Properties

Label 196.10.e
Level $196$
Weight $10$
Character orbit 196.e
Rep. character $\chi_{196}(165,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $60$
Newform subspaces $9$
Sturm bound $280$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 9 \)
Sturm bound: \(280\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(196, [\chi])\).

Total New Old
Modular forms 528 60 468
Cusp forms 480 60 420
Eisenstein series 48 0 48

Trace form

\( 60 q + 966 q^{5} - 215424 q^{9} + 63052 q^{11} - 103432 q^{13} + 959992 q^{15} + 402234 q^{17} + 519960 q^{19} + 1757156 q^{23} - 13615872 q^{25} + 7641648 q^{27} - 9866440 q^{29} + 1040564 q^{31} - 5260178 q^{33}+ \cdots - 3824328008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(196, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
196.10.e.a 196.e 7.c $2$ $100.947$ \(\Q(\sqrt{-3}) \) None 4.10.a.a \(0\) \(-228\) \(666\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-228+228\zeta_{6})q^{3}+666\zeta_{6}q^{5}+\cdots\)
196.10.e.b 196.e 7.c $2$ $100.947$ \(\Q(\sqrt{-3}) \) None 4.10.a.a \(0\) \(228\) \(-666\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(228-228\zeta_{6})q^{3}-666\zeta_{6}q^{5}-32301\zeta_{6}q^{9}+\cdots\)
196.10.e.c 196.e 7.c $4$ $100.947$ \(\Q(\sqrt{-3}, \sqrt{4561})\) None 28.10.a.a \(0\) \(-224\) \(1596\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-112\beta _{1}+\beta _{2})q^{3}+(798-798\beta _{1}+\cdots)q^{5}+\cdots\)
196.10.e.d 196.e 7.c $4$ $100.947$ \(\Q(\sqrt{-3}, \sqrt{11209})\) None 28.10.a.b \(0\) \(-70\) \(1554\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-35\beta _{1}-\beta _{2})q^{3}+(777-777\beta _{1}+\cdots)q^{5}+\cdots\)
196.10.e.e 196.e 7.c $4$ $100.947$ \(\Q(\sqrt{-3}, \sqrt{11209})\) None 28.10.a.b \(0\) \(70\) \(-1554\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(35\beta _{1}-\beta _{2})q^{3}+(-777+777\beta _{1}+\cdots)q^{5}+\cdots\)
196.10.e.f 196.e 7.c $4$ $100.947$ \(\Q(\sqrt{-3}, \sqrt{4561})\) None 28.10.a.a \(0\) \(224\) \(-1596\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(112\beta _{1}-\beta _{2})q^{3}+(-798+798\beta _{1}+\cdots)q^{5}+\cdots\)
196.10.e.g 196.e 7.c $8$ $100.947$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 196.10.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}-\beta _{3})q^{3}+(3\beta _{2}+\beta _{4})q^{5}+(-5057\beta _{1}+\cdots)q^{9}+\cdots\)
196.10.e.h 196.e 7.c $12$ $100.947$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 28.10.e.a \(0\) \(0\) \(966\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{3})q^{3}+(161-161\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
196.10.e.i 196.e 7.c $20$ $100.947$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 196.10.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{13}q^{3}+(-5\beta _{10}-5\beta _{11}+3\beta _{12}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(196, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(196, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)