Properties

Label 1950.2.z.n
Level $1950$
Weight $2$
Character orbit 1950.z
Analytic conductor $15.571$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1731891456.1
Defining polynomial: \(x^{8} - 9 x^{6} + 65 x^{4} - 144 x^{2} + 256\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{3} - \beta_{7} ) q^{2} + ( \beta_{3} + \beta_{7} ) q^{3} -\beta_{2} q^{4} + \beta_{2} q^{6} + ( \beta_{1} + \beta_{3} ) q^{7} -\beta_{7} q^{8} -\beta_{2} q^{9} +O(q^{10})\) \( q + ( -\beta_{3} - \beta_{7} ) q^{2} + ( \beta_{3} + \beta_{7} ) q^{3} -\beta_{2} q^{4} + \beta_{2} q^{6} + ( \beta_{1} + \beta_{3} ) q^{7} -\beta_{7} q^{8} -\beta_{2} q^{9} + ( -1 + \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{11} + \beta_{7} q^{12} + ( -\beta_{1} + \beta_{3} - \beta_{6} ) q^{13} + ( -1 + \beta_{4} ) q^{14} + ( -1 - \beta_{2} ) q^{16} + 2 \beta_{1} q^{17} -\beta_{7} q^{18} + ( 2 \beta_{2} + \beta_{5} ) q^{19} + ( 1 - \beta_{4} ) q^{21} + ( -2 \beta_{1} + \beta_{3} ) q^{22} + ( -3 \beta_{1} + 3 \beta_{6} ) q^{23} + ( 1 + \beta_{2} ) q^{24} + ( -1 + \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{26} + \beta_{7} q^{27} + ( \beta_{1} + \beta_{3} - \beta_{6} + \beta_{7} ) q^{28} + ( 4 + 5 \beta_{2} - \beta_{4} + \beta_{5} ) q^{29} + ( -2 - 3 \beta_{4} ) q^{31} + \beta_{3} q^{32} + ( 2 \beta_{1} - \beta_{3} ) q^{33} + 2 \beta_{4} q^{34} + ( -1 - \beta_{2} ) q^{36} + ( -2 \beta_{1} + \beta_{3} + 2 \beta_{6} + \beta_{7} ) q^{37} + ( -\beta_{6} + \beta_{7} ) q^{38} + ( 1 - \beta_{2} + 2 \beta_{4} - \beta_{5} ) q^{39} + ( -6 - 2 \beta_{2} - 4 \beta_{4} + 4 \beta_{5} ) q^{41} + ( -\beta_{1} - \beta_{3} + \beta_{6} - \beta_{7} ) q^{42} + ( -\beta_{1} - 2 \beta_{3} ) q^{43} + ( -1 - 2 \beta_{4} ) q^{44} + ( -3 \beta_{2} - 3 \beta_{5} ) q^{46} + 7 \beta_{7} q^{47} -\beta_{3} q^{48} + ( -2 + \beta_{2} - 3 \beta_{4} + 3 \beta_{5} ) q^{49} -2 \beta_{4} q^{51} + ( -2 \beta_{1} + \beta_{3} + \beta_{6} + \beta_{7} ) q^{52} + ( -\beta_{6} - 7 \beta_{7} ) q^{53} + ( 1 + \beta_{2} ) q^{54} + ( 2 \beta_{2} + \beta_{5} ) q^{56} + ( \beta_{6} - \beta_{7} ) q^{57} + ( -\beta_{1} - 4 \beta_{3} ) q^{58} + ( -9 \beta_{2} - \beta_{5} ) q^{59} + 6 \beta_{2} q^{61} + ( -3 \beta_{1} + 2 \beta_{3} + 3 \beta_{6} + 2 \beta_{7} ) q^{62} + ( \beta_{1} + \beta_{3} - \beta_{6} + \beta_{7} ) q^{63} - q^{64} + ( 1 + 2 \beta_{4} ) q^{66} + ( -4 \beta_{1} - 4 \beta_{3} + 4 \beta_{6} - 4 \beta_{7} ) q^{67} + ( 2 \beta_{1} - 2 \beta_{6} ) q^{68} + ( 3 \beta_{2} + 3 \beta_{5} ) q^{69} + ( -8 \beta_{2} + 2 \beta_{5} ) q^{71} + \beta_{3} q^{72} -6 \beta_{6} q^{73} + ( -\beta_{2} - 2 \beta_{5} ) q^{74} + ( 1 + 2 \beta_{2} - \beta_{4} + \beta_{5} ) q^{76} + ( 3 \beta_{6} - 7 \beta_{7} ) q^{77} + ( 2 \beta_{1} - \beta_{3} - \beta_{6} - \beta_{7} ) q^{78} + ( -10 - \beta_{4} ) q^{79} + ( -1 - \beta_{2} ) q^{81} + ( -4 \beta_{1} + 6 \beta_{3} ) q^{82} + ( 2 \beta_{6} + 4 \beta_{7} ) q^{83} + ( -2 \beta_{2} - \beta_{5} ) q^{84} + ( 2 - \beta_{4} ) q^{86} + ( \beta_{1} + 4 \beta_{3} ) q^{87} + ( -2 \beta_{1} + \beta_{3} + 2 \beta_{6} + \beta_{7} ) q^{88} + ( -11 - 6 \beta_{2} - 5 \beta_{4} + 5 \beta_{5} ) q^{89} + ( -3 - 10 \beta_{2} + \beta_{4} - 3 \beta_{5} ) q^{91} + 3 \beta_{6} q^{92} + ( 3 \beta_{1} - 2 \beta_{3} - 3 \beta_{6} - 2 \beta_{7} ) q^{93} + ( 7 + 7 \beta_{2} ) q^{94} + q^{96} + ( 2 \beta_{1} - 4 \beta_{3} ) q^{97} + ( -3 \beta_{1} + 2 \beta_{3} ) q^{98} + ( -1 - 2 \beta_{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{4} - 4q^{6} + 4q^{9} + O(q^{10}) \) \( 8q + 4q^{4} - 4q^{6} + 4q^{9} - 12q^{14} - 4q^{16} - 6q^{19} + 12q^{21} + 4q^{24} - 2q^{26} + 18q^{29} - 4q^{31} - 8q^{34} - 4q^{36} + 2q^{39} - 16q^{41} + 6q^{46} - 2q^{49} + 8q^{51} + 4q^{54} - 6q^{56} + 34q^{59} - 24q^{61} - 8q^{64} - 6q^{69} + 36q^{71} + 6q^{76} - 76q^{79} - 4q^{81} + 6q^{84} + 20q^{86} - 34q^{89} + 6q^{91} + 28q^{94} + 8q^{96} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 9 x^{6} + 65 x^{4} - 144 x^{2} + 256\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( 9 \nu^{6} - 65 \nu^{4} + 585 \nu^{2} - 1296 \)\()/1040\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{7} - 181 \nu \)\()/260\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{6} + 116 \)\()/65\)
\(\beta_{5}\)\(=\)\((\)\( -29 \nu^{6} + 325 \nu^{4} - 1885 \nu^{2} + 4176 \)\()/1040\)
\(\beta_{6}\)\(=\)\((\)\( 9 \nu^{7} - 65 \nu^{5} + 585 \nu^{3} - 256 \nu \)\()/1040\)
\(\beta_{7}\)\(=\)\((\)\( 9 \nu^{7} - 65 \nu^{5} + 377 \nu^{3} - 256 \nu \)\()/832\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{5} - \beta_{4} + 5 \beta_{2} + 4\)
\(\nu^{3}\)\(=\)\(-4 \beta_{7} + 5 \beta_{6}\)
\(\nu^{4}\)\(=\)\(9 \beta_{5} + 29 \beta_{2}\)
\(\nu^{5}\)\(=\)\(-36 \beta_{7} + 29 \beta_{6} - 36 \beta_{3} - 29 \beta_{1}\)
\(\nu^{6}\)\(=\)\(65 \beta_{4} - 116\)
\(\nu^{7}\)\(=\)\(-260 \beta_{3} - 181 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1699.1
−1.35234 + 0.780776i
2.21837 1.28078i
−2.21837 + 1.28078i
1.35234 0.780776i
−1.35234 0.780776i
2.21837 + 1.28078i
−2.21837 1.28078i
1.35234 + 0.780776i
−0.866025 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i −0.486319 + 0.280776i 1.00000i 0.500000 + 0.866025i 0
1699.2 −0.866025 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i 3.08440 1.78078i 1.00000i 0.500000 + 0.866025i 0
1699.3 0.866025 + 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i −3.08440 + 1.78078i 1.00000i 0.500000 + 0.866025i 0
1699.4 0.866025 + 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i 0.486319 0.280776i 1.00000i 0.500000 + 0.866025i 0
1849.1 −0.866025 + 0.500000i 0.866025 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i −0.486319 0.280776i 1.00000i 0.500000 0.866025i 0
1849.2 −0.866025 + 0.500000i 0.866025 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i 3.08440 + 1.78078i 1.00000i 0.500000 0.866025i 0
1849.3 0.866025 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i −3.08440 1.78078i 1.00000i 0.500000 0.866025i 0
1849.4 0.866025 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i 0.486319 + 0.280776i 1.00000i 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1849.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.c even 3 1 inner
65.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.z.n 8
5.b even 2 1 inner 1950.2.z.n 8
5.c odd 4 1 390.2.i.g 4
5.c odd 4 1 1950.2.i.bi 4
13.c even 3 1 inner 1950.2.z.n 8
15.e even 4 1 1170.2.i.o 4
65.n even 6 1 inner 1950.2.z.n 8
65.o even 12 1 5070.2.b.r 4
65.q odd 12 1 390.2.i.g 4
65.q odd 12 1 1950.2.i.bi 4
65.q odd 12 1 5070.2.a.bi 2
65.r odd 12 1 5070.2.a.bb 2
65.t even 12 1 5070.2.b.r 4
195.bl even 12 1 1170.2.i.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.i.g 4 5.c odd 4 1
390.2.i.g 4 65.q odd 12 1
1170.2.i.o 4 15.e even 4 1
1170.2.i.o 4 195.bl even 12 1
1950.2.i.bi 4 5.c odd 4 1
1950.2.i.bi 4 65.q odd 12 1
1950.2.z.n 8 1.a even 1 1 trivial
1950.2.z.n 8 5.b even 2 1 inner
1950.2.z.n 8 13.c even 3 1 inner
1950.2.z.n 8 65.n even 6 1 inner
5070.2.a.bb 2 65.r odd 12 1
5070.2.a.bi 2 65.q odd 12 1
5070.2.b.r 4 65.o even 12 1
5070.2.b.r 4 65.t even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\):

\( T_{7}^{8} - 13 T_{7}^{6} + 165 T_{7}^{4} - 52 T_{7}^{2} + 16 \)
\( T_{11}^{4} + 17 T_{11}^{2} + 289 \)
\( T_{17}^{8} - 36 T_{17}^{6} + 1040 T_{17}^{4} - 9216 T_{17}^{2} + 65536 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
$3$ \( ( 1 - T^{2} + T^{4} )^{2} \)
$5$ \( T^{8} \)
$7$ \( 16 - 52 T^{2} + 165 T^{4} - 13 T^{6} + T^{8} \)
$11$ \( ( 289 + 17 T^{2} + T^{4} )^{2} \)
$13$ \( 28561 + 4225 T^{2} + 456 T^{4} + 25 T^{6} + T^{8} \)
$17$ \( 65536 - 9216 T^{2} + 1040 T^{4} - 36 T^{6} + T^{8} \)
$19$ \( ( 4 - 6 T + 11 T^{2} + 3 T^{3} + T^{4} )^{2} \)
$23$ \( 1679616 - 104976 T^{2} + 5265 T^{4} - 81 T^{6} + T^{8} \)
$29$ \( ( 256 - 144 T + 65 T^{2} - 9 T^{3} + T^{4} )^{2} \)
$31$ \( ( -38 + T + T^{2} )^{4} \)
$37$ \( ( 289 - 17 T^{2} + T^{4} )^{2} \)
$41$ \( ( 2704 - 416 T + 116 T^{2} + 8 T^{3} + T^{4} )^{2} \)
$43$ \( 16 - 84 T^{2} + 437 T^{4} - 21 T^{6} + T^{8} \)
$47$ \( ( 49 + T^{2} )^{4} \)
$53$ \( ( 1444 + 93 T^{2} + T^{4} )^{2} \)
$59$ \( ( 4624 - 1156 T + 221 T^{2} - 17 T^{3} + T^{4} )^{2} \)
$61$ \( ( 36 + 6 T + T^{2} )^{4} \)
$67$ \( 1048576 - 212992 T^{2} + 42240 T^{4} - 208 T^{6} + T^{8} \)
$71$ \( ( 4096 - 1152 T + 260 T^{2} - 18 T^{3} + T^{4} )^{2} \)
$73$ \( ( 20736 + 324 T^{2} + T^{4} )^{2} \)
$79$ \( ( 86 + 19 T + T^{2} )^{4} \)
$83$ \( ( 64 + 52 T^{2} + T^{4} )^{2} \)
$89$ \( ( 1156 - 578 T + 323 T^{2} + 17 T^{3} + T^{4} )^{2} \)
$97$ \( 4096 - 3328 T^{2} + 2640 T^{4} - 52 T^{6} + T^{8} \)
show more
show less