Properties

Label 252.10.k.e.109.2
Level $252$
Weight $10$
Character 252.109
Analytic conductor $129.789$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,10,Mod(37,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.37"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,966,0,7696] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(129.789030713\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 793613 x^{10} - 17756326 x^{9} + 221664234517 x^{8} + 9111017919584 x^{7} + \cdots + 31\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{6}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(291.052 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.10.k.e.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-501.604 - 868.804i) q^{5} +(-2319.36 + 5913.90i) q^{7} +(-53.5365 + 92.7280i) q^{11} +85099.9 q^{13} +(-37986.8 + 65795.1i) q^{17} +(323268. + 559916. i) q^{19} +(-1.10595e6 - 1.91556e6i) q^{23} +(473349. - 819864. i) q^{25} +1.99729e6 q^{29} +(759827. - 1.31606e6i) q^{31} +(6.30142e6 - 951367. i) q^{35} +(-1.51057e6 - 2.61639e6i) q^{37} +3.75255e6 q^{41} -3.76132e7 q^{43} +(284531. + 492823. i) q^{47} +(-2.95948e7 - 2.74329e7i) q^{49} +(-3.73658e7 + 6.47195e7i) q^{53} +107417. q^{55} +(5.26990e7 - 9.12773e7i) q^{59} +(7.59359e7 + 1.31525e8i) q^{61} +(-4.26865e7 - 7.39351e7i) q^{65} +(-2.75442e7 + 4.77079e7i) q^{67} -7.22461e7 q^{71} +(2.14721e7 - 3.71908e7i) q^{73} +(-424213. - 531679. i) q^{77} +(3.32044e7 + 5.75117e7i) q^{79} +5.46511e8 q^{83} +7.62174e7 q^{85} +(5.51884e8 + 9.55891e8i) q^{89} +(-1.97377e8 + 5.03272e8i) q^{91} +(3.24305e8 - 5.61713e8i) q^{95} +2.20561e8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 966 q^{5} + 7696 q^{7} + 47640 q^{11} + 103432 q^{13} + 402234 q^{17} - 519960 q^{19} + 683124 q^{23} - 1134656 q^{25} - 4252680 q^{29} - 1040564 q^{31} + 552600 q^{35} - 4886646 q^{37} - 34183128 q^{41}+ \cdots + 2306715320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −501.604 868.804i −0.358919 0.621666i 0.628862 0.777517i \(-0.283521\pi\)
−0.987780 + 0.155852i \(0.950188\pi\)
\(6\) 0 0
\(7\) −2319.36 + 5913.90i −0.365113 + 0.930963i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −53.5365 + 92.7280i −0.00110251 + 0.00190961i −0.866576 0.499045i \(-0.833684\pi\)
0.865474 + 0.500954i \(0.167018\pi\)
\(12\) 0 0
\(13\) 85099.9 0.826388 0.413194 0.910643i \(-0.364413\pi\)
0.413194 + 0.910643i \(0.364413\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −37986.8 + 65795.1i −0.110310 + 0.191062i −0.915895 0.401418i \(-0.868518\pi\)
0.805586 + 0.592479i \(0.201851\pi\)
\(18\) 0 0
\(19\) 323268. + 559916.i 0.569077 + 0.985670i 0.996658 + 0.0816931i \(0.0260327\pi\)
−0.427580 + 0.903977i \(0.640634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.10595e6 1.91556e6i −0.824062 1.42732i −0.902634 0.430408i \(-0.858370\pi\)
0.0785726 0.996908i \(-0.474964\pi\)
\(24\) 0 0
\(25\) 473349. 819864.i 0.242355 0.419771i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.99729e6 0.524386 0.262193 0.965015i \(-0.415554\pi\)
0.262193 + 0.965015i \(0.415554\pi\)
\(30\) 0 0
\(31\) 759827. 1.31606e6i 0.147770 0.255946i −0.782633 0.622484i \(-0.786124\pi\)
0.930403 + 0.366538i \(0.119457\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.30142e6 951367.i 0.709794 0.107162i
\(36\) 0 0
\(37\) −1.51057e6 2.61639e6i −0.132506 0.229507i 0.792136 0.610344i \(-0.208969\pi\)
−0.924642 + 0.380838i \(0.875636\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.75255e6 0.207395 0.103698 0.994609i \(-0.466933\pi\)
0.103698 + 0.994609i \(0.466933\pi\)
\(42\) 0 0
\(43\) −3.76132e7 −1.67777 −0.838885 0.544309i \(-0.816792\pi\)
−0.838885 + 0.544309i \(0.816792\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 284531. + 492823.i 0.00850530 + 0.0147316i 0.870247 0.492616i \(-0.163959\pi\)
−0.861741 + 0.507348i \(0.830626\pi\)
\(48\) 0 0
\(49\) −2.95948e7 2.74329e7i −0.733386 0.679813i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.73658e7 + 6.47195e7i −0.650479 + 1.12666i 0.332528 + 0.943093i \(0.392098\pi\)
−0.983007 + 0.183569i \(0.941235\pi\)
\(54\) 0 0
\(55\) 107417. 0.00158285
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.26990e7 9.12773e7i 0.566198 0.980684i −0.430739 0.902476i \(-0.641747\pi\)
0.996937 0.0782071i \(-0.0249195\pi\)
\(60\) 0 0
\(61\) 7.59359e7 + 1.31525e8i 0.702203 + 1.21625i 0.967691 + 0.252138i \(0.0811336\pi\)
−0.265488 + 0.964114i \(0.585533\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.26865e7 7.39351e7i −0.296606 0.513737i
\(66\) 0 0
\(67\) −2.75442e7 + 4.77079e7i −0.166991 + 0.289237i −0.937361 0.348361i \(-0.886738\pi\)
0.770370 + 0.637598i \(0.220072\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.22461e7 −0.337405 −0.168703 0.985667i \(-0.553958\pi\)
−0.168703 + 0.985667i \(0.553958\pi\)
\(72\) 0 0
\(73\) 2.14721e7 3.71908e7i 0.0884956 0.153279i −0.818380 0.574678i \(-0.805127\pi\)
0.906875 + 0.421399i \(0.138461\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −424213. 531679.i −0.00137523 0.00172362i
\(78\) 0 0
\(79\) 3.32044e7 + 5.75117e7i 0.0959122 + 0.166125i 0.909989 0.414632i \(-0.136090\pi\)
−0.814077 + 0.580757i \(0.802757\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.46511e8 1.26400 0.632000 0.774968i \(-0.282234\pi\)
0.632000 + 0.774968i \(0.282234\pi\)
\(84\) 0 0
\(85\) 7.62174e7 0.158369
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.51884e8 + 9.55891e8i 0.932379 + 1.61493i 0.779242 + 0.626723i \(0.215604\pi\)
0.153137 + 0.988205i \(0.451062\pi\)
\(90\) 0 0
\(91\) −1.97377e8 + 5.03272e8i −0.301725 + 0.769337i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.24305e8 5.61713e8i 0.408505 0.707551i
\(96\) 0 0
\(97\) 2.20561e8 0.252963 0.126481 0.991969i \(-0.459632\pi\)
0.126481 + 0.991969i \(0.459632\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.05449e8 + 7.02259e8i −0.387695 + 0.671508i −0.992139 0.125140i \(-0.960062\pi\)
0.604444 + 0.796648i \(0.293395\pi\)
\(102\) 0 0
\(103\) −9.18456e8 1.59081e9i −0.804064 1.39268i −0.916921 0.399069i \(-0.869334\pi\)
0.112857 0.993611i \(-0.464000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.42462e7 7.66367e7i −0.0326324 0.0565210i 0.849248 0.527994i \(-0.177056\pi\)
−0.881880 + 0.471473i \(0.843722\pi\)
\(108\) 0 0
\(109\) 2.65241e8 4.59411e8i 0.179979 0.311732i −0.761894 0.647701i \(-0.775730\pi\)
0.941873 + 0.335969i \(0.109064\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.08486e9 −1.77985 −0.889924 0.456108i \(-0.849243\pi\)
−0.889924 + 0.456108i \(0.849243\pi\)
\(114\) 0 0
\(115\) −1.10950e9 + 1.92171e9i −0.591542 + 1.02458i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.01001e8 3.77253e8i −0.137596 0.172453i
\(120\) 0 0
\(121\) 1.17897e9 + 2.04203e9i 0.499998 + 0.866021i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.90913e9 −1.06578
\(126\) 0 0
\(127\) 4.97087e9 1.69557 0.847785 0.530340i \(-0.177936\pi\)
0.847785 + 0.530340i \(0.177936\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.22067e9 + 3.84631e9i 0.658815 + 1.14110i 0.980923 + 0.194398i \(0.0622753\pi\)
−0.322108 + 0.946703i \(0.604391\pi\)
\(132\) 0 0
\(133\) −4.06106e9 + 6.13125e8i −1.12540 + 0.169909i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.40438e9 + 4.16450e9i −0.583123 + 1.01000i 0.411984 + 0.911191i \(0.364836\pi\)
−0.995107 + 0.0988069i \(0.968497\pi\)
\(138\) 0 0
\(139\) −8.95323e8 −0.203429 −0.101715 0.994814i \(-0.532433\pi\)
−0.101715 + 0.994814i \(0.532433\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.55595e6 + 7.89114e6i −0.000911102 + 0.00157808i
\(144\) 0 0
\(145\) −1.00185e9 1.73526e9i −0.188212 0.325993i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.14527e9 + 7.17982e9i 0.688993 + 1.19337i 0.972164 + 0.234301i \(0.0752803\pi\)
−0.283171 + 0.959069i \(0.591386\pi\)
\(150\) 0 0
\(151\) 4.18563e9 7.24973e9i 0.655186 1.13482i −0.326661 0.945142i \(-0.605923\pi\)
0.981847 0.189674i \(-0.0607432\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.52453e9 −0.212150
\(156\) 0 0
\(157\) −4.95278e9 + 8.57847e9i −0.650580 + 1.12684i 0.332402 + 0.943138i \(0.392141\pi\)
−0.982982 + 0.183700i \(0.941192\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.38935e10 2.09760e9i 1.62965 0.246040i
\(162\) 0 0
\(163\) 6.08514e9 + 1.05398e10i 0.675191 + 1.16947i 0.976413 + 0.215911i \(0.0692721\pi\)
−0.301222 + 0.953554i \(0.597395\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.27831e9 −0.425645 −0.212823 0.977091i \(-0.568266\pi\)
−0.212823 + 0.977091i \(0.568266\pi\)
\(168\) 0 0
\(169\) −3.36251e9 −0.317083
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.71112e9 + 1.50881e10i 0.739378 + 1.28064i 0.952776 + 0.303675i \(0.0982137\pi\)
−0.213398 + 0.976965i \(0.568453\pi\)
\(174\) 0 0
\(175\) 3.75073e9 + 4.70090e9i 0.302304 + 0.378887i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.23974e10 + 2.14728e10i −0.902590 + 1.56333i −0.0784692 + 0.996917i \(0.525003\pi\)
−0.824120 + 0.566415i \(0.808330\pi\)
\(180\) 0 0
\(181\) 6.66502e9 0.461581 0.230791 0.973003i \(-0.425869\pi\)
0.230791 + 0.973003i \(0.425869\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.51542e9 + 2.62479e9i −0.0951175 + 0.164748i
\(186\) 0 0
\(187\) −4.06737e6 7.04489e6i −0.000243235 0.000421295i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.43315e9 2.48229e9i −0.0779186 0.134959i 0.824433 0.565959i \(-0.191494\pi\)
−0.902352 + 0.431000i \(0.858161\pi\)
\(192\) 0 0
\(193\) −1.29890e10 + 2.24977e10i −0.673859 + 1.16716i 0.302942 + 0.953009i \(0.402031\pi\)
−0.976801 + 0.214149i \(0.931302\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.60941e10 −1.23437 −0.617183 0.786820i \(-0.711726\pi\)
−0.617183 + 0.786820i \(0.711726\pi\)
\(198\) 0 0
\(199\) −1.19791e10 + 2.07484e10i −0.541485 + 0.937879i 0.457335 + 0.889295i \(0.348804\pi\)
−0.998819 + 0.0485840i \(0.984529\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.63244e9 + 1.18118e10i −0.191460 + 0.488184i
\(204\) 0 0
\(205\) −1.88229e9 3.26023e9i −0.0744380 0.128930i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.92265e7 −0.00250966
\(210\) 0 0
\(211\) 1.80028e10 0.625272 0.312636 0.949873i \(-0.398788\pi\)
0.312636 + 0.949873i \(0.398788\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.88669e10 + 3.26785e10i 0.602183 + 1.04301i
\(216\) 0 0
\(217\) 6.02073e9 + 7.54595e9i 0.184323 + 0.231018i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.23268e9 + 5.59916e9i −0.0911584 + 0.157891i
\(222\) 0 0
\(223\) −6.64392e10 −1.79909 −0.899544 0.436830i \(-0.856101\pi\)
−0.899544 + 0.436830i \(0.856101\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.69985e9 + 4.67628e9i −0.0674875 + 0.116892i −0.897795 0.440414i \(-0.854832\pi\)
0.830307 + 0.557306i \(0.188165\pi\)
\(228\) 0 0
\(229\) −1.91113e10 3.31017e10i −0.459230 0.795410i 0.539690 0.841864i \(-0.318541\pi\)
−0.998920 + 0.0464539i \(0.985208\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.37400e10 + 5.84394e10i 0.749969 + 1.29898i 0.947837 + 0.318756i \(0.103265\pi\)
−0.197868 + 0.980229i \(0.563402\pi\)
\(234\) 0 0
\(235\) 2.85444e8 4.94404e8i 0.00610543 0.0105749i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.07144e10 1.00541 0.502703 0.864459i \(-0.332339\pi\)
0.502703 + 0.864459i \(0.332339\pi\)
\(240\) 0 0
\(241\) 1.46290e9 2.53382e9i 0.0279344 0.0483837i −0.851720 0.523997i \(-0.824440\pi\)
0.879655 + 0.475613i \(0.157774\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.98896e9 + 3.94725e10i −0.159390 + 0.699918i
\(246\) 0 0
\(247\) 2.75100e10 + 4.76488e10i 0.470278 + 0.814546i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.14342e9 −0.113599 −0.0567995 0.998386i \(-0.518090\pi\)
−0.0567995 + 0.998386i \(0.518090\pi\)
\(252\) 0 0
\(253\) 2.36835e8 0.00363415
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.86294e10 6.69081e10i −0.552356 0.956708i −0.998104 0.0615497i \(-0.980396\pi\)
0.445748 0.895158i \(-0.352938\pi\)
\(258\) 0 0
\(259\) 1.89766e10 2.86503e9i 0.262042 0.0395622i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.23540e10 + 2.13977e10i −0.159223 + 0.275782i −0.934589 0.355730i \(-0.884232\pi\)
0.775366 + 0.631513i \(0.217566\pi\)
\(264\) 0 0
\(265\) 7.49714e10 0.933876
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.73244e10 + 1.16609e11i −0.783948 + 1.35784i 0.145677 + 0.989332i \(0.453464\pi\)
−0.929625 + 0.368506i \(0.879869\pi\)
\(270\) 0 0
\(271\) 6.70894e10 + 1.16202e11i 0.755600 + 1.30874i 0.945075 + 0.326853i \(0.105988\pi\)
−0.189475 + 0.981886i \(0.560679\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.06829e7 + 8.77854e7i 0.000534398 + 0.000925604i
\(276\) 0 0
\(277\) 3.43120e10 5.94301e10i 0.350176 0.606523i −0.636104 0.771604i \(-0.719455\pi\)
0.986280 + 0.165080i \(0.0527883\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.32135e9 −0.0509147 −0.0254573 0.999676i \(-0.508104\pi\)
−0.0254573 + 0.999676i \(0.508104\pi\)
\(282\) 0 0
\(283\) −1.09353e10 + 1.89405e10i −0.101343 + 0.175531i −0.912238 0.409660i \(-0.865647\pi\)
0.810895 + 0.585191i \(0.198981\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.70350e9 + 2.21922e10i −0.0757226 + 0.193077i
\(288\) 0 0
\(289\) 5.64079e10 + 9.77014e10i 0.475664 + 0.823874i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.63609e10 −0.288224 −0.144112 0.989561i \(-0.546033\pi\)
−0.144112 + 0.989561i \(0.546033\pi\)
\(294\) 0 0
\(295\) −1.05736e11 −0.812876
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.41161e10 1.63014e11i −0.680994 1.17952i
\(300\) 0 0
\(301\) 8.72385e10 2.22441e11i 0.612575 1.56194i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.61795e10 1.31947e11i 0.504068 0.873071i
\(306\) 0 0
\(307\) −2.08878e11 −1.34205 −0.671026 0.741434i \(-0.734146\pi\)
−0.671026 + 0.741434i \(0.734146\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.10562e10 + 3.64704e10i −0.127632 + 0.221065i −0.922759 0.385379i \(-0.874071\pi\)
0.795127 + 0.606443i \(0.207404\pi\)
\(312\) 0 0
\(313\) 5.65662e10 + 9.79756e10i 0.333125 + 0.576990i 0.983123 0.182946i \(-0.0585635\pi\)
−0.649998 + 0.759936i \(0.725230\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.34834e11 + 2.33540e11i 0.749953 + 1.29896i 0.947845 + 0.318732i \(0.103257\pi\)
−0.197892 + 0.980224i \(0.563410\pi\)
\(318\) 0 0
\(319\) −1.06928e8 + 1.85205e8i −0.000578142 + 0.00100137i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.91197e10 −0.251098
\(324\) 0 0
\(325\) 4.02819e10 6.97704e10i 0.200279 0.346893i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.57443e9 + 5.39656e8i −0.0168200 + 0.00253943i
\(330\) 0 0
\(331\) −1.54240e11 2.67152e11i −0.706272 1.22330i −0.966231 0.257679i \(-0.917042\pi\)
0.259959 0.965620i \(-0.416291\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.52651e10 0.239745
\(336\) 0 0
\(337\) −2.09034e11 −0.882843 −0.441421 0.897300i \(-0.645526\pi\)
−0.441421 + 0.897300i \(0.645526\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.13570e7 + 1.40915e8i 0.000325837 + 0.000564366i
\(342\) 0 0
\(343\) 2.30876e11 1.11394e11i 0.900649 0.434547i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.35120e11 4.07241e11i 0.870578 1.50789i 0.00917879 0.999958i \(-0.497078\pi\)
0.861400 0.507928i \(-0.169588\pi\)
\(348\) 0 0
\(349\) −1.77598e11 −0.640801 −0.320401 0.947282i \(-0.603818\pi\)
−0.320401 + 0.947282i \(0.603818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.31027e11 4.00150e11i 0.791910 1.37163i −0.132872 0.991133i \(-0.542420\pi\)
0.924783 0.380496i \(-0.124247\pi\)
\(354\) 0 0
\(355\) 3.62389e10 + 6.27677e10i 0.121101 + 0.209753i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.84861e10 1.70583e11i −0.312932 0.542014i 0.666064 0.745895i \(-0.267978\pi\)
−0.978996 + 0.203881i \(0.934645\pi\)
\(360\) 0 0
\(361\) −4.76601e10 + 8.25498e10i −0.147697 + 0.255819i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.30820e10 −0.127051
\(366\) 0 0
\(367\) 6.65243e10 1.15223e11i 0.191418 0.331546i −0.754302 0.656527i \(-0.772025\pi\)
0.945720 + 0.324981i \(0.105358\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.96080e11 3.71085e11i −0.811383 1.01693i
\(372\) 0 0
\(373\) 4.10561e10 + 7.11113e10i 0.109822 + 0.190217i 0.915698 0.401867i \(-0.131639\pi\)
−0.805876 + 0.592084i \(0.798305\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.69969e11 0.433346
\(378\) 0 0
\(379\) 4.02028e11 1.00088 0.500438 0.865773i \(-0.333172\pi\)
0.500438 + 0.865773i \(0.333172\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.47591e11 2.55634e11i −0.350481 0.607050i 0.635853 0.771810i \(-0.280648\pi\)
−0.986334 + 0.164760i \(0.947315\pi\)
\(384\) 0 0
\(385\) −2.49138e8 + 6.35251e8i −0.000577918 + 0.00147357i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.15300e11 1.99705e11i 0.255303 0.442198i −0.709675 0.704529i \(-0.751158\pi\)
0.964978 + 0.262332i \(0.0844915\pi\)
\(390\) 0 0
\(391\) 1.68046e11 0.363607
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.33110e10 5.76963e10i 0.0688494 0.119251i
\(396\) 0 0
\(397\) −3.25570e11 5.63903e11i −0.657789 1.13932i −0.981187 0.193061i \(-0.938159\pi\)
0.323398 0.946263i \(-0.395175\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.22241e11 5.58138e11i −0.622345 1.07793i −0.989048 0.147595i \(-0.952847\pi\)
0.366703 0.930338i \(-0.380487\pi\)
\(402\) 0 0
\(403\) 6.46612e10 1.11997e11i 0.122116 0.211510i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.23484e8 0.000584356
\(408\) 0 0
\(409\) −3.14975e11 + 5.45553e11i −0.556572 + 0.964011i 0.441207 + 0.897405i \(0.354550\pi\)
−0.997779 + 0.0666060i \(0.978783\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.17577e11 + 5.23361e11i 0.706254 + 0.885169i
\(414\) 0 0
\(415\) −2.74132e11 4.74811e11i −0.453674 0.785786i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.03533e11 0.322605 0.161303 0.986905i \(-0.448430\pi\)
0.161303 + 0.986905i \(0.448430\pi\)
\(420\) 0 0
\(421\) 6.89974e11 1.07044 0.535221 0.844712i \(-0.320228\pi\)
0.535221 + 0.844712i \(0.320228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.59621e10 + 6.22881e10i 0.0534680 + 0.0926094i
\(426\) 0 0
\(427\) −9.53947e11 + 1.44024e11i −1.38867 + 0.209657i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.51272e11 + 7.81626e11i −0.629927 + 1.09107i 0.357638 + 0.933860i \(0.383582\pi\)
−0.987566 + 0.157206i \(0.949751\pi\)
\(432\) 0 0
\(433\) 1.36194e11 0.186192 0.0930962 0.995657i \(-0.470324\pi\)
0.0930962 + 0.995657i \(0.470324\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.15035e11 1.23848e12i 0.937909 1.62451i
\(438\) 0 0
\(439\) −1.14239e11 1.97867e11i −0.146799 0.254263i 0.783244 0.621715i \(-0.213564\pi\)
−0.930043 + 0.367452i \(0.880230\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.58733e11 + 2.74934e11i 0.195817 + 0.339166i 0.947168 0.320737i \(-0.103931\pi\)
−0.751351 + 0.659903i \(0.770597\pi\)
\(444\) 0 0
\(445\) 5.53654e11 9.58958e11i 0.669297 1.15926i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.61398e11 −0.303524 −0.151762 0.988417i \(-0.548495\pi\)
−0.151762 + 0.988417i \(0.548495\pi\)
\(450\) 0 0
\(451\) −2.00898e8 + 3.47966e8i −0.000228656 + 0.000396043i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.36250e11 8.09612e10i 0.586565 0.0885576i
\(456\) 0 0
\(457\) 3.48607e11 + 6.03806e11i 0.373864 + 0.647552i 0.990156 0.139966i \(-0.0446993\pi\)
−0.616292 + 0.787518i \(0.711366\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.30791e12 −1.34872 −0.674362 0.738400i \(-0.735581\pi\)
−0.674362 + 0.738400i \(0.735581\pi\)
\(462\) 0 0
\(463\) 9.10787e11 0.921090 0.460545 0.887636i \(-0.347654\pi\)
0.460545 + 0.887636i \(0.347654\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.68071e11 8.10724e11i −0.455393 0.788764i 0.543318 0.839527i \(-0.317168\pi\)
−0.998711 + 0.0507635i \(0.983835\pi\)
\(468\) 0 0
\(469\) −2.18255e11 2.73545e11i −0.208298 0.261067i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.01368e9 3.48780e9i 0.00184976 0.00320388i
\(474\) 0 0
\(475\) 6.12074e11 0.551674
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.09674e11 1.40240e12i 0.702749 1.21720i −0.264748 0.964318i \(-0.585289\pi\)
0.967498 0.252880i \(-0.0813778\pi\)
\(480\) 0 0
\(481\) −1.28550e11 2.22655e11i −0.109501 0.189661i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.10635e11 1.91625e11i −0.0907931 0.157258i
\(486\) 0 0
\(487\) −2.63528e11 + 4.56444e11i −0.212298 + 0.367712i −0.952433 0.304747i \(-0.901428\pi\)
0.740135 + 0.672458i \(0.234762\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.12833e12 −1.65262 −0.826308 0.563218i \(-0.809563\pi\)
−0.826308 + 0.563218i \(0.809563\pi\)
\(492\) 0 0
\(493\) −7.58709e10 + 1.31412e11i −0.0578448 + 0.100190i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.67565e11 4.27256e11i 0.123191 0.314112i
\(498\) 0 0
\(499\) −5.05306e11 8.75215e11i −0.364839 0.631920i 0.623911 0.781495i \(-0.285543\pi\)
−0.988750 + 0.149575i \(0.952209\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.51372e12 1.05436 0.527180 0.849754i \(-0.323249\pi\)
0.527180 + 0.849754i \(0.323249\pi\)
\(504\) 0 0
\(505\) 8.13500e11 0.556604
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.21438e12 + 2.10337e12i 0.801907 + 1.38894i 0.918359 + 0.395748i \(0.129515\pi\)
−0.116452 + 0.993196i \(0.537152\pi\)
\(510\) 0 0
\(511\) 1.70141e11 + 2.13242e11i 0.110386 + 0.138350i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.21402e11 + 1.59592e12i −0.577187 + 0.999718i
\(516\) 0 0
\(517\) −6.09313e7 −3.75088e−5
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.18874e12 + 2.05897e12i −0.706836 + 1.22428i 0.259189 + 0.965827i \(0.416545\pi\)
−0.966025 + 0.258449i \(0.916789\pi\)
\(522\) 0 0
\(523\) −2.29128e11 3.96861e11i −0.133912 0.231943i 0.791269 0.611468i \(-0.209421\pi\)
−0.925181 + 0.379525i \(0.876087\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.77269e10 + 9.99859e10i 0.0326009 + 0.0564665i
\(528\) 0 0
\(529\) −1.54567e12 + 2.67718e12i −0.858155 + 1.48637i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.19341e11 0.171389
\(534\) 0 0
\(535\) −4.43882e10 + 7.68826e10i −0.0234248 + 0.0405729i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.12820e9 1.27560e9i 0.00210674 0.000650976i
\(540\) 0 0
\(541\) −4.26542e11 7.38792e11i −0.214079 0.370795i 0.738908 0.673806i \(-0.235342\pi\)
−0.952987 + 0.303010i \(0.902008\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.32184e11 −0.258391
\(546\) 0 0
\(547\) −9.09540e11 −0.434389 −0.217195 0.976128i \(-0.569691\pi\)
−0.217195 + 0.976128i \(0.569691\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.45661e11 + 1.11832e12i 0.298416 + 0.516872i
\(552\) 0 0
\(553\) −4.17132e11 + 6.29771e10i −0.189675 + 0.0286365i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.78178e12 3.08613e12i 0.784341 1.35852i −0.145051 0.989424i \(-0.546335\pi\)
0.929392 0.369094i \(-0.120332\pi\)
\(558\) 0 0
\(559\) −3.20088e12 −1.38649
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.62089e11 + 9.73567e11i −0.235786 + 0.408393i −0.959501 0.281706i \(-0.909100\pi\)
0.723715 + 0.690099i \(0.242433\pi\)
\(564\) 0 0
\(565\) 1.54738e12 + 2.68014e12i 0.638821 + 1.10647i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.94913e12 + 3.37599e12i 0.779534 + 1.35019i 0.932211 + 0.361917i \(0.117877\pi\)
−0.152676 + 0.988276i \(0.548789\pi\)
\(570\) 0 0
\(571\) 7.73495e11 1.33973e12i 0.304505 0.527419i −0.672646 0.739965i \(-0.734842\pi\)
0.977151 + 0.212546i \(0.0681755\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.09400e12 −0.798861
\(576\) 0 0
\(577\) −4.16268e11 + 7.20997e11i −0.156344 + 0.270796i −0.933548 0.358453i \(-0.883304\pi\)
0.777203 + 0.629249i \(0.216638\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.26756e12 + 3.23201e12i −0.461503 + 1.17674i
\(582\) 0 0
\(583\) −4.00087e9 6.92972e9i −0.00143432 0.00248432i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.39886e12 0.486299 0.243150 0.969989i \(-0.421819\pi\)
0.243150 + 0.969989i \(0.421819\pi\)
\(588\) 0 0
\(589\) 9.82510e11 0.336371
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.13971e11 + 1.40984e12i 0.270310 + 0.468191i 0.968941 0.247291i \(-0.0795403\pi\)
−0.698631 + 0.715482i \(0.746207\pi\)
\(594\) 0 0
\(595\) −1.76776e11 + 4.50742e11i −0.0578224 + 0.147435i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.52515e12 + 2.64164e12i −0.484052 + 0.838402i −0.999832 0.0183186i \(-0.994169\pi\)
0.515780 + 0.856721i \(0.327502\pi\)
\(600\) 0 0
\(601\) 5.50287e12 1.72050 0.860249 0.509875i \(-0.170308\pi\)
0.860249 + 0.509875i \(0.170308\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.18275e12 2.04858e12i 0.358917 0.621663i
\(606\) 0 0
\(607\) 2.65974e12 + 4.60681e12i 0.795226 + 1.37737i 0.922696 + 0.385529i \(0.125981\pi\)
−0.127470 + 0.991842i \(0.540686\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.42136e10 + 4.19392e10i 0.00702868 + 0.0121740i
\(612\) 0 0
\(613\) −2.99609e12 + 5.18939e12i −0.857005 + 1.48438i 0.0177677 + 0.999842i \(0.494344\pi\)
−0.874773 + 0.484534i \(0.838989\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.91302e12 1.92037 0.960184 0.279369i \(-0.0901251\pi\)
0.960184 + 0.279369i \(0.0901251\pi\)
\(618\) 0 0
\(619\) 9.61950e10 1.66615e11i 0.0263357 0.0456147i −0.852557 0.522634i \(-0.824949\pi\)
0.878893 + 0.477019i \(0.158283\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.93306e12 + 1.04673e12i −1.84386 + 0.278380i
\(624\) 0 0
\(625\) 5.34721e11 + 9.26163e11i 0.140174 + 0.242788i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.29528e11 0.0584665
\(630\) 0 0
\(631\) 1.56565e12 0.393153 0.196577 0.980488i \(-0.437018\pi\)
0.196577 + 0.980488i \(0.437018\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.49341e12 4.31871e12i −0.608572 1.05408i
\(636\) 0 0
\(637\) −2.51851e12 2.33454e12i −0.606061 0.561789i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.06150e12 + 3.57063e12i −0.482306 + 0.835379i −0.999794 0.0203120i \(-0.993534\pi\)
0.517488 + 0.855691i \(0.326867\pi\)
\(642\) 0 0
\(643\) −3.15626e12 −0.728153 −0.364077 0.931369i \(-0.618615\pi\)
−0.364077 + 0.931369i \(0.618615\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.11738e11 + 1.40597e12i −0.182115 + 0.315433i −0.942601 0.333922i \(-0.891628\pi\)
0.760485 + 0.649355i \(0.224961\pi\)
\(648\) 0 0
\(649\) 5.64264e9 + 9.77334e9i 0.00124848 + 0.00216243i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.88231e12 + 3.26026e12i 0.405118 + 0.701685i 0.994335 0.106290i \(-0.0338970\pi\)
−0.589217 + 0.807975i \(0.700564\pi\)
\(654\) 0 0
\(655\) 2.22780e12 3.85866e12i 0.472922 0.819125i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.33436e12 0.482152 0.241076 0.970506i \(-0.422500\pi\)
0.241076 + 0.970506i \(0.422500\pi\)
\(660\) 0 0
\(661\) 7.27600e11 1.26024e12i 0.148247 0.256772i −0.782333 0.622861i \(-0.785970\pi\)
0.930580 + 0.366089i \(0.119304\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.56973e12 + 3.22072e12i 0.509554 + 0.638639i
\(666\) 0 0
\(667\) −2.20890e12 3.82594e12i −0.432126 0.748465i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.62614e10 −0.00309675
\(672\) 0 0
\(673\) −1.00036e13 −1.87970 −0.939850 0.341586i \(-0.889036\pi\)
−0.939850 + 0.341586i \(0.889036\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.01698e10 + 1.04217e11i 0.0110085 + 0.0190673i 0.871477 0.490436i \(-0.163162\pi\)
−0.860469 + 0.509503i \(0.829829\pi\)
\(678\) 0 0
\(679\) −5.11561e11 + 1.30438e12i −0.0923599 + 0.235499i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.21161e11 + 9.02677e11i −0.0916387 + 0.158723i −0.908201 0.418535i \(-0.862544\pi\)
0.816562 + 0.577258i \(0.195877\pi\)
\(684\) 0 0
\(685\) 4.82418e12 0.837175
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.17983e12 + 5.50762e12i −0.537548 + 0.931060i
\(690\) 0 0
\(691\) −9.76538e10 1.69141e11i −0.0162944 0.0282227i 0.857763 0.514045i \(-0.171854\pi\)
−0.874058 + 0.485822i \(0.838520\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.49098e11 + 7.77860e11i 0.0730145 + 0.126465i
\(696\) 0 0
\(697\) −1.42547e11 + 2.46899e11i −0.0228777 + 0.0396253i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.54818e11 −0.0711389 −0.0355694 0.999367i \(-0.511324\pi\)
−0.0355694 + 0.999367i \(0.511324\pi\)
\(702\) 0 0
\(703\) 9.76640e11 1.69159e12i 0.150812 0.261214i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.21270e12 4.02658e12i −0.483597 0.606106i
\(708\) 0 0
\(709\) 1.83880e12 + 3.18490e12i 0.273292 + 0.473355i 0.969703 0.244288i \(-0.0785542\pi\)
−0.696411 + 0.717643i \(0.745221\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.36132e12 −0.487087
\(714\) 0 0
\(715\) 9.14114e9 0.00130805
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.39116e12 5.87366e12i −0.473226 0.819651i 0.526305 0.850296i \(-0.323577\pi\)
−0.999530 + 0.0306453i \(0.990244\pi\)
\(720\) 0 0
\(721\) 1.15381e13 1.74199e12i 1.59011 0.240069i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.45417e11 1.63751e12i 0.127087 0.220122i
\(726\) 0 0
\(727\) −1.34259e13 −1.78253 −0.891266 0.453480i \(-0.850182\pi\)
−0.891266 + 0.453480i \(0.850182\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.42881e12 2.47477e12i 0.185074 0.320557i
\(732\) 0 0
\(733\) 5.97864e11 + 1.03553e12i 0.0764952 + 0.132494i 0.901736 0.432288i \(-0.142294\pi\)
−0.825240 + 0.564782i \(0.808960\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.94924e9 5.10823e9i −0.000368219 0.000637774i
\(738\) 0 0
\(739\) −3.16512e12 + 5.48216e12i −0.390383 + 0.676163i −0.992500 0.122245i \(-0.960991\pi\)
0.602117 + 0.798408i \(0.294324\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.40429e12 −0.770942 −0.385471 0.922720i \(-0.625961\pi\)
−0.385471 + 0.922720i \(0.625961\pi\)
\(744\) 0 0
\(745\) 4.15857e12 7.20286e12i 0.494585 0.856646i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.55845e11 8.39196e10i 0.0645335 0.00974306i
\(750\) 0 0
\(751\) 6.65261e11 + 1.15227e12i 0.0763155 + 0.132182i 0.901658 0.432451i \(-0.142351\pi\)
−0.825342 + 0.564633i \(0.809018\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.39812e12 −0.940635
\(756\) 0 0
\(757\) 1.19794e13 1.32588 0.662941 0.748671i \(-0.269308\pi\)
0.662941 + 0.748671i \(0.269308\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.40736e12 + 7.63377e12i 0.476373 + 0.825103i 0.999634 0.0270701i \(-0.00861772\pi\)
−0.523260 + 0.852173i \(0.675284\pi\)
\(762\) 0 0
\(763\) 2.10172e12 + 2.63415e12i 0.224499 + 0.281371i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.48468e12 7.76769e12i 0.467899 0.810425i
\(768\) 0 0
\(769\) 8.94607e12 0.922494 0.461247 0.887272i \(-0.347402\pi\)
0.461247 + 0.887272i \(0.347402\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.53874e12 1.47895e13i 0.860174 1.48986i −0.0115869 0.999933i \(-0.503688\pi\)
0.871761 0.489932i \(-0.162978\pi\)
\(774\) 0 0
\(775\) −7.19327e11 1.24591e12i −0.0716257 0.124059i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.21308e12 + 2.10111e12i 0.118024 + 0.204423i
\(780\) 0 0
\(781\) 3.86781e9 6.69924e9i 0.000371993 0.000644311i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.93735e12 0.934022
\(786\) 0 0
\(787\) 5.33917e11 9.24772e11i 0.0496121 0.0859307i −0.840153 0.542350i \(-0.817535\pi\)
0.889765 + 0.456419i \(0.150868\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.15491e12 1.82436e13i 0.649845 1.65697i
\(792\) 0 0
\(793\) 6.46214e12 + 1.11927e13i 0.580292 + 1.00510i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.73027e12 0.415263 0.207631 0.978207i \(-0.433425\pi\)
0.207631 + 0.978207i \(0.433425\pi\)
\(798\) 0 0
\(799\) −4.32338e10 −0.00375286
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.29908e9 + 3.98213e9i 0.000195135 + 0.000337983i
\(804\) 0 0
\(805\) −8.79145e12 1.10186e13i −0.737868 0.924792i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.89727e11 6.75027e11i 0.0319884 0.0554055i −0.849588 0.527447i \(-0.823149\pi\)
0.881576 + 0.472041i \(0.156483\pi\)
\(810\) 0 0
\(811\) −1.56934e13 −1.27386 −0.636931 0.770921i \(-0.719796\pi\)
−0.636931 + 0.770921i \(0.719796\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.10467e12 1.05736e13i 0.484677 0.839486i
\(816\) 0 0
\(817\) −1.21591e13 2.10602e13i −0.954780 1.65373i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.44265e11 + 5.96285e11i 0.0264453 + 0.0458047i 0.878945 0.476923i \(-0.158248\pi\)
−0.852500 + 0.522727i \(0.824915\pi\)
\(822\) 0 0
\(823\) 8.08484e12 1.40034e13i 0.614288 1.06398i −0.376221 0.926530i \(-0.622777\pi\)
0.990509 0.137448i \(-0.0438901\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.45408e12 0.479799 0.239899 0.970798i \(-0.422886\pi\)
0.239899 + 0.970798i \(0.422886\pi\)
\(828\) 0 0
\(829\) 3.82325e10 6.62206e10i 0.00281149 0.00486965i −0.864616 0.502433i \(-0.832438\pi\)
0.867428 + 0.497563i \(0.165772\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.92916e12 9.05101e11i 0.210786 0.0651320i
\(834\) 0 0
\(835\) 2.14602e12 + 3.71701e12i 0.152772 + 0.264609i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.31366e13 −1.61202 −0.806011 0.591901i \(-0.798378\pi\)
−0.806011 + 0.591901i \(0.798378\pi\)
\(840\) 0 0
\(841\) −1.05180e13 −0.725019
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.68665e12 + 2.92136e12i 0.113807 + 0.197120i
\(846\) 0 0
\(847\) −1.48108e13 + 2.23609e12i −0.988789 + 0.149284i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.34124e12 + 5.78719e12i −0.218386 + 0.378255i
\(852\) 0 0
\(853\) −9.73533e12 −0.629622 −0.314811 0.949154i \(-0.601941\pi\)
−0.314811 + 0.949154i \(0.601941\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.21409e12 9.03108e12i 0.330191 0.571907i −0.652358 0.757911i \(-0.726220\pi\)
0.982549 + 0.186003i \(0.0595535\pi\)
\(858\) 0 0
\(859\) −5.15969e12 8.93684e12i −0.323336 0.560035i 0.657838 0.753159i \(-0.271471\pi\)
−0.981174 + 0.193125i \(0.938138\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.54372e12 1.47982e13i −0.524322 0.908153i −0.999599 0.0283164i \(-0.990985\pi\)
0.475277 0.879836i \(-0.342348\pi\)
\(864\) 0 0
\(865\) 8.73907e12 1.51365e13i 0.530753 0.919292i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.11060e9 −0.000422977
\(870\) 0 0
\(871\) −2.34401e12 + 4.05994e12i −0.137999 + 0.239022i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.74731e12 1.72043e13i 0.389130 0.992202i
\(876\) 0 0
\(877\) 9.95754e12 + 1.72470e13i 0.568400 + 0.984498i 0.996724 + 0.0808727i \(0.0257707\pi\)
−0.428324 + 0.903625i \(0.640896\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.66453e11 0.00930892 0.00465446 0.999989i \(-0.498518\pi\)
0.00465446 + 0.999989i \(0.498518\pi\)
\(882\) 0 0
\(883\) 1.45096e13 0.803217 0.401608 0.915811i \(-0.368451\pi\)
0.401608 + 0.915811i \(0.368451\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.17805e12 1.07007e13i −0.335116 0.580438i 0.648391 0.761307i \(-0.275442\pi\)
−0.983507 + 0.180869i \(0.942109\pi\)
\(888\) 0 0
\(889\) −1.15292e13 + 2.93972e13i −0.619074 + 1.57851i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.83960e11 + 3.18627e11i −0.00968035 + 0.0167669i
\(894\) 0 0
\(895\) 2.48743e13 1.29583
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.51760e12 2.62856e12i 0.0774887 0.134214i
\(900\) 0 0
\(901\) −2.83882e12 4.91698e12i −0.143508 0.248563i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.34320e12 5.79060e12i −0.165670 0.286949i
\(906\) 0 0
\(907\) 7.22112e12 1.25073e13i 0.354300 0.613666i −0.632698 0.774399i \(-0.718052\pi\)
0.986998 + 0.160733i \(0.0513857\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.49161e13 −0.717499 −0.358749 0.933434i \(-0.616797\pi\)
−0.358749 + 0.933434i \(0.616797\pi\)
\(912\) 0 0
\(913\) −2.92583e10 + 5.06769e10i −0.00139358 + 0.00241374i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.78972e13 + 4.21183e12i −1.30286 + 0.196702i
\(918\) 0 0
\(919\) −7.49253e12 1.29774e13i −0.346504 0.600163i 0.639122 0.769106i \(-0.279298\pi\)
−0.985626 + 0.168943i \(0.945965\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.14813e12 −0.278828
\(924\) 0 0
\(925\) −2.86012e12 −0.128453
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.63042e12 + 1.49483e13i 0.380155 + 0.658449i 0.991084 0.133237i \(-0.0425371\pi\)
−0.610929 + 0.791686i \(0.709204\pi\)
\(930\) 0 0
\(931\) 5.79310e12 2.54387e13i 0.252719 1.10974i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.08042e9 + 7.06749e9i −0.000174603 + 0.000302422i
\(936\) 0 0
\(937\) −1.80968e12 −0.0766961 −0.0383480 0.999264i \(-0.512210\pi\)
−0.0383480 + 0.999264i \(0.512210\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.55916e13 2.70055e13i 0.648244 1.12279i −0.335298 0.942112i \(-0.608837\pi\)
0.983542 0.180679i \(-0.0578296\pi\)
\(942\) 0 0
\(943\) −4.15012e12 7.18822e12i −0.170906 0.296019i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.01232e10 + 6.94955e10i 0.00162114 + 0.00280790i 0.866835 0.498595i \(-0.166151\pi\)
−0.865214 + 0.501403i \(0.832817\pi\)
\(948\) 0 0
\(949\) 1.82727e12 3.16493e12i 0.0731316 0.126668i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.32667e13 0.913727 0.456864 0.889537i \(-0.348973\pi\)
0.456864 + 0.889537i \(0.348973\pi\)
\(954\) 0 0
\(955\) −1.43775e12 + 2.49025e12i −0.0559329 + 0.0968786i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.90518e13 2.38782e13i −0.727366 0.911629i
\(960\) 0 0
\(961\) 1.20651e13 + 2.08974e13i 0.456328 + 0.790383i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.60614e13 0.967442
\(966\) 0 0
\(967\) 1.75588e13 0.645766 0.322883 0.946439i \(-0.395348\pi\)
0.322883 + 0.946439i \(0.395348\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.46518e13 + 2.53777e13i 0.528939 + 0.916149i 0.999430 + 0.0337447i \(0.0107433\pi\)
−0.470491 + 0.882405i \(0.655923\pi\)
\(972\) 0 0
\(973\) 2.07658e12 5.29485e12i 0.0742745 0.189385i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.87204e12 + 1.01707e13i −0.206188 + 0.357128i −0.950511 0.310692i \(-0.899439\pi\)
0.744323 + 0.667820i \(0.232773\pi\)
\(978\) 0 0
\(979\) −1.18184e11 −0.00411184
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.51858e12 + 1.64867e13i −0.325148 + 0.563173i −0.981542 0.191245i \(-0.938747\pi\)
0.656394 + 0.754418i \(0.272081\pi\)
\(984\) 0 0
\(985\) 1.30889e13 + 2.26706e13i 0.443037 + 0.767363i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.15983e13 + 7.20503e13i 1.38259 + 2.39471i
\(990\) 0 0
\(991\) −2.61763e13 + 4.53386e13i −0.862136 + 1.49326i 0.00772625 + 0.999970i \(0.497541\pi\)
−0.869863 + 0.493294i \(0.835793\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.40351e13 0.777396
\(996\) 0 0
\(997\) 2.43290e13 4.21391e13i 0.779824 1.35069i −0.152219 0.988347i \(-0.548642\pi\)
0.932043 0.362348i \(-0.118025\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.10.k.e.109.2 12
3.2 odd 2 28.10.e.a.25.5 yes 12
7.2 even 3 inner 252.10.k.e.37.2 12
12.11 even 2 112.10.i.d.81.2 12
21.2 odd 6 28.10.e.a.9.5 12
21.5 even 6 196.10.e.h.177.2 12
21.11 odd 6 196.10.a.f.1.2 6
21.17 even 6 196.10.a.e.1.5 6
21.20 even 2 196.10.e.h.165.2 12
84.23 even 6 112.10.i.d.65.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.10.e.a.9.5 12 21.2 odd 6
28.10.e.a.25.5 yes 12 3.2 odd 2
112.10.i.d.65.2 12 84.23 even 6
112.10.i.d.81.2 12 12.11 even 2
196.10.a.e.1.5 6 21.17 even 6
196.10.a.f.1.2 6 21.11 odd 6
196.10.e.h.165.2 12 21.20 even 2
196.10.e.h.177.2 12 21.5 even 6
252.10.k.e.37.2 12 7.2 even 3 inner
252.10.k.e.109.2 12 1.1 even 1 trivial