Properties

Label 1950.2.z.b
Level $1950$
Weight $2$
Character orbit 1950.z
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{2} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} + ( -1 + \zeta_{12}^{2} ) q^{6} + 2 \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + ( 1 - \zeta_{12}^{2} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{2} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} + ( -1 + \zeta_{12}^{2} ) q^{6} + 2 \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + ( 1 - \zeta_{12}^{2} ) q^{9} -2 \zeta_{12}^{2} q^{11} -\zeta_{12}^{3} q^{12} + ( -3 \zeta_{12} - \zeta_{12}^{3} ) q^{13} -2 q^{14} -\zeta_{12}^{2} q^{16} -5 \zeta_{12} q^{17} + \zeta_{12}^{3} q^{18} + ( -2 + 2 \zeta_{12}^{2} ) q^{19} + 2 q^{21} + 2 \zeta_{12} q^{22} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{23} + \zeta_{12}^{2} q^{24} + ( 3 + \zeta_{12}^{2} ) q^{26} -\zeta_{12}^{3} q^{27} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{28} -9 \zeta_{12}^{2} q^{29} -4 q^{31} + \zeta_{12} q^{32} -2 \zeta_{12} q^{33} + 5 q^{34} -\zeta_{12}^{2} q^{36} + ( -11 \zeta_{12} + 11 \zeta_{12}^{3} ) q^{37} -2 \zeta_{12}^{3} q^{38} + ( -3 - \zeta_{12}^{2} ) q^{39} -5 \zeta_{12}^{2} q^{41} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{42} + 10 \zeta_{12} q^{43} -2 q^{44} + ( 6 - 6 \zeta_{12}^{2} ) q^{46} + 2 \zeta_{12}^{3} q^{47} -\zeta_{12} q^{48} -3 \zeta_{12}^{2} q^{49} -5 q^{51} + ( -4 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{52} + \zeta_{12}^{3} q^{53} + \zeta_{12}^{2} q^{54} + ( -2 + 2 \zeta_{12}^{2} ) q^{56} + 2 \zeta_{12}^{3} q^{57} + 9 \zeta_{12} q^{58} + ( -8 + 8 \zeta_{12}^{2} ) q^{59} + ( 11 - 11 \zeta_{12}^{2} ) q^{61} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{62} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{63} - q^{64} + 2 q^{66} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{67} + ( -5 \zeta_{12} + 5 \zeta_{12}^{3} ) q^{68} + ( -6 + 6 \zeta_{12}^{2} ) q^{69} + ( 14 - 14 \zeta_{12}^{2} ) q^{71} + \zeta_{12} q^{72} + 13 \zeta_{12}^{3} q^{73} + ( 11 - 11 \zeta_{12}^{2} ) q^{74} + 2 \zeta_{12}^{2} q^{76} -4 \zeta_{12}^{3} q^{77} + ( 4 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{78} + 4 q^{79} -\zeta_{12}^{2} q^{81} + 5 \zeta_{12} q^{82} -6 \zeta_{12}^{3} q^{83} + ( 2 - 2 \zeta_{12}^{2} ) q^{84} -10 q^{86} -9 \zeta_{12} q^{87} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{88} + 2 \zeta_{12}^{2} q^{89} + ( 2 - 8 \zeta_{12}^{2} ) q^{91} + 6 \zeta_{12}^{3} q^{92} + ( -4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{93} -2 \zeta_{12}^{2} q^{94} + q^{96} + 2 \zeta_{12} q^{97} + 3 \zeta_{12} q^{98} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} - 2q^{6} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{4} - 2q^{6} + 2q^{9} - 4q^{11} - 8q^{14} - 2q^{16} - 4q^{19} + 8q^{21} + 2q^{24} + 14q^{26} - 18q^{29} - 16q^{31} + 20q^{34} - 2q^{36} - 14q^{39} - 10q^{41} - 8q^{44} + 12q^{46} - 6q^{49} - 20q^{51} + 2q^{54} - 4q^{56} - 16q^{59} + 22q^{61} - 4q^{64} + 8q^{66} - 12q^{69} + 28q^{71} + 22q^{74} + 4q^{76} + 16q^{79} - 2q^{81} + 4q^{84} - 40q^{86} + 4q^{89} - 8q^{91} - 4q^{94} + 4q^{96} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(-1 + \zeta_{12}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1699.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i 1.73205 1.00000i 1.00000i 0.500000 + 0.866025i 0
1699.2 0.866025 + 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 0 −0.500000 0.866025i −1.73205 + 1.00000i 1.00000i 0.500000 + 0.866025i 0
1849.1 −0.866025 + 0.500000i 0.866025 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i 1.73205 + 1.00000i 1.00000i 0.500000 0.866025i 0
1849.2 0.866025 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 0 −0.500000 + 0.866025i −1.73205 1.00000i 1.00000i 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.c even 3 1 inner
65.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.z.b 4
5.b even 2 1 inner 1950.2.z.b 4
5.c odd 4 1 78.2.e.b 2
5.c odd 4 1 1950.2.i.b 2
13.c even 3 1 inner 1950.2.z.b 4
15.e even 4 1 234.2.h.b 2
20.e even 4 1 624.2.q.b 2
60.l odd 4 1 1872.2.t.i 2
65.f even 4 1 1014.2.i.e 4
65.h odd 4 1 1014.2.e.d 2
65.k even 4 1 1014.2.i.e 4
65.n even 6 1 inner 1950.2.z.b 4
65.o even 12 1 1014.2.b.a 2
65.o even 12 1 1014.2.i.e 4
65.q odd 12 1 78.2.e.b 2
65.q odd 12 1 1014.2.a.a 1
65.q odd 12 1 1950.2.i.b 2
65.r odd 12 1 1014.2.a.e 1
65.r odd 12 1 1014.2.e.d 2
65.t even 12 1 1014.2.b.a 2
65.t even 12 1 1014.2.i.e 4
195.bc odd 12 1 3042.2.b.d 2
195.bf even 12 1 3042.2.a.d 1
195.bl even 12 1 234.2.h.b 2
195.bl even 12 1 3042.2.a.m 1
195.bn odd 12 1 3042.2.b.d 2
260.bg even 12 1 8112.2.a.bb 1
260.bj even 12 1 624.2.q.b 2
260.bj even 12 1 8112.2.a.x 1
780.cj odd 12 1 1872.2.t.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.e.b 2 5.c odd 4 1
78.2.e.b 2 65.q odd 12 1
234.2.h.b 2 15.e even 4 1
234.2.h.b 2 195.bl even 12 1
624.2.q.b 2 20.e even 4 1
624.2.q.b 2 260.bj even 12 1
1014.2.a.a 1 65.q odd 12 1
1014.2.a.e 1 65.r odd 12 1
1014.2.b.a 2 65.o even 12 1
1014.2.b.a 2 65.t even 12 1
1014.2.e.d 2 65.h odd 4 1
1014.2.e.d 2 65.r odd 12 1
1014.2.i.e 4 65.f even 4 1
1014.2.i.e 4 65.k even 4 1
1014.2.i.e 4 65.o even 12 1
1014.2.i.e 4 65.t even 12 1
1872.2.t.i 2 60.l odd 4 1
1872.2.t.i 2 780.cj odd 12 1
1950.2.i.b 2 5.c odd 4 1
1950.2.i.b 2 65.q odd 12 1
1950.2.z.b 4 1.a even 1 1 trivial
1950.2.z.b 4 5.b even 2 1 inner
1950.2.z.b 4 13.c even 3 1 inner
1950.2.z.b 4 65.n even 6 1 inner
3042.2.a.d 1 195.bf even 12 1
3042.2.a.m 1 195.bl even 12 1
3042.2.b.d 2 195.bc odd 12 1
3042.2.b.d 2 195.bn odd 12 1
8112.2.a.x 1 260.bj even 12 1
8112.2.a.bb 1 260.bg even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\):

\( T_{7}^{4} - 4 T_{7}^{2} + 16 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)
\( T_{17}^{4} - 25 T_{17}^{2} + 625 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( 16 - 4 T^{2} + T^{4} \)
$11$ \( ( 4 + 2 T + T^{2} )^{2} \)
$13$ \( 169 - T^{2} + T^{4} \)
$17$ \( 625 - 25 T^{2} + T^{4} \)
$19$ \( ( 4 + 2 T + T^{2} )^{2} \)
$23$ \( 1296 - 36 T^{2} + T^{4} \)
$29$ \( ( 81 + 9 T + T^{2} )^{2} \)
$31$ \( ( 4 + T )^{4} \)
$37$ \( 14641 - 121 T^{2} + T^{4} \)
$41$ \( ( 25 + 5 T + T^{2} )^{2} \)
$43$ \( 10000 - 100 T^{2} + T^{4} \)
$47$ \( ( 4 + T^{2} )^{2} \)
$53$ \( ( 1 + T^{2} )^{2} \)
$59$ \( ( 64 + 8 T + T^{2} )^{2} \)
$61$ \( ( 121 - 11 T + T^{2} )^{2} \)
$67$ \( 16 - 4 T^{2} + T^{4} \)
$71$ \( ( 196 - 14 T + T^{2} )^{2} \)
$73$ \( ( 169 + T^{2} )^{2} \)
$79$ \( ( -4 + T )^{4} \)
$83$ \( ( 36 + T^{2} )^{2} \)
$89$ \( ( 4 - 2 T + T^{2} )^{2} \)
$97$ \( 16 - 4 T^{2} + T^{4} \)
show more
show less