Properties

Label 1950.2.z
Level $1950$
Weight $2$
Character orbit 1950.z
Rep. character $\chi_{1950}(1699,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $16$
Sturm bound $840$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 16 \)
Sturm bound: \(840\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1950, [\chi])\).

Total New Old
Modular forms 888 80 808
Cusp forms 792 80 712
Eisenstein series 96 0 96

Trace form

\( 80 q + 40 q^{4} + 40 q^{9} + 8 q^{11} + 16 q^{14} - 40 q^{16} - 20 q^{19} + 8 q^{21} + 28 q^{26} - 4 q^{29} - 32 q^{31} - 56 q^{34} - 40 q^{36} + 4 q^{39} - 52 q^{41} + 16 q^{44} - 8 q^{46} + 36 q^{49}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1950, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1950.2.z.a 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 1950.2.i.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.b 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 78.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.c 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 1950.2.i.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.d 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.e 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.f 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 1950.2.i.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.g 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 78.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.h 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.i 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.j 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.k 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 390.2.i.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.l 1950.z 65.n $4$ $15.571$ \(\Q(\zeta_{12})\) None 1950.2.i.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
1950.2.z.m 1950.z 65.n $8$ $15.571$ 8.0.1731891456.1 None 1950.2.i.z \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{3}+\beta _{7})q^{2}+(-\beta _{3}-\beta _{7})q^{3}-\beta _{2}q^{4}+\cdots\)
1950.2.z.n 1950.z 65.n $8$ $15.571$ 8.0.1731891456.1 None 390.2.i.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{7})q^{2}+(\beta _{3}+\beta _{7})q^{3}-\beta _{2}q^{4}+\cdots\)
1950.2.z.o 1950.z 65.n $8$ $15.571$ 8.0.3317760000.2 None 1950.2.i.ba \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{3})q^{2}+(-\beta _{1}+\beta _{3})q^{3}+\cdots\)
1950.2.z.p 1950.z 65.n $8$ $15.571$ 8.0.3317760000.2 None 1950.2.i.bc \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+\beta _{1}q^{3}+\beta _{2}q^{4}+\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1950, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1950, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)