\(378\) 0 0
\(379\) 3.25484e11 0.810313 0.405157 0.914247i \(-0.367217\pi\)
0.405157 + 0.914247i \(0.367217\pi\)
\(380\) 0 0
\(381\) −2.23975e11 −0.544548
\(382\) 0 0
\(383\) 7.65132e11 1.81695 0.908473 0.417943i \(-0.137249\pi\)
0.908473 + 0.417943i \(0.137249\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.80345e11 −0.861942
\(388\) 0 0
\(389\) 7.85896e11 1.74017 0.870085 0.492902i \(-0.164064\pi\)
0.870085 + 0.492902i \(0.164064\pi\)
\(390\) 0 0
\(391\) −2.17219e9 −0.00470005
\(392\) 0 0
\(393\) −1.73901e11 −0.367736
\(394\) 0 0
\(395\) 6.53454e10 0.135060
\(396\) 0 0
\(397\) −7.39214e11 −1.49353 −0.746763 0.665090i \(-0.768393\pi\)
−0.746763 + 0.665090i \(0.768393\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.29587e11 0.636531 0.318266 0.948002i \(-0.396900\pi\)
0.318266 + 0.948002i \(0.396900\pi\)
\(402\) 0 0
\(403\) 4.75440e11 0.897890
\(404\) 0 0
\(405\) 1.94484e10 0.0359200
\(406\) 0 0
\(407\) −2.46532e11 −0.445347
\(408\) 0 0
\(409\) −9.14043e11 −1.61515 −0.807573 0.589768i \(-0.799219\pi\)
−0.807573 + 0.589768i \(0.799219\pi\)
\(410\) 0 0
\(411\) −7.23156e10 −0.125010
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.43573e10 −0.0403100
\(416\) 0 0
\(417\) −4.23141e11 −0.685288
\(418\) 0 0
\(419\) 6.65088e11 1.05418 0.527092 0.849808i \(-0.323282\pi\)
0.527092 + 0.849808i \(0.323282\pi\)
\(420\) 0 0
\(421\) 8.13818e11 1.26258 0.631288 0.775548i \(-0.282527\pi\)
0.631288 + 0.775548i \(0.282527\pi\)
\(422\) 0 0
\(423\) −5.17096e11 −0.785307
\(424\) 0 0
\(425\) −1.89329e10 −0.0281492
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.07373e12 1.53051
\(430\) 0 0
\(431\) −5.61579e11 −0.783905 −0.391953 0.919985i \(-0.628200\pi\)
−0.391953 + 0.919985i \(0.628200\pi\)
\(432\) 0 0
\(433\) 5.13223e11 0.701633 0.350817 0.936444i \(-0.385904\pi\)
0.350817 + 0.936444i \(0.385904\pi\)
\(434\) 0 0
\(435\) −9.39413e9 −0.0125793
\(436\) 0 0
\(437\) −1.05113e11 −0.137876
\(438\) 0 0
\(439\) 1.03560e12 1.33076 0.665382 0.746503i \(-0.268268\pi\)
0.665382 + 0.746503i \(0.268268\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.57316e11 0.810881 0.405441 0.914121i \(-0.367118\pi\)
0.405441 + 0.914121i \(0.367118\pi\)
\(444\) 0 0
\(445\) 1.06483e11 0.128724
\(446\) 0 0
\(447\) −2.11881e11 −0.251020
\(448\) 0 0
\(449\) 2.82701e11 0.328260 0.164130 0.986439i \(-0.447518\pi\)
0.164130 + 0.986439i \(0.447518\pi\)
\(450\) 0 0
\(451\) −1.72914e12 −1.96805
\(452\) 0 0
\(453\) −3.23083e11 −0.360473
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.99719e10 −0.0643168 −0.0321584 0.999483i \(-0.510238\pi\)
−0.0321584 + 0.999483i \(0.510238\pi\)
\(458\) 0 0
\(459\) 2.38000e10 0.0250277
\(460\) 0 0
\(461\) 5.38434e11 0.555237 0.277618 0.960691i \(-0.410455\pi\)
0.277618 + 0.960691i \(0.410455\pi\)
\(462\) 0 0
\(463\) 4.90683e10 0.0496234 0.0248117 0.999692i \(-0.492101\pi\)
0.0248117 + 0.999692i \(0.492101\pi\)
\(464\) 0 0
\(465\) 3.24400e10 0.0321768
\(466\) 0 0
\(467\) 1.51457e12 1.47355 0.736774 0.676139i \(-0.236348\pi\)
0.736774 + 0.676139i \(0.236348\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.84090e11 0.546872
\(472\) 0 0
\(473\) 2.34634e12 2.15534
\(474\) 0 0
\(475\) −9.16167e11 −0.825759
\(476\) 0 0
\(477\) 1.20922e12 1.06948
\(478\) 0 0
\(479\) −1.44132e12 −1.25098 −0.625490 0.780232i \(-0.715101\pi\)
−0.625490 + 0.780232i \(0.715101\pi\)
\(480\) 0 0
\(481\) 4.55513e11 0.388015
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.46904e11 0.202623
\(486\) 0 0
\(487\) 7.52521e11 0.606232 0.303116 0.952954i \(-0.401973\pi\)
0.303116 + 0.952954i \(0.401973\pi\)
\(488\) 0 0
\(489\) −8.66926e11 −0.685634
\(490\) 0 0
\(491\) −1.05719e12 −0.820896 −0.410448 0.911884i \(-0.634628\pi\)
−0.410448 + 0.911884i \(0.634628\pi\)
\(492\) 0 0
\(493\) 8.05837e9 0.00614379
\(494\) 0 0
\(495\) −2.17874e11 −0.163111
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.10866e11 0.657661 0.328830 0.944389i \(-0.393346\pi\)
0.328830 + 0.944389i \(0.393346\pi\)
\(500\) 0 0
\(501\) −1.37822e11 −0.0977343
\(502\) 0 0
\(503\) 7.10909e11 0.495174 0.247587 0.968866i \(-0.420362\pi\)
0.247587 + 0.968866i \(0.420362\pi\)
\(504\) 0 0
\(505\) −2.69914e11 −0.184678
\(506\) 0 0
\(507\) −1.23759e12 −0.831841
\(508\) 0 0
\(509\) −1.22197e12 −0.806919 −0.403459 0.914998i \(-0.632192\pi\)
−0.403459 + 0.914998i \(0.632192\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.15169e12 0.734188
\(514\) 0 0
\(515\) −8.55925e10 −0.0536171
\(516\) 0 0
\(517\) 3.18996e12 1.96371
\(518\) 0 0
\(519\) −1.05712e12 −0.639547
\(520\) 0 0
\(521\) 6.45178e11 0.383627 0.191814 0.981431i \(-0.438563\pi\)
0.191814 + 0.981431i \(0.438563\pi\)
\(522\) 0 0
\(523\) 2.56126e12 1.49691 0.748456 0.663184i \(-0.230795\pi\)
0.748456 + 0.663184i \(0.230795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.78274e10 −0.0157154
\(528\) 0 0
\(529\) −1.75229e12 −0.972873
\(530\) 0 0
\(531\) 1.97360e12 1.07729
\(532\) 0 0
\(533\) 3.19490e12 1.71469
\(534\) 0 0
\(535\) 8.56226e10 0.0451852
\(536\) 0 0
\(537\) −1.49967e12 −0.778235
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.62574e10 −0.0382731 −0.0191366 0.999817i \(-0.506092\pi\)
−0.0191366 + 0.999817i \(0.506092\pi\)
\(542\) 0 0
\(543\) −4.68109e11 −0.231072
\(544\) 0 0
\(545\) 3.23590e11 0.157113
\(546\) 0 0
\(547\) −3.32708e12 −1.58899 −0.794494 0.607272i \(-0.792264\pi\)
−0.794494 + 0.607272i \(0.792264\pi\)
\(548\) 0 0
\(549\) 1.49733e12 0.703465
\(550\) 0 0
\(551\) 3.89947e11 0.180228
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.10804e10 0.0139049
\(556\) 0 0
\(557\) 1.65349e12 0.727867 0.363933 0.931425i \(-0.381434\pi\)
0.363933 + 0.931425i \(0.381434\pi\)
\(558\) 0 0
\(559\) −4.33530e12 −1.87787
\(560\) 0 0
\(561\) −6.28450e10 −0.0267878
\(562\) 0 0
\(563\) 1.44327e12 0.605424 0.302712 0.953082i \(-0.402108\pi\)
0.302712 + 0.953082i \(0.402108\pi\)
\(564\) 0 0
\(565\) 1.78185e11 0.0735618
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.96648e12 0.786474 0.393237 0.919437i \(-0.371355\pi\)
0.393237 + 0.919437i \(0.371355\pi\)
\(570\) 0 0
\(571\) 3.54964e12 1.39740 0.698701 0.715414i \(-0.253762\pi\)
0.698701 + 0.715414i \(0.253762\pi\)
\(572\) 0 0
\(573\) −1.25488e12 −0.486300
\(574\) 0 0
\(575\) 4.25870e11 0.162469
\(576\) 0 0
\(577\) −3.31017e11 −0.124325 −0.0621625 0.998066i \(-0.519800\pi\)
−0.0621625 + 0.998066i \(0.519800\pi\)
\(578\) 0 0
\(579\) −3.09828e10 −0.0114569
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.45964e12 −2.67430
\(584\) 0 0
\(585\) 4.02563e11 0.142113
\(586\) 0 0
\(587\) −3.23387e12 −1.12422 −0.562109 0.827063i \(-0.690010\pi\)
−0.562109 + 0.827063i \(0.690010\pi\)
\(588\) 0 0
\(589\) −1.34657e12 −0.461011
\(590\) 0 0
\(591\) 1.41782e12 0.478056
\(592\) 0 0
\(593\) −3.28172e12 −1.08982 −0.544911 0.838494i \(-0.683437\pi\)
−0.544911 + 0.838494i \(0.683437\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.27649e12 0.733468
\(598\) 0 0
\(599\) −4.82955e12 −1.53280 −0.766401 0.642362i \(-0.777955\pi\)
−0.766401 + 0.642362i \(0.777955\pi\)
\(600\) 0 0
\(601\) 2.74359e12 0.857797 0.428898 0.903353i \(-0.358902\pi\)
0.428898 + 0.903353i \(0.358902\pi\)
\(602\) 0 0
\(603\) −2.18033e12 −0.671575
\(604\) 0 0
\(605\) 9.60246e11 0.291396
\(606\) 0 0
\(607\) 5.89792e11 0.176340 0.0881698 0.996105i \(-0.471898\pi\)
0.0881698 + 0.996105i \(0.471898\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.89404e12 −1.71091
\(612\) 0 0
\(613\) −4.93280e12 −1.41098 −0.705491 0.708719i \(-0.749274\pi\)
−0.705491 + 0.708719i \(0.749274\pi\)
\(614\) 0 0
\(615\) 2.17993e11 0.0614475
\(616\) 0 0
\(617\) 4.74933e12 1.31932 0.659658 0.751566i \(-0.270701\pi\)
0.659658 + 0.751566i \(0.270701\pi\)
\(618\) 0 0
\(619\) 3.54867e12 0.971532 0.485766 0.874089i \(-0.338541\pi\)
0.485766 + 0.874089i \(0.338541\pi\)
\(620\) 0 0
\(621\) −5.35350e11 −0.144453
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.66015e12 0.959486
\(626\) 0 0
\(627\) −3.04108e12 −0.785822
\(628\) 0 0
\(629\) −2.66610e10 −0.00679124
\(630\) 0 0
\(631\) 1.34343e11 0.0337351 0.0168676 0.999858i \(-0.494631\pi\)
0.0168676 + 0.999858i \(0.494631\pi\)
\(632\) 0 0
\(633\) 2.71493e12 0.672112
\(634\) 0 0
\(635\) 5.18027e11 0.126436
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.86011e12 −0.678623
\(640\) 0 0
\(641\) −3.82754e12 −0.895486 −0.447743 0.894162i \(-0.647772\pi\)
−0.447743 + 0.894162i \(0.647772\pi\)
\(642\) 0 0
\(643\) −1.30004e12 −0.299921 −0.149960 0.988692i \(-0.547915\pi\)
−0.149960 + 0.988692i \(0.547915\pi\)
\(644\) 0 0
\(645\) −2.95804e11 −0.0672955
\(646\) 0 0
\(647\) −2.26204e12 −0.507494 −0.253747 0.967271i \(-0.581663\pi\)
−0.253747 + 0.967271i \(0.581663\pi\)
\(648\) 0 0
\(649\) −1.21751e13 −2.69384
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.05082e12 −1.73273 −0.866365 0.499411i \(-0.833550\pi\)
−0.866365 + 0.499411i \(0.833550\pi\)
\(654\) 0 0
\(655\) 4.02213e11 0.0853827
\(656\) 0 0
\(657\) −9.14709e11 −0.191531
\(658\) 0 0
\(659\) −3.50688e12 −0.724330 −0.362165 0.932114i \(-0.617962\pi\)
−0.362165 + 0.932114i \(0.617962\pi\)
\(660\) 0 0
\(661\) 6.86224e12 1.39817 0.699084 0.715040i \(-0.253591\pi\)
0.699084 + 0.715040i \(0.253591\pi\)
\(662\) 0 0
\(663\) 1.16118e11 0.0233393
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.81262e11 −0.0354602
\(668\) 0 0
\(669\) 2.39726e12 0.462698
\(670\) 0 0
\(671\) −9.23702e12 −1.75906
\(672\) 0 0
\(673\) 8.29182e12 1.55805 0.779026 0.626991i \(-0.215714\pi\)
0.779026 + 0.626991i \(0.215714\pi\)
\(674\) 0 0
\(675\) −4.66613e12 −0.865147
\(676\) 0 0
\(677\) 4.00553e12 0.732843 0.366422 0.930449i \(-0.380583\pi\)
0.366422 + 0.930449i \(0.380583\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4.88285e12 −0.869984
\(682\) 0 0
\(683\) 4.36723e12 0.767914 0.383957 0.923351i \(-0.374561\pi\)
0.383957 + 0.923351i \(0.374561\pi\)
\(684\) 0 0
\(685\) 1.67257e11 0.0290254
\(686\) 0 0
\(687\) −4.97402e12 −0.851927
\(688\) 0 0
\(689\) 1.37831e13 2.33002
\(690\) 0 0
\(691\) −4.60531e11 −0.0768436 −0.0384218 0.999262i \(-0.512233\pi\)
−0.0384218 + 0.999262i \(0.512233\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.78675e11 0.159113
\(696\) 0 0
\(697\) −1.86996e11 −0.0300114
\(698\) 0 0
\(699\) −3.75289e12 −0.594592
\(700\) 0 0
\(701\) −8.47672e11 −0.132586 −0.0662928 0.997800i \(-0.521117\pi\)
−0.0662928 + 0.997800i \(0.521117\pi\)
\(702\) 0 0
\(703\) −1.29013e12 −0.199221
\(704\) 0 0
\(705\) −4.02159e11 −0.0613122
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.76926e12 −0.857457 −0.428728 0.903433i \(-0.641038\pi\)
−0.428728 + 0.903433i \(0.641038\pi\)
\(710\) 0 0
\(711\) −5.91324e12 −0.867785
\(712\) 0 0
\(713\) 6.25940e11 0.0907046
\(714\) 0 0
\(715\) −2.48341e12 −0.355362
\(716\) 0 0
\(717\) −1.83846e12 −0.259788
\(718\) 0 0
\(719\) 7.53837e12 1.05196 0.525978 0.850498i \(-0.323700\pi\)
0.525978 + 0.850498i \(0.323700\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.71562e12 −0.233506
\(724\) 0 0
\(725\) −1.57989e12 −0.212376
\(726\) 0 0
\(727\) 9.73268e12 1.29219 0.646097 0.763255i \(-0.276400\pi\)
0.646097 + 0.763255i \(0.276400\pi\)
\(728\) 0 0
\(729\) 1.59504e12 0.209169
\(730\) 0 0
\(731\) 2.53744e11 0.0328675
\(732\) 0 0
\(733\) −8.35470e12 −1.06896 −0.534482 0.845180i \(-0.679493\pi\)
−0.534482 + 0.845180i \(0.679493\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.34504e13 1.67932
\(738\) 0 0
\(739\) −1.42736e13 −1.76050 −0.880248 0.474515i \(-0.842624\pi\)
−0.880248 + 0.474515i \(0.842624\pi\)
\(740\) 0 0
\(741\) 5.61896e12 0.684659
\(742\) 0 0
\(743\) −1.54557e13 −1.86054 −0.930271 0.366873i \(-0.880428\pi\)
−0.930271 + 0.366873i \(0.880428\pi\)
\(744\) 0 0
\(745\) 4.90056e11 0.0582831
\(746\) 0 0
\(747\) 2.20414e12 0.258998
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.84446e12 0.441017 0.220509 0.975385i \(-0.429228\pi\)
0.220509 + 0.975385i \(0.429228\pi\)
\(752\) 0 0
\(753\) −4.68380e11 −0.0530910
\(754\) 0 0
\(755\) 7.47253e11 0.0836964
\(756\) 0 0
\(757\) 5.43161e12 0.601169 0.300585 0.953755i \(-0.402818\pi\)
0.300585 + 0.953755i \(0.402818\pi\)
\(758\) 0 0
\(759\) 1.41361e12 0.154612
\(760\) 0 0
\(761\) −8.40759e12 −0.908742 −0.454371 0.890813i \(-0.650136\pi\)
−0.454371 + 0.890813i \(0.650136\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.35619e10 −0.00248733
\(766\) 0 0
\(767\) 2.24958e13 2.34704
\(768\) 0 0
\(769\) −1.01254e12 −0.104411 −0.0522053 0.998636i \(-0.516625\pi\)
−0.0522053 + 0.998636i \(0.516625\pi\)
\(770\) 0 0
\(771\) 8.59529e12 0.876023
\(772\) 0 0
\(773\) −1.41775e12 −0.142821 −0.0714106 0.997447i \(-0.522750\pi\)
−0.0714106 + 0.997447i \(0.522750\pi\)
\(774\) 0 0
\(775\) 5.45571e12 0.543243
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.04880e12 −0.880385
\(780\) 0 0
\(781\) 1.76440e13 1.69694
\(782\) 0 0
\(783\) 1.98604e12 0.188825
\(784\) 0 0
\(785\) −1.35093e12 −0.126975
\(786\) 0 0
\(787\) −5.91661e12 −0.549777 −0.274889 0.961476i \(-0.588641\pi\)
−0.274889 + 0.961476i \(0.588641\pi\)
\(788\) 0 0
\(789\) 2.20979e12 0.203004
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.70671e13 1.53261
\(794\) 0 0
\(795\) 9.40440e11 0.0834985
\(796\) 0 0
\(797\) −3.00078e12 −0.263434 −0.131717 0.991287i \(-0.542049\pi\)
−0.131717 + 0.991287i \(0.542049\pi\)
\(798\) 0 0
\(799\) 3.44976e11 0.0299453
\(800\) 0 0
\(801\) −9.63587e12 −0.827074
\(802\) 0 0
\(803\) 5.64283e12 0.478935
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.93565e11 −0.0741643
\(808\) 0 0
\(809\) 5.32817e12 0.437331 0.218665 0.975800i \(-0.429830\pi\)
0.218665 + 0.975800i \(0.429830\pi\)
\(810\) 0 0
\(811\) −1.28093e13 −1.03976 −0.519878 0.854241i \(-0.674022\pi\)
−0.519878 + 0.854241i \(0.674022\pi\)
\(812\) 0 0
\(813\) −4.51993e11 −0.0362848
\(814\) 0 0
\(815\) 2.00510e12 0.159194
\(816\) 0 0
\(817\) 1.22787e13 0.964171
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.24492e13 1.72447 0.862237 0.506504i \(-0.169063\pi\)
0.862237 + 0.506504i \(0.169063\pi\)
\(822\) 0 0
\(823\) −1.34606e13 −1.02274 −0.511371 0.859360i \(-0.670862\pi\)
−0.511371 + 0.859360i \(0.670862\pi\)
\(824\) 0 0
\(825\) 1.23211e13 0.925992
\(826\) 0 0
\(827\) 1.35017e13 1.00372 0.501861 0.864948i \(-0.332649\pi\)
0.501861 + 0.864948i \(0.332649\pi\)
\(828\) 0 0
\(829\) −1.81692e13 −1.33610 −0.668052 0.744115i \(-0.732872\pi\)
−0.668052 + 0.744115i \(0.732872\pi\)
\(830\) 0 0
\(831\) 1.08586e13 0.789898
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.18765e11 0.0226924
\(836\) 0 0
\(837\) −6.85823e12 −0.483001
\(838\) 0 0
\(839\) 6.58386e12 0.458724 0.229362 0.973341i \(-0.426336\pi\)
0.229362 + 0.973341i \(0.426336\pi\)
\(840\) 0 0
\(841\) −1.38347e13 −0.953647
\(842\) 0 0
\(843\) −4.37767e12 −0.298551
\(844\) 0 0
\(845\) 2.86239e12 0.193141
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.67120e12 −0.242506
\(850\) 0 0
\(851\) 5.99705e11 0.0391972
\(852\) 0 0
\(853\) 2.09998e13 1.35814 0.679070 0.734073i \(-0.262383\pi\)
0.679070 + 0.734073i \(0.262383\pi\)
\(854\) 0 0
\(855\) −1.14016e12 −0.0729659
\(856\) 0 0
\(857\) −2.50798e13 −1.58822 −0.794108 0.607776i \(-0.792062\pi\)
−0.794108 + 0.607776i \(0.792062\pi\)
\(858\) 0 0
\(859\) 1.78667e13 1.11963 0.559816 0.828617i \(-0.310872\pi\)
0.559816 + 0.828617i \(0.310872\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.57104e13 0.964139 0.482070 0.876133i \(-0.339885\pi\)
0.482070 + 0.876133i \(0.339885\pi\)
\(864\) 0 0
\(865\) 2.44500e12 0.148493
\(866\) 0 0
\(867\) 8.33919e12 0.501231
\(868\) 0 0
\(869\) 3.64787e13 2.16995
\(870\) 0 0
\(871\) −2.48522e13 −1.46313
\(872\) 0 0
\(873\) −2.23428e13 −1.30189
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.27499e13 −0.727793 −0.363896 0.931439i \(-0.618554\pi\)
−0.363896 + 0.931439i \(0.618554\pi\)
\(878\) 0 0
\(879\) 1.39803e13 0.789889
\(880\) 0 0
\(881\) −1.77457e13 −0.992432 −0.496216 0.868199i \(-0.665278\pi\)
−0.496216 + 0.868199i \(0.665278\pi\)
\(882\) 0 0
\(883\) −2.35402e13 −1.30313 −0.651565 0.758593i \(-0.725887\pi\)
−0.651565 + 0.758593i \(0.725887\pi\)
\(884\) 0 0
\(885\) 1.53492e12 0.0841087
\(886\) 0 0
\(887\) −7.05989e12 −0.382950 −0.191475 0.981498i \(-0.561327\pi\)
−0.191475 + 0.981498i \(0.561327\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.08570e13 0.577110
\(892\) 0 0
\(893\) 1.66935e13 0.878446
\(894\) 0 0
\(895\) 3.46855e12 0.180694
\(896\) 0 0
\(897\) −2.61191e12 −0.134708
\(898\) 0 0
\(899\) −2.32211e12 −0.118567
\(900\) 0 0
\(901\) −8.06718e11 −0.0407812
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.08268e12 0.0536514
\(906\) 0 0
\(907\) 4.68299e12 0.229768 0.114884 0.993379i \(-0.463350\pi\)
0.114884 + 0.993379i \(0.463350\pi\)
\(908\) 0 0
\(909\) 2.44251e13 1.18658
\(910\) 0 0
\(911\) 2.77029e13 1.33258 0.666289 0.745694i \(-0.267882\pi\)
0.666289 + 0.745694i \(0.267882\pi\)
\(912\) 0 0
\(913\) −1.35973e13 −0.647641
\(914\) 0 0
\(915\) 1.16451e12 0.0549225
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.34343e13 1.54622 0.773112 0.634269i \(-0.218699\pi\)
0.773112 + 0.634269i \(0.218699\pi\)
\(920\) 0 0
\(921\) 1.21561e13 0.556705
\(922\) 0 0
\(923\) −3.26005e13 −1.47848
\(924\) 0 0
\(925\) 5.22705e12 0.234757
\(926\) 0 0
\(927\) 7.74544e12 0.344498
\(928\) 0 0
\(929\) 3.43828e13 1.51450 0.757252 0.653123i \(-0.226542\pi\)
0.757252 + 0.653123i \(0.226542\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.18944e11 −0.0397028
\(934\) 0 0
\(935\) 1.45353e11 0.00621973
\(936\) 0 0
\(937\) −2.90342e13 −1.23050 −0.615250 0.788332i \(-0.710945\pi\)
−0.615250 + 0.788332i \(0.710945\pi\)
\(938\) 0 0
\(939\) 1.18566e13 0.497699
\(940\) 0 0
\(941\) 2.31361e13 0.961916 0.480958 0.876744i \(-0.340289\pi\)
0.480958 + 0.876744i \(0.340289\pi\)
\(942\) 0 0
\(943\) 4.20624e12 0.173217
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.38426e13 0.559299 0.279649 0.960102i \(-0.409782\pi\)
0.279649 + 0.960102i \(0.409782\pi\)
\(948\) 0 0
\(949\) −1.04262e13 −0.417279
\(950\) 0 0
\(951\) 2.28052e13 0.904112
\(952\) 0 0
\(953\) −1.60424e13 −0.630016 −0.315008 0.949089i \(-0.602007\pi\)
−0.315008 + 0.949089i \(0.602007\pi\)
\(954\) 0 0
\(955\) 2.90238e12 0.112912
\(956\) 0 0
\(957\) −5.24422e12 −0.202105
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.84209e13 −0.696715
\(962\) 0 0
\(963\) −7.74816e12 −0.290322
\(964\) 0 0
\(965\) 7.16595e10 0.00266012
\(966\) 0 0
\(967\) −2.69595e13 −0.991502 −0.495751 0.868465i \(-0.665107\pi\)
−0.495751 + 0.868465i \(0.665107\pi\)
\(968\) 0 0
\(969\) −3.28876e11 −0.0119833
\(970\) 0 0
\(971\) 1.26793e12 0.0457728 0.0228864 0.999738i \(-0.492714\pi\)
0.0228864 + 0.999738i \(0.492714\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.27655e13 −0.806784
\(976\) 0 0
\(977\) −2.08710e13 −0.732855 −0.366428 0.930447i \(-0.619419\pi\)
−0.366428 + 0.930447i \(0.619419\pi\)
\(978\) 0 0
\(979\) 5.94436e13 2.06815
\(980\) 0 0
\(981\) −2.92823e13 −1.00947
\(982\) 0 0
\(983\) −2.63946e13 −0.901623 −0.450811 0.892619i \(-0.648865\pi\)
−0.450811 + 0.892619i \(0.648865\pi\)
\(984\) 0 0
\(985\) −3.27926e12 −0.110997
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.70763e12 −0.189702
\(990\) 0 0
\(991\) −2.33283e13 −0.768338 −0.384169 0.923263i \(-0.625512\pi\)
−0.384169 + 0.923263i \(0.625512\pi\)
\(992\) 0 0
\(993\) 5.81010e12 0.189632
\(994\) 0 0
\(995\) −5.26525e12 −0.170300
\(996\) 0 0
\(997\) 3.62240e13 1.16110 0.580548 0.814226i \(-0.302838\pi\)
0.580548 + 0.814226i \(0.302838\pi\)
\(998\) 0 0
\(999\) −6.57079e12 −0.208724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.10.a.g.1.4 10
7.2 even 3 196.10.e.i.165.7 20
7.3 odd 6 196.10.e.i.177.4 20
7.4 even 3 196.10.e.i.177.7 20
7.5 odd 6 196.10.e.i.165.4 20
7.6 odd 2 inner 196.10.a.g.1.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.10.a.g.1.4 10 1.1 even 1 trivial
196.10.a.g.1.7 yes 10 7.6 odd 2 inner
196.10.e.i.165.4 20 7.5 odd 6
196.10.e.i.165.7 20 7.2 even 3
196.10.e.i.177.4 20 7.3 odd 6
196.10.e.i.177.7 20 7.4 even 3