Properties

Label 196.10.e.h.165.2
Level $196$
Weight $10$
Character 196.165
Analytic conductor $100.947$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,10,Mod(165,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.165"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 196.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.947023888\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7779 x^{10} + 365650 x^{9} + 45150527 x^{8} + 2129694927 x^{7} + 167292926543 x^{6} + \cdots + 68\!\cdots\!56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{5}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.2
Root \(-19.1194 + 33.1157i\) of defining polynomial
Character \(\chi\) \(=\) 196.165
Dual form 196.10.e.h.177.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-60.0993 + 104.095i) q^{3} +(-501.604 - 868.804i) q^{5} +(2617.65 + 4533.90i) q^{9} +(53.5365 - 92.7280i) q^{11} -85099.9 q^{13} +120584. q^{15} +(-37986.8 + 65795.1i) q^{17} +(-323268. - 559916. i) q^{19} +(1.10595e6 + 1.91556e6i) q^{23} +(473349. - 819864. i) q^{25} -2.99514e6 q^{27} -1.99729e6 q^{29} +(-759827. + 1.31606e6i) q^{31} +(6435.02 + 11145.8i) q^{33} +(-1.51057e6 - 2.61639e6i) q^{37} +(5.11444e6 - 8.85848e6i) q^{39} +3.75255e6 q^{41} -3.76132e7 q^{43} +(2.62605e6 - 4.54844e6i) q^{45} +(284531. + 492823. i) q^{47} +(-4.56596e6 - 7.90848e6i) q^{51} +(3.73658e7 - 6.47195e7i) q^{53} -107417. q^{55} +7.77127e7 q^{57} +(5.26990e7 - 9.12773e7i) q^{59} +(-7.59359e7 - 1.31525e8i) q^{61} +(4.26865e7 + 7.39351e7i) q^{65} +(-2.75442e7 + 4.77079e7i) q^{67} -2.65867e8 q^{69} +7.22461e7 q^{71} +(-2.14721e7 + 3.71908e7i) q^{73} +(5.68959e7 + 9.85466e7i) q^{75} +(3.32044e7 + 5.75117e7i) q^{79} +(1.28483e8 - 2.22539e8i) q^{81} +5.46511e8 q^{83} +7.62174e7 q^{85} +(1.20036e8 - 2.07908e8i) q^{87} +(5.51884e8 + 9.55891e8i) q^{89} +(-9.13302e7 - 1.58189e8i) q^{93} +(-3.24305e8 + 5.61713e8i) q^{95} -2.20561e8 q^{97} +560559. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 966 q^{5} - 21620 q^{9} - 47640 q^{11} - 103432 q^{13} - 400280 q^{15} + 402234 q^{17} + 519960 q^{19} - 683124 q^{23} - 1134656 q^{25} + 7641648 q^{27} + 4252680 q^{29} + 1040564 q^{31} - 5260178 q^{33}+ \cdots + 8151941296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −60.0993 + 104.095i −0.428375 + 0.741967i −0.996729 0.0808172i \(-0.974247\pi\)
0.568354 + 0.822784i \(0.307580\pi\)
\(4\) 0 0
\(5\) −501.604 868.804i −0.358919 0.621666i 0.628862 0.777517i \(-0.283521\pi\)
−0.987780 + 0.155852i \(0.950188\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2617.65 + 4533.90i 0.132990 + 0.230346i
\(10\) 0 0
\(11\) 53.5365 92.7280i 0.00110251 0.00190961i −0.865474 0.500954i \(-0.832982\pi\)
0.866576 + 0.499045i \(0.166316\pi\)
\(12\) 0 0
\(13\) −85099.9 −0.826388 −0.413194 0.910643i \(-0.635587\pi\)
−0.413194 + 0.910643i \(0.635587\pi\)
\(14\) 0 0
\(15\) 120584. 0.615007
\(16\) 0 0
\(17\) −37986.8 + 65795.1i −0.110310 + 0.191062i −0.915895 0.401418i \(-0.868518\pi\)
0.805586 + 0.592479i \(0.201851\pi\)
\(18\) 0 0
\(19\) −323268. 559916.i −0.569077 0.985670i −0.996658 0.0816931i \(-0.973967\pi\)
0.427580 0.903977i \(-0.359366\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.10595e6 + 1.91556e6i 0.824062 + 1.42732i 0.902634 + 0.430408i \(0.141630\pi\)
−0.0785726 + 0.996908i \(0.525036\pi\)
\(24\) 0 0
\(25\) 473349. 819864.i 0.242355 0.419771i
\(26\) 0 0
\(27\) −2.99514e6 −1.08463
\(28\) 0 0
\(29\) −1.99729e6 −0.524386 −0.262193 0.965015i \(-0.584446\pi\)
−0.262193 + 0.965015i \(0.584446\pi\)
\(30\) 0 0
\(31\) −759827. + 1.31606e6i −0.147770 + 0.255946i −0.930403 0.366538i \(-0.880543\pi\)
0.782633 + 0.622484i \(0.213876\pi\)
\(32\) 0 0
\(33\) 6435.02 + 11145.8i 0.000944576 + 0.00163605i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.51057e6 2.61639e6i −0.132506 0.229507i 0.792136 0.610344i \(-0.208969\pi\)
−0.924642 + 0.380838i \(0.875636\pi\)
\(38\) 0 0
\(39\) 5.11444e6 8.85848e6i 0.354004 0.613152i
\(40\) 0 0
\(41\) 3.75255e6 0.207395 0.103698 0.994609i \(-0.466933\pi\)
0.103698 + 0.994609i \(0.466933\pi\)
\(42\) 0 0
\(43\) −3.76132e7 −1.67777 −0.838885 0.544309i \(-0.816792\pi\)
−0.838885 + 0.544309i \(0.816792\pi\)
\(44\) 0 0
\(45\) 2.62605e6 4.54844e6i 0.0954654 0.165351i
\(46\) 0 0
\(47\) 284531. + 492823.i 0.00850530 + 0.0147316i 0.870247 0.492616i \(-0.163959\pi\)
−0.861741 + 0.507348i \(0.830626\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.56596e6 7.90848e6i −0.0945076 0.163692i
\(52\) 0 0
\(53\) 3.73658e7 6.47195e7i 0.650479 1.12666i −0.332528 0.943093i \(-0.607902\pi\)
0.983007 0.183569i \(-0.0587651\pi\)
\(54\) 0 0
\(55\) −107417. −0.00158285
\(56\) 0 0
\(57\) 7.77127e7 0.975113
\(58\) 0 0
\(59\) 5.26990e7 9.12773e7i 0.566198 0.980684i −0.430739 0.902476i \(-0.641747\pi\)
0.996937 0.0782071i \(-0.0249195\pi\)
\(60\) 0 0
\(61\) −7.59359e7 1.31525e8i −0.702203 1.21625i −0.967691 0.252138i \(-0.918866\pi\)
0.265488 0.964114i \(-0.414467\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.26865e7 + 7.39351e7i 0.296606 + 0.513737i
\(66\) 0 0
\(67\) −2.75442e7 + 4.77079e7i −0.166991 + 0.289237i −0.937361 0.348361i \(-0.886738\pi\)
0.770370 + 0.637598i \(0.220072\pi\)
\(68\) 0 0
\(69\) −2.65867e8 −1.41203
\(70\) 0 0
\(71\) 7.22461e7 0.337405 0.168703 0.985667i \(-0.446042\pi\)
0.168703 + 0.985667i \(0.446042\pi\)
\(72\) 0 0
\(73\) −2.14721e7 + 3.71908e7i −0.0884956 + 0.153279i −0.906875 0.421399i \(-0.861539\pi\)
0.818380 + 0.574678i \(0.194873\pi\)
\(74\) 0 0
\(75\) 5.68959e7 + 9.85466e7i 0.207637 + 0.359638i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.32044e7 + 5.75117e7i 0.0959122 + 0.166125i 0.909989 0.414632i \(-0.136090\pi\)
−0.814077 + 0.580757i \(0.802757\pi\)
\(80\) 0 0
\(81\) 1.28483e8 2.22539e8i 0.331637 0.574412i
\(82\) 0 0
\(83\) 5.46511e8 1.26400 0.632000 0.774968i \(-0.282234\pi\)
0.632000 + 0.774968i \(0.282234\pi\)
\(84\) 0 0
\(85\) 7.62174e7 0.158369
\(86\) 0 0
\(87\) 1.20036e8 2.07908e8i 0.224634 0.389077i
\(88\) 0 0
\(89\) 5.51884e8 + 9.55891e8i 0.932379 + 1.61493i 0.779242 + 0.626723i \(0.215604\pi\)
0.153137 + 0.988205i \(0.451062\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −9.13302e7 1.58189e8i −0.126602 0.219281i
\(94\) 0 0
\(95\) −3.24305e8 + 5.61713e8i −0.408505 + 0.707551i
\(96\) 0 0
\(97\) −2.20561e8 −0.252963 −0.126481 0.991969i \(-0.540368\pi\)
−0.126481 + 0.991969i \(0.540368\pi\)
\(98\) 0 0
\(99\) 560559. 0.000586493
\(100\) 0 0
\(101\) −4.05449e8 + 7.02259e8i −0.387695 + 0.671508i −0.992139 0.125140i \(-0.960062\pi\)
0.604444 + 0.796648i \(0.293395\pi\)
\(102\) 0 0
\(103\) 9.18456e8 + 1.59081e9i 0.804064 + 1.39268i 0.916921 + 0.399069i \(0.130666\pi\)
−0.112857 + 0.993611i \(0.536000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.42462e7 + 7.66367e7i 0.0326324 + 0.0565210i 0.881880 0.471473i \(-0.156278\pi\)
−0.849248 + 0.527994i \(0.822944\pi\)
\(108\) 0 0
\(109\) 2.65241e8 4.59411e8i 0.179979 0.311732i −0.761894 0.647701i \(-0.775730\pi\)
0.941873 + 0.335969i \(0.109064\pi\)
\(110\) 0 0
\(111\) 3.63138e8 0.227048
\(112\) 0 0
\(113\) 3.08486e9 1.77985 0.889924 0.456108i \(-0.150757\pi\)
0.889924 + 0.456108i \(0.150757\pi\)
\(114\) 0 0
\(115\) 1.10950e9 1.92171e9i 0.591542 1.02458i
\(116\) 0 0
\(117\) −2.22761e8 3.85834e8i −0.109901 0.190355i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.17897e9 + 2.04203e9i 0.499998 + 0.866021i
\(122\) 0 0
\(123\) −2.25525e8 + 3.90621e8i −0.0888428 + 0.153880i
\(124\) 0 0
\(125\) −2.90913e9 −1.06578
\(126\) 0 0
\(127\) 4.97087e9 1.69557 0.847785 0.530340i \(-0.177936\pi\)
0.847785 + 0.530340i \(0.177936\pi\)
\(128\) 0 0
\(129\) 2.26053e9 3.91535e9i 0.718714 1.24485i
\(130\) 0 0
\(131\) 2.22067e9 + 3.84631e9i 0.658815 + 1.14110i 0.980923 + 0.194398i \(0.0622753\pi\)
−0.322108 + 0.946703i \(0.604391\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.50238e9 + 2.60219e9i 0.389293 + 0.674276i
\(136\) 0 0
\(137\) 2.40438e9 4.16450e9i 0.583123 1.01000i −0.411984 0.911191i \(-0.635164\pi\)
0.995107 0.0988069i \(-0.0315026\pi\)
\(138\) 0 0
\(139\) 8.95323e8 0.203429 0.101715 0.994814i \(-0.467567\pi\)
0.101715 + 0.994814i \(0.467567\pi\)
\(140\) 0 0
\(141\) −6.84006e7 −0.0145738
\(142\) 0 0
\(143\) −4.55595e6 + 7.89114e6i −0.000911102 + 0.00157808i
\(144\) 0 0
\(145\) 1.00185e9 + 1.73526e9i 0.188212 + 0.325993i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.14527e9 7.17982e9i −0.688993 1.19337i −0.972164 0.234301i \(-0.924720\pi\)
0.283171 0.959069i \(-0.408614\pi\)
\(150\) 0 0
\(151\) 4.18563e9 7.24973e9i 0.655186 1.13482i −0.326661 0.945142i \(-0.605923\pi\)
0.981847 0.189674i \(-0.0607432\pi\)
\(152\) 0 0
\(153\) −3.97744e8 −0.0586804
\(154\) 0 0
\(155\) 1.52453e9 0.212150
\(156\) 0 0
\(157\) 4.95278e9 8.57847e9i 0.650580 1.12684i −0.332402 0.943138i \(-0.607859\pi\)
0.982982 0.183700i \(-0.0588075\pi\)
\(158\) 0 0
\(159\) 4.49132e9 + 7.77920e9i 0.557297 + 0.965267i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.08514e9 + 1.05398e10i 0.675191 + 1.16947i 0.976413 + 0.215911i \(0.0692721\pi\)
−0.301222 + 0.953554i \(0.597395\pi\)
\(164\) 0 0
\(165\) 6.45566e6 1.11815e7i 0.000678052 0.00117442i
\(166\) 0 0
\(167\) −4.27831e9 −0.425645 −0.212823 0.977091i \(-0.568266\pi\)
−0.212823 + 0.977091i \(0.568266\pi\)
\(168\) 0 0
\(169\) −3.36251e9 −0.317083
\(170\) 0 0
\(171\) 1.69240e9 2.93132e9i 0.151363 0.262169i
\(172\) 0 0
\(173\) 8.71112e9 + 1.50881e10i 0.739378 + 1.28064i 0.952776 + 0.303675i \(0.0982137\pi\)
−0.213398 + 0.976965i \(0.568453\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.33435e9 + 1.09714e10i 0.485090 + 0.840200i
\(178\) 0 0
\(179\) 1.23974e10 2.14728e10i 0.902590 1.56333i 0.0784692 0.996917i \(-0.474997\pi\)
0.824120 0.566415i \(-0.191670\pi\)
\(180\) 0 0
\(181\) −6.66502e9 −0.461581 −0.230791 0.973003i \(-0.574131\pi\)
−0.230791 + 0.973003i \(0.574131\pi\)
\(182\) 0 0
\(183\) 1.82548e10 1.20322
\(184\) 0 0
\(185\) −1.51542e9 + 2.62479e9i −0.0951175 + 0.164748i
\(186\) 0 0
\(187\) 4.06737e6 + 7.04489e6i 0.000243235 + 0.000421295i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.43315e9 + 2.48229e9i 0.0779186 + 0.134959i 0.902352 0.431000i \(-0.141839\pi\)
−0.824433 + 0.565959i \(0.808506\pi\)
\(192\) 0 0
\(193\) −1.29890e10 + 2.24977e10i −0.673859 + 1.16716i 0.302942 + 0.953009i \(0.402031\pi\)
−0.976801 + 0.214149i \(0.931302\pi\)
\(194\) 0 0
\(195\) −1.02617e10 −0.508234
\(196\) 0 0
\(197\) 2.60941e10 1.23437 0.617183 0.786820i \(-0.288274\pi\)
0.617183 + 0.786820i \(0.288274\pi\)
\(198\) 0 0
\(199\) 1.19791e10 2.07484e10i 0.541485 0.937879i −0.457335 0.889295i \(-0.651196\pi\)
0.998819 0.0485840i \(-0.0154709\pi\)
\(200\) 0 0
\(201\) −3.31077e9 5.73442e9i −0.143069 0.247804i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.88229e9 3.26023e9i −0.0744380 0.128930i
\(206\) 0 0
\(207\) −5.78997e9 + 1.00285e10i −0.219184 + 0.379638i
\(208\) 0 0
\(209\) −6.92265e7 −0.00250966
\(210\) 0 0
\(211\) 1.80028e10 0.625272 0.312636 0.949873i \(-0.398788\pi\)
0.312636 + 0.949873i \(0.398788\pi\)
\(212\) 0 0
\(213\) −4.34194e9 + 7.52046e9i −0.144536 + 0.250343i
\(214\) 0 0
\(215\) 1.88669e10 + 3.26785e10i 0.602183 + 1.04301i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.58092e9 4.47028e9i −0.0758185 0.131322i
\(220\) 0 0
\(221\) 3.23268e9 5.59916e9i 0.0911584 0.157891i
\(222\) 0 0
\(223\) 6.64392e10 1.79909 0.899544 0.436830i \(-0.143899\pi\)
0.899544 + 0.436830i \(0.143899\pi\)
\(224\) 0 0
\(225\) 4.95624e9 0.128923
\(226\) 0 0
\(227\) −2.69985e9 + 4.67628e9i −0.0674875 + 0.116892i −0.897795 0.440414i \(-0.854832\pi\)
0.830307 + 0.557306i \(0.188165\pi\)
\(228\) 0 0
\(229\) 1.91113e10 + 3.31017e10i 0.459230 + 0.795410i 0.998920 0.0464539i \(-0.0147921\pi\)
−0.539690 + 0.841864i \(0.681459\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.37400e10 5.84394e10i −0.749969 1.29898i −0.947837 0.318756i \(-0.896735\pi\)
0.197868 0.980229i \(-0.436598\pi\)
\(234\) 0 0
\(235\) 2.85444e8 4.94404e8i 0.00610543 0.0105749i
\(236\) 0 0
\(237\) −7.98225e9 −0.164346
\(238\) 0 0
\(239\) −5.07144e10 −1.00541 −0.502703 0.864459i \(-0.667661\pi\)
−0.502703 + 0.864459i \(0.667661\pi\)
\(240\) 0 0
\(241\) −1.46290e9 + 2.53382e9i −0.0279344 + 0.0483837i −0.879655 0.475613i \(-0.842226\pi\)
0.851720 + 0.523997i \(0.175560\pi\)
\(242\) 0 0
\(243\) −1.40332e10 2.43063e10i −0.258184 0.447188i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.75100e10 + 4.76488e10i 0.470278 + 0.814546i
\(248\) 0 0
\(249\) −3.28449e10 + 5.68891e10i −0.541466 + 0.937847i
\(250\) 0 0
\(251\) −7.14342e9 −0.113599 −0.0567995 0.998386i \(-0.518090\pi\)
−0.0567995 + 0.998386i \(0.518090\pi\)
\(252\) 0 0
\(253\) 2.36835e8 0.00363415
\(254\) 0 0
\(255\) −4.58061e9 + 7.93386e9i −0.0678411 + 0.117504i
\(256\) 0 0
\(257\) −3.86294e10 6.69081e10i −0.552356 0.956708i −0.998104 0.0615497i \(-0.980396\pi\)
0.445748 0.895158i \(-0.352938\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.22821e9 9.05553e9i −0.0697382 0.120790i
\(262\) 0 0
\(263\) 1.23540e10 2.13977e10i 0.159223 0.275782i −0.775366 0.631513i \(-0.782434\pi\)
0.934589 + 0.355730i \(0.115768\pi\)
\(264\) 0 0
\(265\) −7.49714e10 −0.933876
\(266\) 0 0
\(267\) −1.32671e11 −1.59763
\(268\) 0 0
\(269\) −6.73244e10 + 1.16609e11i −0.783948 + 1.35784i 0.145677 + 0.989332i \(0.453464\pi\)
−0.929625 + 0.368506i \(0.879869\pi\)
\(270\) 0 0
\(271\) −6.70894e10 1.16202e11i −0.755600 1.30874i −0.945075 0.326853i \(-0.894012\pi\)
0.189475 0.981886i \(-0.439321\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.06829e7 8.77854e7i −0.000534398 0.000925604i
\(276\) 0 0
\(277\) 3.43120e10 5.94301e10i 0.350176 0.606523i −0.636104 0.771604i \(-0.719455\pi\)
0.986280 + 0.165080i \(0.0527883\pi\)
\(278\) 0 0
\(279\) −7.95584e9 −0.0786080
\(280\) 0 0
\(281\) 5.32135e9 0.0509147 0.0254573 0.999676i \(-0.491896\pi\)
0.0254573 + 0.999676i \(0.491896\pi\)
\(282\) 0 0
\(283\) 1.09353e10 1.89405e10i 0.101343 0.175531i −0.810895 0.585191i \(-0.801019\pi\)
0.912238 + 0.409660i \(0.134353\pi\)
\(284\) 0 0
\(285\) −3.89810e10 6.75171e10i −0.349986 0.606194i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.64079e10 + 9.77014e10i 0.475664 + 0.823874i
\(290\) 0 0
\(291\) 1.32556e10 2.29593e10i 0.108363 0.187690i
\(292\) 0 0
\(293\) −3.63609e10 −0.288224 −0.144112 0.989561i \(-0.546033\pi\)
−0.144112 + 0.989561i \(0.546033\pi\)
\(294\) 0 0
\(295\) −1.05736e11 −0.812876
\(296\) 0 0
\(297\) −1.60350e8 + 2.77734e8i −0.00119582 + 0.00207121i
\(298\) 0 0
\(299\) −9.41161e10 1.63014e11i −0.680994 1.17952i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.87344e10 8.44105e10i −0.332158 0.575314i
\(304\) 0 0
\(305\) −7.61795e10 + 1.31947e11i −0.504068 + 0.873071i
\(306\) 0 0
\(307\) 2.08878e11 1.34205 0.671026 0.741434i \(-0.265854\pi\)
0.671026 + 0.741434i \(0.265854\pi\)
\(308\) 0 0
\(309\) −2.20794e11 −1.37776
\(310\) 0 0
\(311\) −2.10562e10 + 3.64704e10i −0.127632 + 0.221065i −0.922759 0.385379i \(-0.874071\pi\)
0.795127 + 0.606443i \(0.207404\pi\)
\(312\) 0 0
\(313\) −5.65662e10 9.79756e10i −0.333125 0.576990i 0.649998 0.759936i \(-0.274770\pi\)
−0.983123 + 0.182946i \(0.941437\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.34834e11 2.33540e11i −0.749953 1.29896i −0.947845 0.318732i \(-0.896743\pi\)
0.197892 0.980224i \(-0.436590\pi\)
\(318\) 0 0
\(319\) −1.06928e8 + 1.85205e8i −0.000578142 + 0.00100137i
\(320\) 0 0
\(321\) −1.06367e10 −0.0559156
\(322\) 0 0
\(323\) 4.91197e10 0.251098
\(324\) 0 0
\(325\) −4.02819e10 + 6.97704e10i −0.200279 + 0.346893i
\(326\) 0 0
\(327\) 3.18816e10 + 5.52205e10i 0.154197 + 0.267077i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.54240e11 2.67152e11i −0.706272 1.22330i −0.966231 0.257679i \(-0.917042\pi\)
0.259959 0.965620i \(-0.416291\pi\)
\(332\) 0 0
\(333\) 7.90830e9 1.36976e10i 0.0352439 0.0610443i
\(334\) 0 0
\(335\) 5.52651e10 0.239745
\(336\) 0 0
\(337\) −2.09034e11 −0.882843 −0.441421 0.897300i \(-0.645526\pi\)
−0.441421 + 0.897300i \(0.645526\pi\)
\(338\) 0 0
\(339\) −1.85398e11 + 3.21119e11i −0.762442 + 1.32059i
\(340\) 0 0
\(341\) 8.13570e7 + 1.40915e8i 0.000325837 + 0.000564366i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.33360e11 + 2.30986e11i 0.506804 + 0.877810i
\(346\) 0 0
\(347\) −2.35120e11 + 4.07241e11i −0.870578 + 1.50789i −0.00917879 + 0.999958i \(0.502922\pi\)
−0.861400 + 0.507928i \(0.830412\pi\)
\(348\) 0 0
\(349\) 1.77598e11 0.640801 0.320401 0.947282i \(-0.396182\pi\)
0.320401 + 0.947282i \(0.396182\pi\)
\(350\) 0 0
\(351\) 2.54886e11 0.896323
\(352\) 0 0
\(353\) 2.31027e11 4.00150e11i 0.791910 1.37163i −0.132872 0.991133i \(-0.542420\pi\)
0.924783 0.380496i \(-0.124247\pi\)
\(354\) 0 0
\(355\) −3.62389e10 6.27677e10i −0.121101 0.209753i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.84861e10 + 1.70583e11i 0.312932 + 0.542014i 0.978996 0.203881i \(-0.0653555\pi\)
−0.666064 + 0.745895i \(0.732022\pi\)
\(360\) 0 0
\(361\) −4.76601e10 + 8.25498e10i −0.147697 + 0.255819i
\(362\) 0 0
\(363\) −2.83421e11 −0.856745
\(364\) 0 0
\(365\) 4.30820e10 0.127051
\(366\) 0 0
\(367\) −6.65243e10 + 1.15223e11i −0.191418 + 0.331546i −0.945720 0.324981i \(-0.894642\pi\)
0.754302 + 0.656527i \(0.227975\pi\)
\(368\) 0 0
\(369\) 9.82284e9 + 1.70137e10i 0.0275815 + 0.0477726i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.10561e10 + 7.11113e10i 0.109822 + 0.190217i 0.915698 0.401867i \(-0.131639\pi\)
−0.805876 + 0.592084i \(0.798305\pi\)
\(374\) 0 0
\(375\) 1.74836e11 3.02826e11i 0.456553 0.790773i
\(376\) 0 0
\(377\) 1.69969e11 0.433346
\(378\) 0 0
\(379\) 4.02028e11 1.00088 0.500438 0.865773i \(-0.333172\pi\)
0.500438 + 0.865773i \(0.333172\pi\)
\(380\) 0 0
\(381\) −2.98746e11 + 5.17443e11i −0.726339 + 1.25806i
\(382\) 0 0
\(383\) −1.47591e11 2.55634e11i −0.350481 0.607050i 0.635853 0.771810i \(-0.280648\pi\)
−0.986334 + 0.164760i \(0.947315\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.84581e10 1.70534e11i −0.223127 0.386467i
\(388\) 0 0
\(389\) −1.15300e11 + 1.99705e11i −0.255303 + 0.442198i −0.964978 0.262332i \(-0.915509\pi\)
0.709675 + 0.704529i \(0.248842\pi\)
\(390\) 0 0
\(391\) −1.68046e11 −0.363607
\(392\) 0 0
\(393\) −5.33843e11 −1.12888
\(394\) 0 0
\(395\) 3.33110e10 5.76963e10i 0.0688494 0.119251i
\(396\) 0 0
\(397\) 3.25570e11 + 5.63903e11i 0.657789 + 1.13932i 0.981187 + 0.193061i \(0.0618415\pi\)
−0.323398 + 0.946263i \(0.604825\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.22241e11 + 5.58138e11i 0.622345 + 1.07793i 0.989048 + 0.147595i \(0.0471534\pi\)
−0.366703 + 0.930338i \(0.619513\pi\)
\(402\) 0 0
\(403\) 6.46612e10 1.11997e11i 0.122116 0.211510i
\(404\) 0 0
\(405\) −2.57790e11 −0.476123
\(406\) 0 0
\(407\) −3.23484e8 −0.000584356
\(408\) 0 0
\(409\) 3.14975e11 5.45553e11i 0.556572 0.964011i −0.441207 0.897405i \(-0.645450\pi\)
0.997779 0.0666060i \(-0.0212171\pi\)
\(410\) 0 0
\(411\) 2.89003e11 + 5.00567e11i 0.499590 + 0.865315i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.74132e11 4.74811e11i −0.453674 0.785786i
\(416\) 0 0
\(417\) −5.38083e10 + 9.31987e10i −0.0871439 + 0.150938i
\(418\) 0 0
\(419\) 2.03533e11 0.322605 0.161303 0.986905i \(-0.448430\pi\)
0.161303 + 0.986905i \(0.448430\pi\)
\(420\) 0 0
\(421\) 6.89974e11 1.07044 0.535221 0.844712i \(-0.320228\pi\)
0.535221 + 0.844712i \(0.320228\pi\)
\(422\) 0 0
\(423\) −1.48961e9 + 2.58007e9i −0.00226224 + 0.00391832i
\(424\) 0 0
\(425\) 3.59621e10 + 6.22881e10i 0.0534680 + 0.0926094i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.47619e8 9.48504e8i −0.000780586 0.00135201i
\(430\) 0 0
\(431\) 4.51272e11 7.81626e11i 0.629927 1.09107i −0.357638 0.933860i \(-0.616418\pi\)
0.987566 0.157206i \(-0.0502487\pi\)
\(432\) 0 0
\(433\) −1.36194e11 −0.186192 −0.0930962 0.995657i \(-0.529676\pi\)
−0.0930962 + 0.995657i \(0.529676\pi\)
\(434\) 0 0
\(435\) −2.40842e11 −0.322501
\(436\) 0 0
\(437\) 7.15035e11 1.23848e12i 0.937909 1.62451i
\(438\) 0 0
\(439\) 1.14239e11 + 1.97867e11i 0.146799 + 0.254263i 0.930043 0.367452i \(-0.119770\pi\)
−0.783244 + 0.621715i \(0.786436\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.58733e11 2.74934e11i −0.195817 0.339166i 0.751351 0.659903i \(-0.229403\pi\)
−0.947168 + 0.320737i \(0.896069\pi\)
\(444\) 0 0
\(445\) 5.53654e11 9.58958e11i 0.669297 1.15926i
\(446\) 0 0
\(447\) 9.96512e11 1.18059
\(448\) 0 0
\(449\) 2.61398e11 0.303524 0.151762 0.988417i \(-0.451505\pi\)
0.151762 + 0.988417i \(0.451505\pi\)
\(450\) 0 0
\(451\) 2.00898e8 3.47966e8i 0.000228656 0.000396043i
\(452\) 0 0
\(453\) 5.03107e11 + 8.71407e11i 0.561330 + 0.972253i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.48607e11 + 6.03806e11i 0.373864 + 0.647552i 0.990156 0.139966i \(-0.0446993\pi\)
−0.616292 + 0.787518i \(0.711366\pi\)
\(458\) 0 0
\(459\) 1.13776e11 1.97066e11i 0.119645 0.207231i
\(460\) 0 0
\(461\) −1.30791e12 −1.34872 −0.674362 0.738400i \(-0.735581\pi\)
−0.674362 + 0.738400i \(0.735581\pi\)
\(462\) 0 0
\(463\) 9.10787e11 0.921090 0.460545 0.887636i \(-0.347654\pi\)
0.460545 + 0.887636i \(0.347654\pi\)
\(464\) 0 0
\(465\) −9.16232e10 + 1.58696e11i −0.0908798 + 0.157408i
\(466\) 0 0
\(467\) −4.68071e11 8.10724e11i −0.455393 0.788764i 0.543318 0.839527i \(-0.317168\pi\)
−0.998711 + 0.0507635i \(0.983835\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.95318e11 + 1.03112e12i 0.557384 + 0.965418i
\(472\) 0 0
\(473\) −2.01368e9 + 3.48780e9i −0.00184976 + 0.00320388i
\(474\) 0 0
\(475\) −6.12074e11 −0.551674
\(476\) 0 0
\(477\) 3.91242e11 0.346029
\(478\) 0 0
\(479\) 8.09674e11 1.40240e12i 0.702749 1.21720i −0.264748 0.964318i \(-0.585289\pi\)
0.967498 0.252880i \(-0.0813778\pi\)
\(480\) 0 0
\(481\) 1.28550e11 + 2.22655e11i 0.109501 + 0.189661i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.10635e11 + 1.91625e11i 0.0907931 + 0.157258i
\(486\) 0 0
\(487\) −2.63528e11 + 4.56444e11i −0.212298 + 0.367712i −0.952433 0.304747i \(-0.901428\pi\)
0.740135 + 0.672458i \(0.234762\pi\)
\(488\) 0 0
\(489\) −1.46285e12 −1.15694
\(490\) 0 0
\(491\) 2.12833e12 1.65262 0.826308 0.563218i \(-0.190437\pi\)
0.826308 + 0.563218i \(0.190437\pi\)
\(492\) 0 0
\(493\) 7.58709e10 1.31412e11i 0.0578448 0.100190i
\(494\) 0 0
\(495\) −2.81179e8 4.87016e8i −0.000210503 0.000364603i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.05306e11 8.75215e11i −0.364839 0.631920i 0.623911 0.781495i \(-0.285543\pi\)
−0.988750 + 0.149575i \(0.952209\pi\)
\(500\) 0 0
\(501\) 2.57123e11 4.45350e11i 0.182336 0.315815i
\(502\) 0 0
\(503\) 1.51372e12 1.05436 0.527180 0.849754i \(-0.323249\pi\)
0.527180 + 0.849754i \(0.323249\pi\)
\(504\) 0 0
\(505\) 8.13500e11 0.556604
\(506\) 0 0
\(507\) 2.02084e11 3.50021e11i 0.135830 0.235265i
\(508\) 0 0
\(509\) 1.21438e12 + 2.10337e12i 0.801907 + 1.38894i 0.918359 + 0.395748i \(0.129515\pi\)
−0.116452 + 0.993196i \(0.537152\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 9.68233e11 + 1.67703e12i 0.617237 + 1.06909i
\(514\) 0 0
\(515\) 9.21402e11 1.59592e12i 0.577187 0.999718i
\(516\) 0 0
\(517\) 6.09313e7 3.75088e−5
\(518\) 0 0
\(519\) −2.09413e12 −1.26692
\(520\) 0 0
\(521\) −1.18874e12 + 2.05897e12i −0.706836 + 1.22428i 0.259189 + 0.965827i \(0.416545\pi\)
−0.966025 + 0.258449i \(0.916789\pi\)
\(522\) 0 0
\(523\) 2.29128e11 + 3.96861e11i 0.133912 + 0.231943i 0.925181 0.379525i \(-0.123913\pi\)
−0.791269 + 0.611468i \(0.790579\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.77269e10 9.99859e10i −0.0326009 0.0564665i
\(528\) 0 0
\(529\) −1.54567e12 + 2.67718e12i −0.858155 + 1.48637i
\(530\) 0 0
\(531\) 5.51789e11 0.301195
\(532\) 0 0
\(533\) −3.19341e11 −0.171389
\(534\) 0 0
\(535\) 4.43882e10 7.68826e10i 0.0234248 0.0405729i
\(536\) 0 0
\(537\) 1.49014e12 + 2.58101e12i 0.773293 + 1.33938i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.26542e11 7.38792e11i −0.214079 0.370795i 0.738908 0.673806i \(-0.235342\pi\)
−0.952987 + 0.303010i \(0.902008\pi\)
\(542\) 0 0
\(543\) 4.00563e11 6.93796e11i 0.197730 0.342478i
\(544\) 0 0
\(545\) −5.32184e11 −0.258391
\(546\) 0 0
\(547\) −9.09540e11 −0.434389 −0.217195 0.976128i \(-0.569691\pi\)
−0.217195 + 0.976128i \(0.569691\pi\)
\(548\) 0 0
\(549\) 3.97547e11 6.88571e11i 0.186772 0.323499i
\(550\) 0 0
\(551\) 6.45661e11 + 1.11832e12i 0.298416 + 0.516872i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.82152e11 3.15496e11i −0.0814919 0.141148i
\(556\) 0 0
\(557\) −1.78178e12 + 3.08613e12i −0.784341 + 1.35852i 0.145051 + 0.989424i \(0.453665\pi\)
−0.929392 + 0.369094i \(0.879668\pi\)
\(558\) 0 0
\(559\) 3.20088e12 1.38649
\(560\) 0 0
\(561\) −9.77784e8 −0.000416783
\(562\) 0 0
\(563\) −5.62089e11 + 9.73567e11i −0.235786 + 0.408393i −0.959501 0.281706i \(-0.909100\pi\)
0.723715 + 0.690099i \(0.242433\pi\)
\(564\) 0 0
\(565\) −1.54738e12 2.68014e12i −0.638821 1.10647i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.94913e12 3.37599e12i −0.779534 1.35019i −0.932211 0.361917i \(-0.882123\pi\)
0.152676 0.988276i \(-0.451211\pi\)
\(570\) 0 0
\(571\) 7.73495e11 1.33973e12i 0.304505 0.527419i −0.672646 0.739965i \(-0.734842\pi\)
0.977151 + 0.212546i \(0.0681755\pi\)
\(572\) 0 0
\(573\) −3.44525e11 −0.133513
\(574\) 0 0
\(575\) 2.09400e12 0.798861
\(576\) 0 0
\(577\) 4.16268e11 7.20997e11i 0.156344 0.270796i −0.777203 0.629249i \(-0.783362\pi\)
0.933548 + 0.358453i \(0.116696\pi\)
\(578\) 0 0
\(579\) −1.56126e12 2.70419e12i −0.577328 0.999962i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.00087e9 6.92972e9i −0.00143432 0.00248432i
\(584\) 0 0
\(585\) −2.23476e11 + 3.87072e11i −0.0788914 + 0.136644i
\(586\) 0 0
\(587\) 1.39886e12 0.486299 0.243150 0.969989i \(-0.421819\pi\)
0.243150 + 0.969989i \(0.421819\pi\)
\(588\) 0 0
\(589\) 9.82510e11 0.336371
\(590\) 0 0
\(591\) −1.56824e12 + 2.71626e12i −0.528771 + 0.915858i
\(592\) 0 0
\(593\) 8.13971e11 + 1.40984e12i 0.270310 + 0.468191i 0.968941 0.247291i \(-0.0795403\pi\)
−0.698631 + 0.715482i \(0.746207\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.43987e12 + 2.49393e12i 0.463917 + 0.803527i
\(598\) 0 0
\(599\) 1.52515e12 2.64164e12i 0.484052 0.838402i −0.515780 0.856721i \(-0.672498\pi\)
0.999832 + 0.0183186i \(0.00583131\pi\)
\(600\) 0 0
\(601\) −5.50287e12 −1.72050 −0.860249 0.509875i \(-0.829692\pi\)
−0.860249 + 0.509875i \(0.829692\pi\)
\(602\) 0 0
\(603\) −2.88404e11 −0.0888327
\(604\) 0 0
\(605\) 1.18275e12 2.04858e12i 0.358917 0.621663i
\(606\) 0 0
\(607\) −2.65974e12 4.60681e12i −0.795226 1.37737i −0.922696 0.385529i \(-0.874019\pi\)
0.127470 0.991842i \(-0.459314\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.42136e10 4.19392e10i −0.00702868 0.0121740i
\(612\) 0 0
\(613\) −2.99609e12 + 5.18939e12i −0.857005 + 1.48438i 0.0177677 + 0.999842i \(0.494344\pi\)
−0.874773 + 0.484534i \(0.838989\pi\)
\(614\) 0 0
\(615\) 4.52498e11 0.127549
\(616\) 0 0
\(617\) −6.91302e12 −1.92037 −0.960184 0.279369i \(-0.909875\pi\)
−0.960184 + 0.279369i \(0.909875\pi\)
\(618\) 0 0
\(619\) −9.61950e10 + 1.66615e11i −0.0263357 + 0.0456147i −0.878893 0.477019i \(-0.841717\pi\)
0.852557 + 0.522634i \(0.175051\pi\)
\(620\) 0 0
\(621\) −3.31248e12 5.73738e12i −0.893800 1.54811i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.34721e11 + 9.26163e11i 0.140174 + 0.242788i
\(626\) 0 0
\(627\) 4.16047e9 7.20614e9i 0.00107507 0.00186208i
\(628\) 0 0
\(629\) 2.29528e11 0.0584665
\(630\) 0 0
\(631\) 1.56565e12 0.393153 0.196577 0.980488i \(-0.437018\pi\)
0.196577 + 0.980488i \(0.437018\pi\)
\(632\) 0 0
\(633\) −1.08196e12 + 1.87400e12i −0.267851 + 0.463931i
\(634\) 0 0
\(635\) −2.49341e12 4.31871e12i −0.608572 1.05408i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.89115e11 + 3.27556e11i 0.0448716 + 0.0777199i
\(640\) 0 0
\(641\) 2.06150e12 3.57063e12i 0.482306 0.835379i −0.517488 0.855691i \(-0.673133\pi\)
0.999794 + 0.0203120i \(0.00646594\pi\)
\(642\) 0 0
\(643\) 3.15626e12 0.728153 0.364077 0.931369i \(-0.381385\pi\)
0.364077 + 0.931369i \(0.381385\pi\)
\(644\) 0 0
\(645\) −4.53556e12 −1.03184
\(646\) 0 0
\(647\) −8.11738e11 + 1.40597e12i −0.182115 + 0.315433i −0.942601 0.333922i \(-0.891628\pi\)
0.760485 + 0.649355i \(0.224961\pi\)
\(648\) 0 0
\(649\) −5.64264e9 9.77334e9i −0.00124848 0.00216243i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.88231e12 3.26026e12i −0.405118 0.701685i 0.589217 0.807975i \(-0.299436\pi\)
−0.994335 + 0.106290i \(0.966103\pi\)
\(654\) 0 0
\(655\) 2.22780e12 3.85866e12i 0.472922 0.819125i
\(656\) 0 0
\(657\) −2.24825e11 −0.0470762
\(658\) 0 0
\(659\) −2.33436e12 −0.482152 −0.241076 0.970506i \(-0.577500\pi\)
−0.241076 + 0.970506i \(0.577500\pi\)
\(660\) 0 0
\(661\) −7.27600e11 + 1.26024e12i −0.148247 + 0.256772i −0.930580 0.366089i \(-0.880696\pi\)
0.782333 + 0.622861i \(0.214030\pi\)
\(662\) 0 0
\(663\) 3.88563e11 + 6.73011e11i 0.0780999 + 0.135273i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.20890e12 3.82594e12i −0.432126 0.748465i
\(668\) 0 0
\(669\) −3.99295e12 + 6.91599e12i −0.770684 + 1.33486i
\(670\) 0 0
\(671\) −1.62614e10 −0.00309675
\(672\) 0 0
\(673\) −1.00036e13 −1.87970 −0.939850 0.341586i \(-0.889036\pi\)
−0.939850 + 0.341586i \(0.889036\pi\)
\(674\) 0 0
\(675\) −1.41775e12 + 2.45561e12i −0.262865 + 0.455295i
\(676\) 0 0
\(677\) 6.01698e10 + 1.04217e11i 0.0110085 + 0.0190673i 0.871477 0.490436i \(-0.163162\pi\)
−0.860469 + 0.509503i \(0.829829\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.24518e11 5.62082e11i −0.0578199 0.100147i
\(682\) 0 0
\(683\) 5.21161e11 9.02677e11i 0.0916387 0.158723i −0.816562 0.577258i \(-0.804123\pi\)
0.908201 + 0.418535i \(0.137456\pi\)
\(684\) 0 0
\(685\) −4.82418e12 −0.837175
\(686\) 0 0
\(687\) −4.59430e12 −0.786890
\(688\) 0 0
\(689\) −3.17983e12 + 5.50762e12i −0.537548 + 0.931060i
\(690\) 0 0
\(691\) 9.76538e10 + 1.69141e11i 0.0162944 + 0.0282227i 0.874058 0.485822i \(-0.161480\pi\)
−0.857763 + 0.514045i \(0.828146\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.49098e11 7.77860e11i −0.0730145 0.126465i
\(696\) 0 0
\(697\) −1.42547e11 + 2.46899e11i −0.0228777 + 0.0396253i
\(698\) 0 0
\(699\) 8.11100e12 1.28507
\(700\) 0 0
\(701\) 4.54818e11 0.0711389 0.0355694 0.999367i \(-0.488676\pi\)
0.0355694 + 0.999367i \(0.488676\pi\)
\(702\) 0 0
\(703\) −9.76640e11 + 1.69159e12i −0.150812 + 0.261214i
\(704\) 0 0
\(705\) 3.43100e10 + 5.94267e10i 0.00523082 + 0.00906005i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.83880e12 + 3.18490e12i 0.273292 + 0.473355i 0.969703 0.244288i \(-0.0785542\pi\)
−0.696411 + 0.717643i \(0.745221\pi\)
\(710\) 0 0
\(711\) −1.73835e11 + 3.01091e11i −0.0255108 + 0.0441860i
\(712\) 0 0
\(713\) −3.36132e12 −0.487087
\(714\) 0 0
\(715\) 9.14114e9 0.00130805
\(716\) 0 0
\(717\) 3.04790e12 5.27912e12i 0.430690 0.745977i
\(718\) 0 0
\(719\) −3.39116e12 5.87366e12i −0.473226 0.819651i 0.526305 0.850296i \(-0.323577\pi\)
−0.999530 + 0.0306453i \(0.990244\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.75839e11 3.04562e11i −0.0239327 0.0414527i
\(724\) 0 0
\(725\) −9.45417e11 + 1.63751e12i −0.127087 + 0.220122i
\(726\) 0 0
\(727\) 1.34259e13 1.78253 0.891266 0.453480i \(-0.149818\pi\)
0.891266 + 0.453480i \(0.149818\pi\)
\(728\) 0 0
\(729\) 8.43141e12 1.10567
\(730\) 0 0
\(731\) 1.42881e12 2.47477e12i 0.185074 0.320557i
\(732\) 0 0
\(733\) −5.97864e11 1.03553e12i −0.0764952 0.132494i 0.825240 0.564782i \(-0.191040\pi\)
−0.901736 + 0.432288i \(0.857706\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.94924e9 + 5.10823e9i 0.000368219 + 0.000637774i
\(738\) 0 0
\(739\) −3.16512e12 + 5.48216e12i −0.390383 + 0.676163i −0.992500 0.122245i \(-0.960991\pi\)
0.602117 + 0.798408i \(0.294324\pi\)
\(740\) 0 0
\(741\) −6.61334e12 −0.805821
\(742\) 0 0
\(743\) 6.40429e12 0.770942 0.385471 0.922720i \(-0.374039\pi\)
0.385471 + 0.922720i \(0.374039\pi\)
\(744\) 0 0
\(745\) −4.15857e12 + 7.20286e12i −0.494585 + 0.856646i
\(746\) 0 0
\(747\) 1.43057e12 + 2.47782e12i 0.168100 + 0.291157i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.65261e11 + 1.15227e12i 0.0763155 + 0.132182i 0.901658 0.432451i \(-0.142351\pi\)
−0.825342 + 0.564633i \(0.809018\pi\)
\(752\) 0 0
\(753\) 4.29314e11 7.43594e11i 0.0486629 0.0842866i
\(754\) 0 0
\(755\) −8.39812e12 −0.940635
\(756\) 0 0
\(757\) 1.19794e13 1.32588 0.662941 0.748671i \(-0.269308\pi\)
0.662941 + 0.748671i \(0.269308\pi\)
\(758\) 0 0
\(759\) −1.42336e10 + 2.46533e10i −0.00155678 + 0.00269642i
\(760\) 0 0
\(761\) 4.40736e12 + 7.63377e12i 0.476373 + 0.825103i 0.999634 0.0270701i \(-0.00861772\pi\)
−0.523260 + 0.852173i \(0.675284\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.99510e11 + 3.45562e11i 0.0210615 + 0.0364796i
\(766\) 0 0
\(767\) −4.48468e12 + 7.76769e12i −0.467899 + 0.810425i
\(768\) 0 0
\(769\) −8.94607e12 −0.922494 −0.461247 0.887272i \(-0.652598\pi\)
−0.461247 + 0.887272i \(0.652598\pi\)
\(770\) 0 0
\(771\) 9.28640e12 0.946461
\(772\) 0 0
\(773\) 8.53874e12 1.47895e13i 0.860174 1.48986i −0.0115869 0.999933i \(-0.503688\pi\)
0.871761 0.489932i \(-0.162978\pi\)
\(774\) 0 0
\(775\) 7.19327e11 + 1.24591e12i 0.0716257 + 0.124059i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.21308e12 2.10111e12i −0.118024 0.204423i
\(780\) 0 0
\(781\) 3.86781e9 6.69924e9i 0.000371993 0.000644311i
\(782\) 0 0
\(783\) 5.98218e12 0.568764
\(784\) 0 0
\(785\) −9.93735e12 −0.934022
\(786\) 0 0
\(787\) −5.33917e11 + 9.24772e11i −0.0496121 + 0.0859307i −0.889765 0.456419i \(-0.849132\pi\)
0.840153 + 0.542350i \(0.182465\pi\)
\(788\) 0 0
\(789\) 1.48493e12 + 2.57198e12i 0.136414 + 0.236276i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.46214e12 + 1.11927e13i 0.580292 + 1.00510i
\(794\) 0 0
\(795\) 4.50573e12 7.80415e12i 0.400049 0.692905i
\(796\) 0 0
\(797\) 4.73027e12 0.415263 0.207631 0.978207i \(-0.433425\pi\)
0.207631 + 0.978207i \(0.433425\pi\)
\(798\) 0 0
\(799\) −4.32338e10 −0.00375286
\(800\) 0 0
\(801\) −2.88927e12 + 5.00437e12i −0.247995 + 0.429539i
\(802\) 0 0
\(803\) 2.29908e9 + 3.98213e9i 0.000195135 + 0.000337983i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.09230e12 1.40163e13i −0.671647 1.16333i
\(808\) 0 0
\(809\) −3.89727e11 + 6.75027e11i −0.0319884 + 0.0554055i −0.881576 0.472041i \(-0.843517\pi\)
0.849588 + 0.527447i \(0.176851\pi\)
\(810\) 0 0
\(811\) 1.56934e13 1.27386 0.636931 0.770921i \(-0.280204\pi\)
0.636931 + 0.770921i \(0.280204\pi\)
\(812\) 0 0
\(813\) 1.61281e13 1.29472
\(814\) 0 0
\(815\) 6.10467e12 1.05736e13i 0.484677 0.839486i
\(816\) 0 0
\(817\) 1.21591e13 + 2.10602e13i 0.954780 + 1.65373i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.44265e11 5.96285e11i −0.0264453 0.0458047i 0.852500 0.522727i \(-0.175085\pi\)
−0.878945 + 0.476923i \(0.841752\pi\)
\(822\) 0 0
\(823\) 8.08484e12 1.40034e13i 0.614288 1.06398i −0.376221 0.926530i \(-0.622777\pi\)
0.990509 0.137448i \(-0.0438901\pi\)
\(824\) 0 0
\(825\) 1.21840e10 0.000915690
\(826\) 0 0
\(827\) −6.45408e12 −0.479799 −0.239899 0.970798i \(-0.577114\pi\)
−0.239899 + 0.970798i \(0.577114\pi\)
\(828\) 0 0
\(829\) −3.82325e10 + 6.62206e10i −0.00281149 + 0.00486965i −0.867428 0.497563i \(-0.834228\pi\)
0.864616 + 0.502433i \(0.167562\pi\)
\(830\) 0 0
\(831\) 4.12425e12 + 7.14341e12i 0.300013 + 0.519638i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.14602e12 + 3.71701e12i 0.152772 + 0.264609i
\(836\) 0 0
\(837\) 2.27579e12 3.94179e12i 0.160276 0.277606i
\(838\) 0 0
\(839\) −2.31366e13 −1.61202 −0.806011 0.591901i \(-0.798378\pi\)
−0.806011 + 0.591901i \(0.798378\pi\)
\(840\) 0 0
\(841\) −1.05180e13 −0.725019
\(842\) 0 0
\(843\) −3.19809e11 + 5.53926e11i −0.0218106 + 0.0377770i
\(844\) 0 0
\(845\) 1.68665e12 + 2.92136e12i 0.113807 + 0.197120i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.31441e12 + 2.27662e12i 0.0868253 + 0.150386i
\(850\) 0 0
\(851\) 3.34124e12 5.78719e12i 0.218386 0.378255i
\(852\) 0 0
\(853\) 9.73533e12 0.629622 0.314811 0.949154i \(-0.398059\pi\)
0.314811 + 0.949154i \(0.398059\pi\)
\(854\) 0 0
\(855\) −3.39566e12 −0.217309
\(856\) 0 0
\(857\) 5.21409e12 9.03108e12i 0.330191 0.571907i −0.652358 0.757911i \(-0.726220\pi\)
0.982549 + 0.186003i \(0.0595535\pi\)
\(858\) 0 0
\(859\) 5.15969e12 + 8.93684e12i 0.323336 + 0.560035i 0.981174 0.193125i \(-0.0618622\pi\)
−0.657838 + 0.753159i \(0.728529\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.54372e12 + 1.47982e13i 0.524322 + 0.908153i 0.999599 + 0.0283164i \(0.00901458\pi\)
−0.475277 + 0.879836i \(0.657652\pi\)
\(864\) 0 0
\(865\) 8.73907e12 1.51365e13i 0.530753 0.919292i
\(866\) 0 0
\(867\) −1.35603e13 −0.815049
\(868\) 0 0
\(869\) 7.11060e9 0.000422977
\(870\) 0 0
\(871\) 2.34401e12 4.05994e12i 0.137999 0.239022i
\(872\) 0 0
\(873\) −5.77352e11 1.00000e12i −0.0336416 0.0582689i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.95754e12 + 1.72470e13i 0.568400 + 0.984498i 0.996724 + 0.0808727i \(0.0257707\pi\)
−0.428324 + 0.903625i \(0.640896\pi\)
\(878\) 0 0
\(879\) 2.18527e12 3.78499e12i 0.123468 0.213853i
\(880\) 0 0
\(881\) 1.66453e11 0.00930892 0.00465446 0.999989i \(-0.498518\pi\)
0.00465446 + 0.999989i \(0.498518\pi\)
\(882\) 0 0
\(883\) 1.45096e13 0.803217 0.401608 0.915811i \(-0.368451\pi\)
0.401608 + 0.915811i \(0.368451\pi\)
\(884\) 0 0
\(885\) 6.35467e12 1.10066e13i 0.348216 0.603127i
\(886\) 0 0
\(887\) −6.17805e12 1.07007e13i −0.335116 0.580438i 0.648391 0.761307i \(-0.275442\pi\)
−0.983507 + 0.180869i \(0.942109\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.37571e10 2.38279e10i −0.000731267 0.00126659i
\(892\) 0 0
\(893\) 1.83960e11 3.18627e11i 0.00968035 0.0167669i
\(894\) 0 0
\(895\) −2.48743e13 −1.29583
\(896\) 0 0
\(897\) 2.26252e13 1.16688
\(898\) 0 0
\(899\) 1.51760e12 2.62856e12i 0.0774887 0.134214i
\(900\) 0 0
\(901\) 2.83882e12 + 4.91698e12i 0.143508 + 0.248563i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.34320e12 + 5.79060e12i 0.165670 + 0.286949i
\(906\) 0 0
\(907\) 7.22112e12 1.25073e13i 0.354300 0.613666i −0.632698 0.774399i \(-0.718052\pi\)
0.986998 + 0.160733i \(0.0513857\pi\)
\(908\) 0 0
\(909\) −4.24529e12 −0.206239
\(910\) 0 0
\(911\) 1.49161e13 0.717499 0.358749 0.933434i \(-0.383203\pi\)
0.358749 + 0.933434i \(0.383203\pi\)
\(912\) 0 0
\(913\) 2.92583e10 5.06769e10i 0.00139358 0.00241374i
\(914\) 0 0
\(915\) −9.15667e12 1.58598e13i −0.431860 0.748003i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −7.49253e12 1.29774e13i −0.346504 0.600163i 0.639122 0.769106i \(-0.279298\pi\)
−0.985626 + 0.168943i \(0.945965\pi\)
\(920\) 0 0
\(921\) −1.25534e13 + 2.17431e13i −0.574901 + 0.995758i
\(922\) 0 0
\(923\) −6.14813e12 −0.278828
\(924\) 0 0
\(925\) −2.86012e12 −0.128453
\(926\) 0 0
\(927\) −4.80838e12 + 8.32837e12i −0.213865 + 0.370426i
\(928\) 0 0
\(929\) 8.63042e12 + 1.49483e13i 0.380155 + 0.658449i 0.991084 0.133237i \(-0.0425371\pi\)
−0.610929 + 0.791686i \(0.709204\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.53093e12 4.38369e12i −0.109348 0.189397i
\(934\) 0 0
\(935\) 4.08042e9 7.06749e9i 0.000174603 0.000302422i
\(936\) 0 0
\(937\) 1.80968e12 0.0766961 0.0383480 0.999264i \(-0.487790\pi\)
0.0383480 + 0.999264i \(0.487790\pi\)
\(938\) 0 0
\(939\) 1.35984e13 0.570810
\(940\) 0 0
\(941\) 1.55916e13 2.70055e13i 0.648244 1.12279i −0.335298 0.942112i \(-0.608837\pi\)
0.983542 0.180679i \(-0.0578296\pi\)
\(942\) 0 0
\(943\) 4.15012e12 + 7.18822e12i 0.170906 + 0.296019i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.01232e10 6.94955e10i −0.00162114 0.00280790i 0.865214 0.501403i \(-0.167183\pi\)
−0.866835 + 0.498595i \(0.833849\pi\)
\(948\) 0 0
\(949\) 1.82727e12 3.16493e12i 0.0731316 0.126668i
\(950\) 0 0
\(951\) 3.24138e13 1.28504
\(952\) 0 0
\(953\) −2.32667e13 −0.913727 −0.456864 0.889537i \(-0.651027\pi\)
−0.456864 + 0.889537i \(0.651027\pi\)
\(954\) 0 0
\(955\) 1.43775e12 2.49025e12i 0.0559329 0.0968786i
\(956\) 0 0
\(957\) −1.28526e10 2.22614e10i −0.000495322 0.000857924i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.20651e13 + 2.08974e13i 0.456328 + 0.790383i
\(962\) 0 0
\(963\) −2.31642e11 + 4.01216e11i −0.00867959 + 0.0150335i
\(964\) 0 0
\(965\) 2.60614e13 0.967442
\(966\) 0 0
\(967\) 1.75588e13 0.645766 0.322883 0.946439i \(-0.395348\pi\)
0.322883 + 0.946439i \(0.395348\pi\)
\(968\) 0 0
\(969\) −2.95206e12 + 5.11311e12i −0.107564 + 0.186307i
\(970\) 0 0
\(971\) 1.46518e13 + 2.53777e13i 0.528939 + 0.916149i 0.999430 + 0.0337447i \(0.0107433\pi\)
−0.470491 + 0.882405i \(0.655923\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −4.84183e12 8.38630e12i −0.171589 0.297201i
\(976\) 0 0
\(977\) 5.87204e12 1.01707e13i 0.206188 0.357128i −0.744323 0.667820i \(-0.767227\pi\)
0.950511 + 0.310692i \(0.100561\pi\)
\(978\) 0 0
\(979\) 1.18184e11 0.00411184
\(980\) 0 0
\(981\) 2.77723e12 0.0957417
\(982\) 0 0
\(983\) −9.51858e12 + 1.64867e13i −0.325148 + 0.563173i −0.981542 0.191245i \(-0.938747\pi\)
0.656394 + 0.754418i \(0.272081\pi\)
\(984\) 0 0
\(985\) −1.30889e13 2.26706e13i −0.443037 0.767363i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.15983e13 7.20503e13i −1.38259 2.39471i
\(990\) 0 0
\(991\) −2.61763e13 + 4.53386e13i −0.862136 + 1.49326i 0.00772625 + 0.999970i \(0.497541\pi\)
−0.869863 + 0.493294i \(0.835793\pi\)
\(992\) 0 0
\(993\) 3.70789e13 1.21020
\(994\) 0 0
\(995\) −2.40351e13 −0.777396
\(996\) 0 0
\(997\) −2.43290e13 + 4.21391e13i −0.779824 + 1.35069i 0.152219 + 0.988347i \(0.451358\pi\)
−0.932043 + 0.362348i \(0.881975\pi\)
\(998\) 0 0
\(999\) 4.52439e12 + 7.83647e12i 0.143719 + 0.248929i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.10.e.h.165.2 12
7.2 even 3 inner 196.10.e.h.177.2 12
7.3 odd 6 196.10.a.f.1.2 6
7.4 even 3 196.10.a.e.1.5 6
7.5 odd 6 28.10.e.a.9.5 12
7.6 odd 2 28.10.e.a.25.5 yes 12
21.5 even 6 252.10.k.e.37.2 12
21.20 even 2 252.10.k.e.109.2 12
28.19 even 6 112.10.i.d.65.2 12
28.27 even 2 112.10.i.d.81.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.10.e.a.9.5 12 7.5 odd 6
28.10.e.a.25.5 yes 12 7.6 odd 2
112.10.i.d.65.2 12 28.19 even 6
112.10.i.d.81.2 12 28.27 even 2
196.10.a.e.1.5 6 7.4 even 3
196.10.a.f.1.2 6 7.3 odd 6
196.10.e.h.165.2 12 1.1 even 1 trivial
196.10.e.h.177.2 12 7.2 even 3 inner
252.10.k.e.37.2 12 21.5 even 6
252.10.k.e.109.2 12 21.20 even 2