Properties

Label 195.3.d.a.131.18
Level $195$
Weight $3$
Character 195.131
Analytic conductor $5.313$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,3,Mod(131,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.131"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.18
Character \(\chi\) \(=\) 195.131
Dual form 195.3.d.a.131.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.848705i q^{2} +(1.45000 - 2.62631i) q^{3} +3.27970 q^{4} -2.23607i q^{5} +(2.22896 + 1.23062i) q^{6} +5.71525 q^{7} +6.17832i q^{8} +(-4.79500 - 7.61630i) q^{9} +1.89776 q^{10} +0.158221i q^{11} +(4.75556 - 8.61351i) q^{12} -3.60555 q^{13} +4.85056i q^{14} +(-5.87261 - 3.24230i) q^{15} +7.87524 q^{16} -0.500131i q^{17} +(6.46399 - 4.06954i) q^{18} -7.38194 q^{19} -7.33363i q^{20} +(8.28711 - 15.0100i) q^{21} -0.134283 q^{22} -27.1571i q^{23} +(16.2262 + 8.95856i) q^{24} -5.00000 q^{25} -3.06005i q^{26} +(-26.9555 + 1.54954i) q^{27} +18.7443 q^{28} +43.5267i q^{29} +(2.75175 - 4.98411i) q^{30} +60.8642 q^{31} +31.3970i q^{32} +(0.415537 + 0.229420i) q^{33} +0.424464 q^{34} -12.7797i q^{35} +(-15.7262 - 24.9792i) q^{36} -16.3052 q^{37} -6.26509i q^{38} +(-5.22805 + 9.46929i) q^{39} +13.8151 q^{40} +38.8939i q^{41} +(12.7391 + 7.03331i) q^{42} -33.5312 q^{43} +0.518917i q^{44} +(-17.0306 + 10.7220i) q^{45} +23.0483 q^{46} +10.7438i q^{47} +(11.4191 - 20.6828i) q^{48} -16.3359 q^{49} -4.24352i q^{50} +(-1.31350 - 0.725190i) q^{51} -11.8251 q^{52} -35.9526i q^{53} +(-1.31510 - 22.8773i) q^{54} +0.353792 q^{55} +35.3106i q^{56} +(-10.7038 + 19.3873i) q^{57} -36.9413 q^{58} +58.0013i q^{59} +(-19.2604 - 10.6338i) q^{60} -49.4053 q^{61} +51.6558i q^{62} +(-27.4046 - 43.5290i) q^{63} +4.85415 q^{64} +8.06226i q^{65} +(-0.194710 + 0.352668i) q^{66} -0.886312 q^{67} -1.64028i q^{68} +(-71.3229 - 39.3778i) q^{69} +10.8462 q^{70} +70.9978i q^{71} +(47.0559 - 29.6250i) q^{72} -91.7472 q^{73} -13.8383i q^{74} +(-7.25000 + 13.1315i) q^{75} -24.2105 q^{76} +0.904271i q^{77} +(-8.03663 - 4.43707i) q^{78} -99.0881 q^{79} -17.6096i q^{80} +(-35.0159 + 73.0403i) q^{81} -33.0095 q^{82} -7.11823i q^{83} +(27.1792 - 49.2283i) q^{84} -1.11833 q^{85} -28.4581i q^{86} +(114.315 + 63.1137i) q^{87} -0.977538 q^{88} -38.6312i q^{89} +(-9.09977 - 14.4539i) q^{90} -20.6066 q^{91} -89.0671i q^{92} +(88.2531 - 159.848i) q^{93} -9.11829 q^{94} +16.5065i q^{95} +(82.4583 + 45.5257i) q^{96} +143.364 q^{97} -13.8644i q^{98} +(1.20506 - 0.758669i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 60 q^{4} - 8 q^{6} + 8 q^{9} - 20 q^{10} - 68 q^{12} + 172 q^{16} + 132 q^{18} - 16 q^{19} + 44 q^{21} - 64 q^{22} - 92 q^{24} - 160 q^{25} + 20 q^{27} + 224 q^{28} - 40 q^{30} - 56 q^{31}+ \cdots + 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.848705i 0.424352i 0.977231 + 0.212176i \(0.0680551\pi\)
−0.977231 + 0.212176i \(0.931945\pi\)
\(3\) 1.45000 2.62631i 0.483333 0.875436i
\(4\) 3.27970 0.819925
\(5\) 2.23607i 0.447214i
\(6\) 2.22896 + 1.23062i 0.371494 + 0.205104i
\(7\) 5.71525 0.816464 0.408232 0.912878i \(-0.366145\pi\)
0.408232 + 0.912878i \(0.366145\pi\)
\(8\) 6.17832i 0.772289i
\(9\) −4.79500 7.61630i −0.532778 0.846255i
\(10\) 1.89776 0.189776
\(11\) 0.158221i 0.0143837i 0.999974 + 0.00719185i \(0.00228926\pi\)
−0.999974 + 0.00719185i \(0.997711\pi\)
\(12\) 4.75556 8.61351i 0.396297 0.717792i
\(13\) −3.60555 −0.277350
\(14\) 4.85056i 0.346469i
\(15\) −5.87261 3.24230i −0.391507 0.216153i
\(16\) 7.87524 0.492202
\(17\) 0.500131i 0.0294195i −0.999892 0.0147097i \(-0.995318\pi\)
0.999892 0.0147097i \(-0.00468242\pi\)
\(18\) 6.46399 4.06954i 0.359110 0.226086i
\(19\) −7.38194 −0.388523 −0.194262 0.980950i \(-0.562231\pi\)
−0.194262 + 0.980950i \(0.562231\pi\)
\(20\) 7.33363i 0.366682i
\(21\) 8.28711 15.0100i 0.394624 0.714763i
\(22\) −0.134283 −0.00610376
\(23\) 27.1571i 1.18074i −0.807132 0.590371i \(-0.798981\pi\)
0.807132 0.590371i \(-0.201019\pi\)
\(24\) 16.2262 + 8.95856i 0.676090 + 0.373273i
\(25\) −5.00000 −0.200000
\(26\) 3.06005i 0.117694i
\(27\) −26.9555 + 1.54954i −0.998352 + 0.0573902i
\(28\) 18.7443 0.669439
\(29\) 43.5267i 1.50092i 0.660915 + 0.750461i \(0.270168\pi\)
−0.660915 + 0.750461i \(0.729832\pi\)
\(30\) 2.75175 4.98411i 0.0917251 0.166137i
\(31\) 60.8642 1.96336 0.981681 0.190532i \(-0.0610213\pi\)
0.981681 + 0.190532i \(0.0610213\pi\)
\(32\) 31.3970i 0.981157i
\(33\) 0.415537 + 0.229420i 0.0125920 + 0.00695212i
\(34\) 0.424464 0.0124842
\(35\) 12.7797i 0.365134i
\(36\) −15.7262 24.9792i −0.436838 0.693866i
\(37\) −16.3052 −0.440682 −0.220341 0.975423i \(-0.570717\pi\)
−0.220341 + 0.975423i \(0.570717\pi\)
\(38\) 6.26509i 0.164871i
\(39\) −5.22805 + 9.46929i −0.134053 + 0.242802i
\(40\) 13.8151 0.345378
\(41\) 38.8939i 0.948632i 0.880355 + 0.474316i \(0.157305\pi\)
−0.880355 + 0.474316i \(0.842695\pi\)
\(42\) 12.7391 + 7.03331i 0.303311 + 0.167460i
\(43\) −33.5312 −0.779796 −0.389898 0.920858i \(-0.627490\pi\)
−0.389898 + 0.920858i \(0.627490\pi\)
\(44\) 0.518917i 0.0117936i
\(45\) −17.0306 + 10.7220i −0.378457 + 0.238266i
\(46\) 23.0483 0.501051
\(47\) 10.7438i 0.228591i 0.993447 + 0.114296i \(0.0364611\pi\)
−0.993447 + 0.114296i \(0.963539\pi\)
\(48\) 11.4191 20.6828i 0.237898 0.430892i
\(49\) −16.3359 −0.333386
\(50\) 4.24352i 0.0848705i
\(51\) −1.31350 0.725190i −0.0257549 0.0142194i
\(52\) −11.8251 −0.227406
\(53\) 35.9526i 0.678350i −0.940723 0.339175i \(-0.889852\pi\)
0.940723 0.339175i \(-0.110148\pi\)
\(54\) −1.31510 22.8773i −0.0243537 0.423653i
\(55\) 0.353792 0.00643259
\(56\) 35.3106i 0.630547i
\(57\) −10.7038 + 19.3873i −0.187786 + 0.340127i
\(58\) −36.9413 −0.636920
\(59\) 58.0013i 0.983072i 0.870857 + 0.491536i \(0.163564\pi\)
−0.870857 + 0.491536i \(0.836436\pi\)
\(60\) −19.2604 10.6338i −0.321006 0.177229i
\(61\) −49.4053 −0.809923 −0.404961 0.914334i \(-0.632715\pi\)
−0.404961 + 0.914334i \(0.632715\pi\)
\(62\) 51.6558i 0.833157i
\(63\) −27.4046 43.5290i −0.434994 0.690937i
\(64\) 4.85415 0.0758461
\(65\) 8.06226i 0.124035i
\(66\) −0.194710 + 0.352668i −0.00295015 + 0.00534345i
\(67\) −0.886312 −0.0132285 −0.00661427 0.999978i \(-0.502105\pi\)
−0.00661427 + 0.999978i \(0.502105\pi\)
\(68\) 1.64028i 0.0241218i
\(69\) −71.3229 39.3778i −1.03367 0.570692i
\(70\) 10.8462 0.154945
\(71\) 70.9978i 0.999969i 0.866034 + 0.499985i \(0.166661\pi\)
−0.866034 + 0.499985i \(0.833339\pi\)
\(72\) 47.0559 29.6250i 0.653554 0.411459i
\(73\) −91.7472 −1.25681 −0.628405 0.777886i \(-0.716292\pi\)
−0.628405 + 0.777886i \(0.716292\pi\)
\(74\) 13.8383i 0.187005i
\(75\) −7.25000 + 13.1315i −0.0966666 + 0.175087i
\(76\) −24.2105 −0.318560
\(77\) 0.904271i 0.0117438i
\(78\) −8.03663 4.43707i −0.103034 0.0568855i
\(79\) −99.0881 −1.25428 −0.627140 0.778907i \(-0.715775\pi\)
−0.627140 + 0.778907i \(0.715775\pi\)
\(80\) 17.6096i 0.220120i
\(81\) −35.0159 + 73.0403i −0.432295 + 0.901732i
\(82\) −33.0095 −0.402554
\(83\) 7.11823i 0.0857618i −0.999080 0.0428809i \(-0.986346\pi\)
0.999080 0.0428809i \(-0.0136536\pi\)
\(84\) 27.1792 49.2283i 0.323562 0.586052i
\(85\) −1.11833 −0.0131568
\(86\) 28.4581i 0.330908i
\(87\) 114.315 + 63.1137i 1.31396 + 0.725445i
\(88\) −0.977538 −0.0111084
\(89\) 38.6312i 0.434059i −0.976165 0.217029i \(-0.930363\pi\)
0.976165 0.217029i \(-0.0696368\pi\)
\(90\) −9.09977 14.4539i −0.101109 0.160599i
\(91\) −20.6066 −0.226446
\(92\) 89.0671i 0.968121i
\(93\) 88.2531 159.848i 0.948958 1.71880i
\(94\) −9.11829 −0.0970031
\(95\) 16.5065i 0.173753i
\(96\) 82.4583 + 45.5257i 0.858940 + 0.474226i
\(97\) 143.364 1.47798 0.738990 0.673716i \(-0.235303\pi\)
0.738990 + 0.673716i \(0.235303\pi\)
\(98\) 13.8644i 0.141473i
\(99\) 1.20506 0.758669i 0.0121723 0.00766332i
\(100\) −16.3985 −0.163985
\(101\) 118.950i 1.17772i 0.808234 + 0.588861i \(0.200424\pi\)
−0.808234 + 0.588861i \(0.799576\pi\)
\(102\) 0.615472 1.11477i 0.00603404 0.0109291i
\(103\) −12.7154 −0.123451 −0.0617253 0.998093i \(-0.519660\pi\)
−0.0617253 + 0.998093i \(0.519660\pi\)
\(104\) 22.2762i 0.214195i
\(105\) −33.5634 18.5305i −0.319652 0.176481i
\(106\) 30.5131 0.287860
\(107\) 124.695i 1.16538i 0.812695 + 0.582689i \(0.197999\pi\)
−0.812695 + 0.582689i \(0.802001\pi\)
\(108\) −88.4060 + 5.08201i −0.818574 + 0.0470557i
\(109\) 162.228 1.48833 0.744165 0.667996i \(-0.232848\pi\)
0.744165 + 0.667996i \(0.232848\pi\)
\(110\) 0.300265i 0.00272968i
\(111\) −23.6426 + 42.8226i −0.212996 + 0.385789i
\(112\) 45.0089 0.401866
\(113\) 138.982i 1.22993i −0.788553 0.614966i \(-0.789170\pi\)
0.788553 0.614966i \(-0.210830\pi\)
\(114\) −16.4541 9.08437i −0.144334 0.0796875i
\(115\) −60.7251 −0.528044
\(116\) 142.755i 1.23064i
\(117\) 17.2886 + 27.4609i 0.147766 + 0.234709i
\(118\) −49.2260 −0.417169
\(119\) 2.85837i 0.0240199i
\(120\) 20.0319 36.2828i 0.166933 0.302357i
\(121\) 120.975 0.999793
\(122\) 41.9305i 0.343693i
\(123\) 102.147 + 56.3962i 0.830467 + 0.458505i
\(124\) 199.616 1.60981
\(125\) 11.1803i 0.0894427i
\(126\) 36.9433 23.2584i 0.293201 0.184591i
\(127\) −176.155 −1.38705 −0.693523 0.720434i \(-0.743943\pi\)
−0.693523 + 0.720434i \(0.743943\pi\)
\(128\) 129.708i 1.01334i
\(129\) −48.6203 + 88.0634i −0.376901 + 0.682662i
\(130\) −6.84248 −0.0526344
\(131\) 6.93895i 0.0529691i 0.999649 + 0.0264845i \(0.00843128\pi\)
−0.999649 + 0.0264845i \(0.991569\pi\)
\(132\) 1.36284 + 0.752429i 0.0103245 + 0.00570022i
\(133\) −42.1896 −0.317215
\(134\) 0.752217i 0.00561356i
\(135\) 3.46487 + 60.2743i 0.0256657 + 0.446477i
\(136\) 3.08997 0.0227203
\(137\) 234.452i 1.71133i −0.517532 0.855664i \(-0.673149\pi\)
0.517532 0.855664i \(-0.326851\pi\)
\(138\) 33.4201 60.5321i 0.242175 0.438638i
\(139\) 241.111 1.73461 0.867304 0.497778i \(-0.165851\pi\)
0.867304 + 0.497778i \(0.165851\pi\)
\(140\) 41.9135i 0.299382i
\(141\) 28.2165 + 15.5785i 0.200117 + 0.110486i
\(142\) −60.2562 −0.424339
\(143\) 0.570473i 0.00398932i
\(144\) −37.7618 59.9801i −0.262235 0.416529i
\(145\) 97.3287 0.671233
\(146\) 77.8663i 0.533331i
\(147\) −23.6871 + 42.9032i −0.161137 + 0.291858i
\(148\) −53.4763 −0.361326
\(149\) 53.9977i 0.362401i −0.983446 0.181200i \(-0.942002\pi\)
0.983446 0.181200i \(-0.0579982\pi\)
\(150\) −11.1448 6.15311i −0.0742987 0.0410207i
\(151\) 10.3411 0.0684844 0.0342422 0.999414i \(-0.489098\pi\)
0.0342422 + 0.999414i \(0.489098\pi\)
\(152\) 45.6079i 0.300052i
\(153\) −3.80915 + 2.39813i −0.0248964 + 0.0156740i
\(154\) −0.767459 −0.00498350
\(155\) 136.097i 0.878042i
\(156\) −17.1464 + 31.0564i −0.109913 + 0.199080i
\(157\) 113.076 0.720229 0.360114 0.932908i \(-0.382738\pi\)
0.360114 + 0.932908i \(0.382738\pi\)
\(158\) 84.0965i 0.532257i
\(159\) −94.4226 52.1312i −0.593853 0.327869i
\(160\) 70.2059 0.438787
\(161\) 155.210i 0.964034i
\(162\) −61.9897 29.7182i −0.382652 0.183445i
\(163\) −50.7567 −0.311391 −0.155696 0.987805i \(-0.549762\pi\)
−0.155696 + 0.987805i \(0.549762\pi\)
\(164\) 127.560i 0.777807i
\(165\) 0.512999 0.929168i 0.00310908 0.00563132i
\(166\) 6.04128 0.0363932
\(167\) 16.9502i 0.101498i −0.998711 0.0507492i \(-0.983839\pi\)
0.998711 0.0507492i \(-0.0161609\pi\)
\(168\) 92.7366 + 51.2004i 0.552004 + 0.304764i
\(169\) 13.0000 0.0769231
\(170\) 0.949129i 0.00558311i
\(171\) 35.3964 + 56.2230i 0.206997 + 0.328790i
\(172\) −109.972 −0.639375
\(173\) 254.399i 1.47052i −0.677787 0.735259i \(-0.737061\pi\)
0.677787 0.735259i \(-0.262939\pi\)
\(174\) −53.5649 + 97.0194i −0.307844 + 0.557583i
\(175\) −28.5762 −0.163293
\(176\) 1.24603i 0.00707969i
\(177\) 152.329 + 84.1018i 0.860617 + 0.475151i
\(178\) 32.7865 0.184194
\(179\) 85.6497i 0.478490i −0.970959 0.239245i \(-0.923100\pi\)
0.970959 0.239245i \(-0.0768999\pi\)
\(180\) −55.8551 + 35.1648i −0.310306 + 0.195360i
\(181\) −270.553 −1.49477 −0.747384 0.664393i \(-0.768690\pi\)
−0.747384 + 0.664393i \(0.768690\pi\)
\(182\) 17.4889i 0.0960931i
\(183\) −71.6376 + 129.754i −0.391462 + 0.709036i
\(184\) 167.785 0.911875
\(185\) 36.4596i 0.197079i
\(186\) 135.664 + 74.9008i 0.729376 + 0.402693i
\(187\) 0.0791311 0.000423161
\(188\) 35.2364i 0.187428i
\(189\) −154.057 + 8.85599i −0.815119 + 0.0468571i
\(190\) −14.0092 −0.0737324
\(191\) 363.679i 1.90408i −0.305973 0.952040i \(-0.598982\pi\)
0.305973 0.952040i \(-0.401018\pi\)
\(192\) 7.03851 12.7485i 0.0366589 0.0663984i
\(193\) −289.833 −1.50173 −0.750864 0.660457i \(-0.770363\pi\)
−0.750864 + 0.660457i \(0.770363\pi\)
\(194\) 121.674i 0.627185i
\(195\) 21.1740 + 11.6903i 0.108585 + 0.0599501i
\(196\) −53.5769 −0.273352
\(197\) 16.2644i 0.0825606i 0.999148 + 0.0412803i \(0.0131437\pi\)
−0.999148 + 0.0412803i \(0.986856\pi\)
\(198\) 0.643886 + 1.02274i 0.00325195 + 0.00516534i
\(199\) 3.23910 0.0162769 0.00813845 0.999967i \(-0.497409\pi\)
0.00813845 + 0.999967i \(0.497409\pi\)
\(200\) 30.8916i 0.154458i
\(201\) −1.28515 + 2.32773i −0.00639379 + 0.0115807i
\(202\) −100.953 −0.499770
\(203\) 248.766i 1.22545i
\(204\) −4.30788 2.37840i −0.0211171 0.0116588i
\(205\) 86.9694 0.424241
\(206\) 10.7916i 0.0523866i
\(207\) −206.836 + 130.218i −0.999209 + 0.629074i
\(208\) −28.3946 −0.136512
\(209\) 1.16798i 0.00558840i
\(210\) 15.7270 28.4854i 0.0748903 0.135645i
\(211\) −293.051 −1.38887 −0.694435 0.719556i \(-0.744345\pi\)
−0.694435 + 0.719556i \(0.744345\pi\)
\(212\) 117.914i 0.556196i
\(213\) 186.462 + 102.947i 0.875409 + 0.483318i
\(214\) −105.830 −0.494531
\(215\) 74.9781i 0.348736i
\(216\) −9.57353 166.540i −0.0443219 0.771017i
\(217\) 347.854 1.60301
\(218\) 137.684i 0.631576i
\(219\) −133.033 + 240.957i −0.607458 + 1.10026i
\(220\) 1.16033 0.00527424
\(221\) 1.80325i 0.00815949i
\(222\) −36.3438 20.0656i −0.163711 0.0903855i
\(223\) 234.429 1.05125 0.525624 0.850717i \(-0.323832\pi\)
0.525624 + 0.850717i \(0.323832\pi\)
\(224\) 179.442i 0.801079i
\(225\) 23.9750 + 38.0815i 0.106556 + 0.169251i
\(226\) 117.955 0.521925
\(227\) 109.658i 0.483076i 0.970391 + 0.241538i \(0.0776518\pi\)
−0.970391 + 0.241538i \(0.922348\pi\)
\(228\) −35.1053 + 63.5844i −0.153971 + 0.278879i
\(229\) 73.4865 0.320902 0.160451 0.987044i \(-0.448705\pi\)
0.160451 + 0.987044i \(0.448705\pi\)
\(230\) 51.5377i 0.224077i
\(231\) 2.37490 + 1.31119i 0.0102809 + 0.00567616i
\(232\) −268.922 −1.15915
\(233\) 32.6938i 0.140317i −0.997536 0.0701583i \(-0.977650\pi\)
0.997536 0.0701583i \(-0.0223504\pi\)
\(234\) −23.3062 + 14.6729i −0.0995993 + 0.0627049i
\(235\) 24.0238 0.102229
\(236\) 190.227i 0.806046i
\(237\) −143.678 + 260.236i −0.606235 + 1.09804i
\(238\) 2.42592 0.0101929
\(239\) 303.835i 1.27128i −0.771987 0.635638i \(-0.780737\pi\)
0.771987 0.635638i \(-0.219263\pi\)
\(240\) −46.2482 25.5339i −0.192701 0.106391i
\(241\) 223.844 0.928814 0.464407 0.885622i \(-0.346268\pi\)
0.464407 + 0.885622i \(0.346268\pi\)
\(242\) 102.672i 0.424265i
\(243\) 141.053 + 197.871i 0.580467 + 0.814284i
\(244\) −162.035 −0.664076
\(245\) 36.5282i 0.149095i
\(246\) −47.8637 + 86.6930i −0.194568 + 0.352411i
\(247\) 26.6160 0.107757
\(248\) 376.038i 1.51628i
\(249\) −18.6947 10.3214i −0.0750790 0.0414515i
\(250\) −9.48881 −0.0379552
\(251\) 105.280i 0.419441i 0.977761 + 0.209721i \(0.0672554\pi\)
−0.977761 + 0.209721i \(0.932745\pi\)
\(252\) −89.8790 142.762i −0.356663 0.566517i
\(253\) 4.29681 0.0169835
\(254\) 149.504i 0.588597i
\(255\) −1.62157 + 2.93707i −0.00635911 + 0.0115179i
\(256\) −90.6670 −0.354168
\(257\) 36.7130i 0.142852i 0.997446 + 0.0714260i \(0.0227550\pi\)
−0.997446 + 0.0714260i \(0.977245\pi\)
\(258\) −74.7398 41.2643i −0.289689 0.159939i
\(259\) −93.1885 −0.359801
\(260\) 26.4418i 0.101699i
\(261\) 331.512 208.711i 1.27016 0.799658i
\(262\) −5.88912 −0.0224776
\(263\) 419.283i 1.59423i −0.603827 0.797116i \(-0.706358\pi\)
0.603827 0.797116i \(-0.293642\pi\)
\(264\) −1.41743 + 2.56732i −0.00536905 + 0.00972468i
\(265\) −80.3924 −0.303367
\(266\) 35.8065i 0.134611i
\(267\) −101.458 56.0153i −0.379991 0.209795i
\(268\) −2.90684 −0.0108464
\(269\) 249.344i 0.926931i −0.886115 0.463465i \(-0.846606\pi\)
0.886115 0.463465i \(-0.153394\pi\)
\(270\) −51.1551 + 2.94065i −0.189463 + 0.0108913i
\(271\) −358.799 −1.32398 −0.661990 0.749513i \(-0.730288\pi\)
−0.661990 + 0.749513i \(0.730288\pi\)
\(272\) 3.93865i 0.0144803i
\(273\) −29.8796 + 54.1194i −0.109449 + 0.198239i
\(274\) 198.980 0.726206
\(275\) 0.791104i 0.00287674i
\(276\) −233.918 129.147i −0.847528 0.467925i
\(277\) 188.529 0.680612 0.340306 0.940315i \(-0.389469\pi\)
0.340306 + 0.940315i \(0.389469\pi\)
\(278\) 204.632i 0.736085i
\(279\) −291.844 463.560i −1.04604 1.66150i
\(280\) 78.9569 0.281989
\(281\) 411.696i 1.46511i −0.680708 0.732555i \(-0.738328\pi\)
0.680708 0.732555i \(-0.261672\pi\)
\(282\) −13.2215 + 23.9475i −0.0468848 + 0.0849201i
\(283\) −264.059 −0.933071 −0.466536 0.884502i \(-0.654498\pi\)
−0.466536 + 0.884502i \(0.654498\pi\)
\(284\) 232.852i 0.819900i
\(285\) 43.3512 + 23.9344i 0.152110 + 0.0839805i
\(286\) 0.484163 0.00169288
\(287\) 222.288i 0.774524i
\(288\) 239.129 150.549i 0.830309 0.522739i
\(289\) 288.750 0.999134
\(290\) 82.6033i 0.284839i
\(291\) 207.878 376.519i 0.714357 1.29388i
\(292\) −300.903 −1.03049
\(293\) 291.057i 0.993368i 0.867931 + 0.496684i \(0.165449\pi\)
−0.867931 + 0.496684i \(0.834551\pi\)
\(294\) −36.4121 20.1033i −0.123851 0.0683787i
\(295\) 129.695 0.439643
\(296\) 100.739i 0.340334i
\(297\) −0.245169 4.26492i −0.000825484 0.0143600i
\(298\) 45.8281 0.153786
\(299\) 97.9163i 0.327479i
\(300\) −23.7778 + 43.0675i −0.0792594 + 0.143558i
\(301\) −191.639 −0.636676
\(302\) 8.77657i 0.0290615i
\(303\) 312.400 + 172.477i 1.03102 + 0.569233i
\(304\) −58.1345 −0.191232
\(305\) 110.474i 0.362208i
\(306\) −2.03530 3.23284i −0.00665132 0.0105648i
\(307\) 131.664 0.428871 0.214436 0.976738i \(-0.431209\pi\)
0.214436 + 0.976738i \(0.431209\pi\)
\(308\) 2.96574i 0.00962902i
\(309\) −18.4374 + 33.3946i −0.0596678 + 0.108073i
\(310\) 115.506 0.372599
\(311\) 73.9535i 0.237792i 0.992907 + 0.118896i \(0.0379356\pi\)
−0.992907 + 0.118896i \(0.962064\pi\)
\(312\) −58.5043 32.3005i −0.187514 0.103527i
\(313\) 243.959 0.779421 0.389710 0.920937i \(-0.372575\pi\)
0.389710 + 0.920937i \(0.372575\pi\)
\(314\) 95.9680i 0.305631i
\(315\) −97.3339 + 61.2786i −0.308996 + 0.194535i
\(316\) −324.979 −1.02842
\(317\) 251.630i 0.793784i −0.917865 0.396892i \(-0.870089\pi\)
0.917865 0.396892i \(-0.129911\pi\)
\(318\) 44.2440 80.1369i 0.139132 0.252003i
\(319\) −6.88683 −0.0215888
\(320\) 10.8542i 0.0339194i
\(321\) 327.489 + 180.808i 1.02021 + 0.563266i
\(322\) 131.727 0.409090
\(323\) 3.69194i 0.0114301i
\(324\) −114.842 + 239.550i −0.354450 + 0.739353i
\(325\) 18.0278 0.0554700
\(326\) 43.0775i 0.132140i
\(327\) 235.230 426.061i 0.719359 1.30294i
\(328\) −240.299 −0.732619
\(329\) 61.4034i 0.186636i
\(330\) 0.788589 + 0.435384i 0.00238966 + 0.00131935i
\(331\) 304.896 0.921136 0.460568 0.887624i \(-0.347646\pi\)
0.460568 + 0.887624i \(0.347646\pi\)
\(332\) 23.3457i 0.0703183i
\(333\) 78.1837 + 124.186i 0.234786 + 0.372930i
\(334\) 14.3858 0.0430711
\(335\) 1.98185i 0.00591598i
\(336\) 65.2629 118.207i 0.194235 0.351808i
\(337\) 321.388 0.953672 0.476836 0.878992i \(-0.341784\pi\)
0.476836 + 0.878992i \(0.341784\pi\)
\(338\) 11.0332i 0.0326425i
\(339\) −365.011 201.524i −1.07673 0.594467i
\(340\) −3.66778 −0.0107876
\(341\) 9.62998i 0.0282404i
\(342\) −47.7167 + 30.0411i −0.139523 + 0.0878395i
\(343\) −373.411 −1.08866
\(344\) 207.167i 0.602229i
\(345\) −88.0513 + 159.483i −0.255221 + 0.462269i
\(346\) 215.910 0.624017
\(347\) 157.727i 0.454546i 0.973831 + 0.227273i \(0.0729810\pi\)
−0.973831 + 0.227273i \(0.927019\pi\)
\(348\) 374.918 + 206.994i 1.07735 + 0.594811i
\(349\) 142.635 0.408697 0.204349 0.978898i \(-0.434492\pi\)
0.204349 + 0.978898i \(0.434492\pi\)
\(350\) 24.2528i 0.0692937i
\(351\) 97.1894 5.58693i 0.276893 0.0159172i
\(352\) −4.96766 −0.0141127
\(353\) 513.946i 1.45594i −0.685610 0.727969i \(-0.740465\pi\)
0.685610 0.727969i \(-0.259535\pi\)
\(354\) −71.3776 + 129.283i −0.201632 + 0.365205i
\(355\) 158.756 0.447200
\(356\) 126.699i 0.355896i
\(357\) −7.50697 4.14464i −0.0210279 0.0116096i
\(358\) 72.6913 0.203048
\(359\) 333.243i 0.928254i 0.885769 + 0.464127i \(0.153632\pi\)
−0.885769 + 0.464127i \(0.846368\pi\)
\(360\) −66.2436 105.220i −0.184010 0.292278i
\(361\) −306.507 −0.849050
\(362\) 229.620i 0.634308i
\(363\) 175.414 317.718i 0.483233 0.875255i
\(364\) −67.5836 −0.185669
\(365\) 205.153i 0.562063i
\(366\) −110.122 60.7992i −0.300881 0.166118i
\(367\) −301.086 −0.820399 −0.410199 0.911996i \(-0.634541\pi\)
−0.410199 + 0.911996i \(0.634541\pi\)
\(368\) 213.868i 0.581164i
\(369\) 296.228 186.496i 0.802785 0.505410i
\(370\) −30.9435 −0.0836310
\(371\) 205.478i 0.553849i
\(372\) 289.444 524.254i 0.778074 1.40929i
\(373\) 564.877 1.51442 0.757208 0.653174i \(-0.226563\pi\)
0.757208 + 0.653174i \(0.226563\pi\)
\(374\) 0.0671589i 0.000179569i
\(375\) 29.3630 + 16.2115i 0.0783014 + 0.0432306i
\(376\) −66.3785 −0.176538
\(377\) 156.938i 0.416281i
\(378\) −7.51612 130.749i −0.0198839 0.345897i
\(379\) 199.618 0.526696 0.263348 0.964701i \(-0.415173\pi\)
0.263348 + 0.964701i \(0.415173\pi\)
\(380\) 54.1364i 0.142464i
\(381\) −255.425 + 462.637i −0.670406 + 1.21427i
\(382\) 308.656 0.808001
\(383\) 722.487i 1.88639i 0.332242 + 0.943194i \(0.392195\pi\)
−0.332242 + 0.943194i \(0.607805\pi\)
\(384\) 340.653 + 188.076i 0.887117 + 0.489782i
\(385\) 2.02201 0.00525198
\(386\) 245.983i 0.637262i
\(387\) 160.782 + 255.384i 0.415458 + 0.659907i
\(388\) 470.191 1.21183
\(389\) 689.844i 1.77338i −0.462366 0.886689i \(-0.652999\pi\)
0.462366 0.886689i \(-0.347001\pi\)
\(390\) −9.92159 + 17.9705i −0.0254400 + 0.0460781i
\(391\) −13.5821 −0.0347368
\(392\) 100.928i 0.257471i
\(393\) 18.2238 + 10.0615i 0.0463711 + 0.0256017i
\(394\) −13.8037 −0.0350348
\(395\) 221.568i 0.560931i
\(396\) 3.95222 2.48821i 0.00998036 0.00628335i
\(397\) 86.4994 0.217883 0.108941 0.994048i \(-0.465254\pi\)
0.108941 + 0.994048i \(0.465254\pi\)
\(398\) 2.74904i 0.00690714i
\(399\) −61.1749 + 110.803i −0.153321 + 0.277702i
\(400\) −39.3762 −0.0984404
\(401\) 421.345i 1.05074i 0.850875 + 0.525368i \(0.176072\pi\)
−0.850875 + 0.525368i \(0.823928\pi\)
\(402\) −1.97556 1.09071i −0.00491432 0.00271322i
\(403\) −219.449 −0.544539
\(404\) 390.120i 0.965645i
\(405\) 163.323 + 78.2979i 0.403267 + 0.193328i
\(406\) −211.129 −0.520022
\(407\) 2.57983i 0.00633864i
\(408\) 4.48045 8.11521i 0.0109815 0.0198902i
\(409\) 150.527 0.368036 0.184018 0.982923i \(-0.441090\pi\)
0.184018 + 0.982923i \(0.441090\pi\)
\(410\) 73.8114i 0.180028i
\(411\) −615.743 339.955i −1.49816 0.827141i
\(412\) −41.7028 −0.101220
\(413\) 331.492i 0.802643i
\(414\) −110.517 175.543i −0.266949 0.424017i
\(415\) −15.9168 −0.0383538
\(416\) 113.204i 0.272124i
\(417\) 349.610 633.231i 0.838394 1.51854i
\(418\) 0.991266 0.00237145
\(419\) 125.374i 0.299221i 0.988745 + 0.149610i \(0.0478020\pi\)
−0.988745 + 0.149610i \(0.952198\pi\)
\(420\) −110.078 60.7746i −0.262090 0.144701i
\(421\) −389.483 −0.925138 −0.462569 0.886583i \(-0.653072\pi\)
−0.462569 + 0.886583i \(0.653072\pi\)
\(422\) 248.714i 0.589370i
\(423\) 81.8278 51.5164i 0.193446 0.121788i
\(424\) 222.126 0.523883
\(425\) 2.50065i 0.00588389i
\(426\) −87.3714 + 158.251i −0.205097 + 0.371482i
\(427\) −282.364 −0.661273
\(428\) 408.964i 0.955523i
\(429\) −1.49824 0.827186i −0.00349240 0.00192817i
\(430\) −63.6343 −0.147987
\(431\) 200.331i 0.464806i 0.972620 + 0.232403i \(0.0746588\pi\)
−0.972620 + 0.232403i \(0.925341\pi\)
\(432\) −212.281 + 12.2030i −0.491391 + 0.0282476i
\(433\) 83.6825 0.193262 0.0966310 0.995320i \(-0.469193\pi\)
0.0966310 + 0.995320i \(0.469193\pi\)
\(434\) 295.226i 0.680243i
\(435\) 141.127 255.615i 0.324429 0.587621i
\(436\) 532.059 1.22032
\(437\) 200.472i 0.458746i
\(438\) −204.501 112.906i −0.466897 0.257776i
\(439\) −496.717 −1.13147 −0.565737 0.824586i \(-0.691408\pi\)
−0.565737 + 0.824586i \(0.691408\pi\)
\(440\) 2.18584i 0.00496782i
\(441\) 78.3308 + 124.419i 0.177621 + 0.282130i
\(442\) −1.53043 −0.00346250
\(443\) 752.790i 1.69930i 0.527348 + 0.849650i \(0.323187\pi\)
−0.527348 + 0.849650i \(0.676813\pi\)
\(444\) −77.5406 + 140.445i −0.174641 + 0.316318i
\(445\) −86.3821 −0.194117
\(446\) 198.961i 0.446100i
\(447\) −141.815 78.2966i −0.317259 0.175160i
\(448\) 27.7427 0.0619256
\(449\) 838.131i 1.86666i −0.359019 0.933330i \(-0.616889\pi\)
0.359019 0.933330i \(-0.383111\pi\)
\(450\) −32.3199 + 20.3477i −0.0718221 + 0.0452171i
\(451\) −6.15382 −0.0136448
\(452\) 455.821i 1.00845i
\(453\) 14.9946 27.1590i 0.0331008 0.0599537i
\(454\) −93.0675 −0.204994
\(455\) 46.0778i 0.101270i
\(456\) −119.781 66.1315i −0.262677 0.145025i
\(457\) −508.996 −1.11378 −0.556889 0.830587i \(-0.688005\pi\)
−0.556889 + 0.830587i \(0.688005\pi\)
\(458\) 62.3684i 0.136175i
\(459\) 0.774971 + 13.4813i 0.00168839 + 0.0293710i
\(460\) −199.160 −0.432957
\(461\) 525.881i 1.14074i 0.821388 + 0.570370i \(0.193200\pi\)
−0.821388 + 0.570370i \(0.806800\pi\)
\(462\) −1.11282 + 2.01558i −0.00240869 + 0.00436274i
\(463\) −798.637 −1.72492 −0.862458 0.506128i \(-0.831076\pi\)
−0.862458 + 0.506128i \(0.831076\pi\)
\(464\) 342.783i 0.738757i
\(465\) −357.432 197.340i −0.768670 0.424387i
\(466\) 27.7474 0.0595437
\(467\) 340.538i 0.729203i 0.931164 + 0.364602i \(0.118795\pi\)
−0.931164 + 0.364602i \(0.881205\pi\)
\(468\) 56.7015 + 90.0637i 0.121157 + 0.192444i
\(469\) −5.06550 −0.0108006
\(470\) 20.3891i 0.0433811i
\(471\) 163.960 296.972i 0.348110 0.630514i
\(472\) −358.350 −0.759216
\(473\) 5.30534i 0.0112164i
\(474\) −220.864 121.940i −0.465957 0.257257i
\(475\) 36.9097 0.0777046
\(476\) 9.37461i 0.0196946i
\(477\) −273.825 + 172.393i −0.574057 + 0.361410i
\(478\) 257.866 0.539469
\(479\) 155.200i 0.324008i −0.986790 0.162004i \(-0.948204\pi\)
0.986790 0.162004i \(-0.0517958\pi\)
\(480\) 101.798 184.382i 0.212080 0.384130i
\(481\) 58.7894 0.122223
\(482\) 189.978i 0.394144i
\(483\) −407.628 225.054i −0.843951 0.465950i
\(484\) 396.762 0.819755
\(485\) 320.572i 0.660973i
\(486\) −167.934 + 119.713i −0.345543 + 0.246322i
\(487\) −693.409 −1.42384 −0.711919 0.702262i \(-0.752174\pi\)
−0.711919 + 0.702262i \(0.752174\pi\)
\(488\) 305.241i 0.625495i
\(489\) −73.5972 + 133.303i −0.150506 + 0.272603i
\(490\) −31.0017 −0.0632687
\(491\) 170.137i 0.346512i −0.984877 0.173256i \(-0.944571\pi\)
0.984877 0.173256i \(-0.0554287\pi\)
\(492\) 335.013 + 184.963i 0.680921 + 0.375940i
\(493\) 21.7691 0.0441563
\(494\) 22.5891i 0.0457269i
\(495\) −1.69644 2.69459i −0.00342714 0.00544361i
\(496\) 479.320 0.966371
\(497\) 405.770i 0.816439i
\(498\) 8.75985 15.8663i 0.0175901 0.0318600i
\(499\) 478.723 0.959364 0.479682 0.877442i \(-0.340752\pi\)
0.479682 + 0.877442i \(0.340752\pi\)
\(500\) 36.6682i 0.0733363i
\(501\) −44.5166 24.5779i −0.0888555 0.0490576i
\(502\) −89.3514 −0.177991
\(503\) 33.3554i 0.0663130i 0.999450 + 0.0331565i \(0.0105560\pi\)
−0.999450 + 0.0331565i \(0.989444\pi\)
\(504\) 268.936 169.315i 0.533603 0.335941i
\(505\) 265.980 0.526694
\(506\) 3.64673i 0.00720697i
\(507\) 18.8500 34.1420i 0.0371795 0.0673413i
\(508\) −577.735 −1.13727
\(509\) 1011.65i 1.98753i 0.111495 + 0.993765i \(0.464436\pi\)
−0.111495 + 0.993765i \(0.535564\pi\)
\(510\) −2.49271 1.37624i −0.00488766 0.00269850i
\(511\) −524.358 −1.02614
\(512\) 441.882i 0.863050i
\(513\) 198.984 11.4386i 0.387883 0.0222974i
\(514\) −31.1585 −0.0606196
\(515\) 28.4325i 0.0552088i
\(516\) −159.460 + 288.822i −0.309031 + 0.559732i
\(517\) −1.69989 −0.00328799
\(518\) 79.0895i 0.152683i
\(519\) −668.132 368.879i −1.28734 0.710750i
\(520\) −49.8112 −0.0957907
\(521\) 297.809i 0.571611i 0.958288 + 0.285806i \(0.0922612\pi\)
−0.958288 + 0.285806i \(0.907739\pi\)
\(522\) 177.134 + 281.356i 0.339337 + 0.538996i
\(523\) 516.262 0.987118 0.493559 0.869712i \(-0.335696\pi\)
0.493559 + 0.869712i \(0.335696\pi\)
\(524\) 22.7577i 0.0434307i
\(525\) −41.4355 + 75.0501i −0.0789249 + 0.142953i
\(526\) 355.847 0.676516
\(527\) 30.4401i 0.0577611i
\(528\) 3.27245 + 1.80674i 0.00619782 + 0.00342185i
\(529\) −208.507 −0.394153
\(530\) 68.2294i 0.128735i
\(531\) 441.755 278.116i 0.831930 0.523759i
\(532\) −138.369 −0.260093
\(533\) 140.234i 0.263103i
\(534\) 47.5404 86.1075i 0.0890270 0.161250i
\(535\) 278.827 0.521173
\(536\) 5.47592i 0.0102163i
\(537\) −224.943 124.192i −0.418888 0.231270i
\(538\) 211.620 0.393345
\(539\) 2.58468i 0.00479533i
\(540\) 11.3637 + 197.682i 0.0210439 + 0.366077i
\(541\) −95.5619 −0.176639 −0.0883197 0.996092i \(-0.528150\pi\)
−0.0883197 + 0.996092i \(0.528150\pi\)
\(542\) 304.514i 0.561834i
\(543\) −392.302 + 710.556i −0.722471 + 1.30857i
\(544\) 15.7026 0.0288651
\(545\) 362.753i 0.665601i
\(546\) −45.9314 25.3590i −0.0841234 0.0464450i
\(547\) 471.826 0.862570 0.431285 0.902216i \(-0.358060\pi\)
0.431285 + 0.902216i \(0.358060\pi\)
\(548\) 768.932i 1.40316i
\(549\) 236.898 + 376.285i 0.431509 + 0.685401i
\(550\) 0.671413 0.00122075
\(551\) 321.312i 0.583143i
\(552\) 243.288 440.655i 0.440740 0.798289i
\(553\) −566.313 −1.02407
\(554\) 160.006i 0.288819i
\(555\) 95.7543 + 52.8664i 0.172530 + 0.0952549i
\(556\) 790.771 1.42225
\(557\) 774.466i 1.39042i 0.718805 + 0.695212i \(0.244689\pi\)
−0.718805 + 0.695212i \(0.755311\pi\)
\(558\) 393.425 247.689i 0.705064 0.443888i
\(559\) 120.899 0.216277
\(560\) 100.643i 0.179720i
\(561\) 0.114740 0.207823i 0.000204528 0.000370451i
\(562\) 349.408 0.621723
\(563\) 627.725i 1.11496i −0.830189 0.557482i \(-0.811768\pi\)
0.830189 0.557482i \(-0.188232\pi\)
\(564\) 92.5416 + 51.0927i 0.164081 + 0.0905899i
\(565\) −310.774 −0.550043
\(566\) 224.108i 0.395951i
\(567\) −200.125 + 417.444i −0.352953 + 0.736232i
\(568\) −438.647 −0.772266
\(569\) 958.228i 1.68406i −0.539434 0.842028i \(-0.681362\pi\)
0.539434 0.842028i \(-0.318638\pi\)
\(570\) −20.3133 + 36.7924i −0.0356373 + 0.0645480i
\(571\) 308.205 0.539764 0.269882 0.962893i \(-0.413015\pi\)
0.269882 + 0.962893i \(0.413015\pi\)
\(572\) 1.87098i 0.00327094i
\(573\) −955.134 527.335i −1.66690 0.920305i
\(574\) −188.657 −0.328671
\(575\) 135.785i 0.236149i
\(576\) −23.2757 36.9706i −0.0404091 0.0641851i
\(577\) 572.896 0.992888 0.496444 0.868069i \(-0.334639\pi\)
0.496444 + 0.868069i \(0.334639\pi\)
\(578\) 245.063i 0.423985i
\(579\) −420.258 + 761.192i −0.725835 + 1.31467i
\(580\) 319.209 0.550360
\(581\) 40.6825i 0.0700214i
\(582\) 319.553 + 176.427i 0.549060 + 0.303139i
\(583\) 5.68844 0.00975719
\(584\) 566.843i 0.970622i
\(585\) 61.4045 38.6585i 0.104965 0.0660830i
\(586\) −247.021 −0.421538
\(587\) 962.019i 1.63887i 0.573169 + 0.819437i \(0.305714\pi\)
−0.573169 + 0.819437i \(0.694286\pi\)
\(588\) −77.6865 + 140.710i −0.132120 + 0.239302i
\(589\) −449.296 −0.762811
\(590\) 110.073i 0.186564i
\(591\) 42.7154 + 23.5834i 0.0722765 + 0.0399043i
\(592\) −128.408 −0.216905
\(593\) 897.607i 1.51367i −0.653605 0.756836i \(-0.726744\pi\)
0.653605 0.756836i \(-0.273256\pi\)
\(594\) 3.61966 0.208076i 0.00609370 0.000350296i
\(595\) −6.39152 −0.0107420
\(596\) 177.096i 0.297141i
\(597\) 4.69670 8.50689i 0.00786717 0.0142494i
\(598\) −83.1020 −0.138967
\(599\) 49.7559i 0.0830649i 0.999137 + 0.0415324i \(0.0132240\pi\)
−0.999137 + 0.0415324i \(0.986776\pi\)
\(600\) −81.1308 44.7928i −0.135218 0.0746546i
\(601\) 878.878 1.46236 0.731180 0.682185i \(-0.238970\pi\)
0.731180 + 0.682185i \(0.238970\pi\)
\(602\) 162.645i 0.270175i
\(603\) 4.24987 + 6.75041i 0.00704788 + 0.0111947i
\(604\) 33.9158 0.0561521
\(605\) 270.508i 0.447121i
\(606\) −146.382 + 265.135i −0.241555 + 0.437516i
\(607\) −617.541 −1.01737 −0.508683 0.860954i \(-0.669868\pi\)
−0.508683 + 0.860954i \(0.669868\pi\)
\(608\) 231.771i 0.381202i
\(609\) 653.337 + 360.711i 1.07280 + 0.592300i
\(610\) −93.7594 −0.153704
\(611\) 38.7372i 0.0633997i
\(612\) −12.4929 + 7.86515i −0.0204132 + 0.0128515i
\(613\) −769.368 −1.25509 −0.627543 0.778582i \(-0.715939\pi\)
−0.627543 + 0.778582i \(0.715939\pi\)
\(614\) 111.743i 0.181993i
\(615\) 126.106 228.409i 0.205050 0.371396i
\(616\) −5.58687 −0.00906960
\(617\) 550.095i 0.891564i 0.895142 + 0.445782i \(0.147074\pi\)
−0.895142 + 0.445782i \(0.852926\pi\)
\(618\) −28.3422 15.6479i −0.0458611 0.0253202i
\(619\) −442.627 −0.715069 −0.357534 0.933900i \(-0.616382\pi\)
−0.357534 + 0.933900i \(0.616382\pi\)
\(620\) 446.356i 0.719929i
\(621\) 42.0809 + 732.033i 0.0677631 + 1.17880i
\(622\) −62.7647 −0.100908
\(623\) 220.787i 0.354394i
\(624\) −41.1721 + 74.5729i −0.0659809 + 0.119508i
\(625\) 25.0000 0.0400000
\(626\) 207.049i 0.330749i
\(627\) −3.06747 1.69356i −0.00489229 0.00270106i
\(628\) 370.855 0.590533
\(629\) 8.15476i 0.0129646i
\(630\) −52.0075 82.6077i −0.0825515 0.131123i
\(631\) −22.6368 −0.0358745 −0.0179372 0.999839i \(-0.505710\pi\)
−0.0179372 + 0.999839i \(0.505710\pi\)
\(632\) 612.198i 0.968667i
\(633\) −424.924 + 769.644i −0.671287 + 1.21587i
\(634\) 213.559 0.336844
\(635\) 393.894i 0.620306i
\(636\) −309.678 170.975i −0.486915 0.268828i
\(637\) 58.9000 0.0924647
\(638\) 5.84489i 0.00916126i
\(639\) 540.740 340.435i 0.846229 0.532762i
\(640\) 290.035 0.453180
\(641\) 124.181i 0.193730i −0.995298 0.0968651i \(-0.969118\pi\)
0.995298 0.0968651i \(-0.0308816\pi\)
\(642\) −153.453 + 277.941i −0.239023 + 0.432930i
\(643\) 653.042 1.01562 0.507809 0.861470i \(-0.330456\pi\)
0.507809 + 0.861470i \(0.330456\pi\)
\(644\) 509.041i 0.790436i
\(645\) 196.916 + 108.718i 0.305296 + 0.168555i
\(646\) −3.13336 −0.00485041
\(647\) 16.5197i 0.0255328i 0.999919 + 0.0127664i \(0.00406378\pi\)
−0.999919 + 0.0127664i \(0.995936\pi\)
\(648\) −451.266 216.339i −0.696398 0.333857i
\(649\) −9.17700 −0.0141402
\(650\) 15.3002i 0.0235388i
\(651\) 504.388 913.573i 0.774790 1.40334i
\(652\) −166.467 −0.255317
\(653\) 1109.50i 1.69908i −0.527527 0.849538i \(-0.676881\pi\)
0.527527 0.849538i \(-0.323119\pi\)
\(654\) 361.600 + 199.641i 0.552905 + 0.305262i
\(655\) 15.5160 0.0236885
\(656\) 306.299i 0.466919i
\(657\) 439.928 + 698.774i 0.669601 + 1.06358i
\(658\) −52.1133 −0.0791996
\(659\) 522.932i 0.793524i −0.917921 0.396762i \(-0.870134\pi\)
0.917921 0.396762i \(-0.129866\pi\)
\(660\) 1.68248 3.04739i 0.00254922 0.00461726i
\(661\) −33.7392 −0.0510427 −0.0255214 0.999674i \(-0.508125\pi\)
−0.0255214 + 0.999674i \(0.508125\pi\)
\(662\) 258.767i 0.390886i
\(663\) 4.73589 + 2.61471i 0.00714312 + 0.00394375i
\(664\) 43.9787 0.0662329
\(665\) 94.3389i 0.141863i
\(666\) −105.397 + 66.3549i −0.158254 + 0.0996319i
\(667\) 1182.06 1.77220
\(668\) 55.5917i 0.0832212i
\(669\) 339.921 615.682i 0.508103 0.920302i
\(670\) −1.68201 −0.00251046
\(671\) 7.81694i 0.0116497i
\(672\) 471.270 + 260.190i 0.701294 + 0.387188i
\(673\) 321.918 0.478333 0.239166 0.970979i \(-0.423126\pi\)
0.239166 + 0.970979i \(0.423126\pi\)
\(674\) 272.763i 0.404693i
\(675\) 134.777 7.74768i 0.199670 0.0114780i
\(676\) 42.6361 0.0630712
\(677\) 685.004i 1.01182i −0.862585 0.505911i \(-0.831156\pi\)
0.862585 0.505911i \(-0.168844\pi\)
\(678\) 171.035 309.786i 0.252264 0.456912i
\(679\) 819.362 1.20672
\(680\) 6.90938i 0.0101608i
\(681\) 287.996 + 159.004i 0.422902 + 0.233487i
\(682\) −8.17301 −0.0119839
\(683\) 286.048i 0.418811i 0.977829 + 0.209405i \(0.0671528\pi\)
−0.977829 + 0.209405i \(0.932847\pi\)
\(684\) 116.090 + 184.395i 0.169722 + 0.269583i
\(685\) −524.250 −0.765329
\(686\) 316.916i 0.461976i
\(687\) 106.555 192.998i 0.155103 0.280929i
\(688\) −264.066 −0.383818
\(689\) 129.629i 0.188141i
\(690\) −135.354 74.7296i −0.196165 0.108304i
\(691\) −916.742 −1.32669 −0.663344 0.748314i \(-0.730863\pi\)
−0.663344 + 0.748314i \(0.730863\pi\)
\(692\) 834.354i 1.20571i
\(693\) 6.88719 4.33598i 0.00993823 0.00625683i
\(694\) −133.864 −0.192888
\(695\) 539.140i 0.775741i
\(696\) −389.937 + 706.272i −0.560254 + 1.01476i
\(697\) 19.4521 0.0279083
\(698\) 121.055i 0.173432i
\(699\) −85.8640 47.4060i −0.122838 0.0678197i
\(700\) −93.7215 −0.133888
\(701\) 1301.07i 1.85601i 0.372564 + 0.928007i \(0.378479\pi\)
−0.372564 + 0.928007i \(0.621521\pi\)
\(702\) 4.74166 + 82.4851i 0.00675450 + 0.117500i
\(703\) 120.364 0.171215
\(704\) 0.768027i 0.00109095i
\(705\) 34.8345 63.0940i 0.0494107 0.0894950i
\(706\) 436.188 0.617830
\(707\) 679.829i 0.961569i
\(708\) 499.594 + 275.829i 0.705642 + 0.389589i
\(709\) −906.182 −1.27811 −0.639056 0.769160i \(-0.720675\pi\)
−0.639056 + 0.769160i \(0.720675\pi\)
\(710\) 134.737i 0.189770i
\(711\) 475.128 + 754.684i 0.668253 + 1.06144i
\(712\) 238.676 0.335219
\(713\) 1652.89i 2.31823i
\(714\) 3.51758 6.37120i 0.00492658 0.00892325i
\(715\) −1.27562 −0.00178408
\(716\) 280.905i 0.392326i
\(717\) −797.964 440.560i −1.11292 0.614450i
\(718\) −282.825 −0.393907
\(719\) 494.323i 0.687515i 0.939059 + 0.343757i \(0.111700\pi\)
−0.939059 + 0.343757i \(0.888300\pi\)
\(720\) −134.120 + 84.4379i −0.186277 + 0.117275i
\(721\) −72.6718 −0.100793
\(722\) 260.134i 0.360296i
\(723\) 324.574 587.884i 0.448927 0.813117i
\(724\) −887.332 −1.22560
\(725\) 217.634i 0.300184i
\(726\) 269.649 + 148.874i 0.371417 + 0.205061i
\(727\) 1400.10 1.92586 0.962930 0.269750i \(-0.0869410\pi\)
0.962930 + 0.269750i \(0.0869410\pi\)
\(728\) 127.314i 0.174882i
\(729\) 724.198 83.5371i 0.993413 0.114591i
\(730\) −174.114 −0.238513
\(731\) 16.7700i 0.0229412i
\(732\) −234.950 + 425.553i −0.320970 + 0.581356i
\(733\) −306.793 −0.418545 −0.209273 0.977857i \(-0.567110\pi\)
−0.209273 + 0.977857i \(0.567110\pi\)
\(734\) 255.533i 0.348138i
\(735\) 95.9344 + 52.9659i 0.130523 + 0.0720625i
\(736\) 852.651 1.15849
\(737\) 0.140233i 0.000190275i
\(738\) 158.280 + 251.410i 0.214472 + 0.340664i
\(739\) 752.077 1.01770 0.508848 0.860857i \(-0.330072\pi\)
0.508848 + 0.860857i \(0.330072\pi\)
\(740\) 119.577i 0.161590i
\(741\) 38.5931 69.9017i 0.0520825 0.0943343i
\(742\) 174.390 0.235027
\(743\) 856.194i 1.15235i 0.817327 + 0.576174i \(0.195455\pi\)
−0.817327 + 0.576174i \(0.804545\pi\)
\(744\) 987.593 + 545.255i 1.32741 + 0.732870i
\(745\) −120.742 −0.162070
\(746\) 479.414i 0.642646i
\(747\) −54.2145 + 34.1319i −0.0725764 + 0.0456920i
\(748\) 0.259526 0.000346960
\(749\) 712.666i 0.951489i
\(750\) −13.7588 + 24.9205i −0.0183450 + 0.0332274i
\(751\) 637.103 0.848339 0.424170 0.905583i \(-0.360566\pi\)
0.424170 + 0.905583i \(0.360566\pi\)
\(752\) 84.6098i 0.112513i
\(753\) 276.497 + 152.656i 0.367194 + 0.202730i
\(754\) 133.194 0.176650
\(755\) 23.1235i 0.0306271i
\(756\) −505.262 + 29.0450i −0.668336 + 0.0384193i
\(757\) −85.9070 −0.113484 −0.0567418 0.998389i \(-0.518071\pi\)
−0.0567418 + 0.998389i \(0.518071\pi\)
\(758\) 169.417i 0.223505i
\(759\) 6.23038 11.2848i 0.00820867 0.0148679i
\(760\) −101.982 −0.134187
\(761\) 8.96052i 0.0117747i −0.999983 0.00588734i \(-0.998126\pi\)
0.999983 0.00588734i \(-0.00187401\pi\)
\(762\) −392.643 216.780i −0.515279 0.284488i
\(763\) 927.173 1.21517
\(764\) 1192.76i 1.56120i
\(765\) 5.36238 + 8.51751i 0.00700965 + 0.0111340i
\(766\) −613.178 −0.800493
\(767\) 209.127i 0.272655i
\(768\) −131.467 + 238.120i −0.171181 + 0.310052i
\(769\) −241.067 −0.313481 −0.156741 0.987640i \(-0.550099\pi\)
−0.156741 + 0.987640i \(0.550099\pi\)
\(770\) 1.71609i 0.00222869i
\(771\) 96.4196 + 53.2338i 0.125058 + 0.0690451i
\(772\) −950.567 −1.23130
\(773\) 192.332i 0.248813i 0.992231 + 0.124406i \(0.0397026\pi\)
−0.992231 + 0.124406i \(0.960297\pi\)
\(774\) −216.745 + 136.457i −0.280033 + 0.176301i
\(775\) −304.321 −0.392672
\(776\) 885.749i 1.14143i
\(777\) −135.123 + 244.742i −0.173904 + 0.314983i
\(778\) 585.474 0.752537
\(779\) 287.112i 0.368565i
\(780\) 69.4443 + 38.3406i 0.0890312 + 0.0491546i
\(781\) −11.2333 −0.0143833
\(782\) 11.5272i 0.0147407i
\(783\) −67.4462 1173.28i −0.0861382 1.49845i
\(784\) −128.649 −0.164093
\(785\) 252.845i 0.322096i
\(786\) −8.53922 + 15.4667i −0.0108642 + 0.0196777i
\(787\) −571.119 −0.725691 −0.362846 0.931849i \(-0.618195\pi\)
−0.362846 + 0.931849i \(0.618195\pi\)
\(788\) 53.3425i 0.0676935i
\(789\) −1101.17 607.960i −1.39565 0.770545i
\(790\) −188.046 −0.238032
\(791\) 794.319i 1.00420i
\(792\) 4.68730 + 7.44522i 0.00591830 + 0.00940052i
\(793\) 178.133 0.224632
\(794\) 73.4124i 0.0924590i
\(795\) −116.569 + 211.135i −0.146628 + 0.265579i
\(796\) 10.6233 0.0133458
\(797\) 1286.29i 1.61391i −0.590613 0.806955i \(-0.701114\pi\)
0.590613 0.806955i \(-0.298886\pi\)
\(798\) −94.0390 51.9194i −0.117843 0.0650620i
\(799\) 5.37330 0.00672503
\(800\) 156.985i 0.196231i
\(801\) −294.227 + 185.237i −0.367325 + 0.231257i
\(802\) −357.597 −0.445882
\(803\) 14.5163i 0.0180776i
\(804\) −4.21491 + 7.63426i −0.00524243 + 0.00949534i
\(805\) −347.059 −0.431129
\(806\) 186.247i 0.231076i
\(807\) −654.855 361.549i −0.811469 0.448016i
\(808\) −734.911 −0.909543
\(809\) 698.286i 0.863147i 0.902078 + 0.431574i \(0.142041\pi\)
−0.902078 + 0.431574i \(0.857959\pi\)
\(810\) −66.4518 + 138.613i −0.0820393 + 0.171127i
\(811\) 348.537 0.429762 0.214881 0.976640i \(-0.431064\pi\)
0.214881 + 0.976640i \(0.431064\pi\)
\(812\) 815.878i 1.00478i
\(813\) −520.258 + 942.316i −0.639924 + 1.15906i
\(814\) 2.18951 0.00268982
\(815\) 113.496i 0.139258i
\(816\) −10.3441 5.71104i −0.0126766 0.00699882i
\(817\) 247.526 0.302969
\(818\) 127.753i 0.156177i
\(819\) 98.8088 + 156.946i 0.120646 + 0.191631i
\(820\) 285.234 0.347846
\(821\) 617.371i 0.751974i −0.926625 0.375987i \(-0.877304\pi\)
0.926625 0.375987i \(-0.122696\pi\)
\(822\) 288.522 522.584i 0.350999 0.635747i
\(823\) 16.1089 0.0195733 0.00978667 0.999952i \(-0.496885\pi\)
0.00978667 + 0.999952i \(0.496885\pi\)
\(824\) 78.5599i 0.0953397i
\(825\) −2.07768 1.14710i −0.00251840 0.00139042i
\(826\) −281.339 −0.340604
\(827\) 285.662i 0.345420i −0.984973 0.172710i \(-0.944748\pi\)
0.984973 0.172710i \(-0.0552523\pi\)
\(828\) −678.361 + 427.077i −0.819277 + 0.515793i
\(829\) −898.304 −1.08360 −0.541800 0.840508i \(-0.682257\pi\)
−0.541800 + 0.840508i \(0.682257\pi\)
\(830\) 13.5087i 0.0162755i
\(831\) 273.368 495.137i 0.328962 0.595832i
\(832\) −17.5019 −0.0210359
\(833\) 8.17010i 0.00980804i
\(834\) 537.426 + 296.716i 0.644396 + 0.355774i
\(835\) −37.9019 −0.0453915
\(836\) 3.83061i 0.00458207i
\(837\) −1640.63 + 94.3113i −1.96013 + 0.112678i
\(838\) −106.405 −0.126975
\(839\) 841.177i 1.00259i 0.865275 + 0.501297i \(0.167144\pi\)
−0.865275 + 0.501297i \(0.832856\pi\)
\(840\) 114.488 207.365i 0.136295 0.246864i
\(841\) −1053.58 −1.25277
\(842\) 330.556i 0.392585i
\(843\) −1081.24 596.959i −1.28261 0.708136i
\(844\) −961.121 −1.13877
\(845\) 29.0689i 0.0344010i
\(846\) 43.7222 + 69.4476i 0.0516811 + 0.0820894i
\(847\) 691.402 0.816295
\(848\) 283.135i 0.333886i
\(849\) −382.886 + 693.501i −0.450984 + 0.816845i
\(850\) −2.12232 −0.00249684
\(851\) 442.803i 0.520332i
\(852\) 611.540 + 337.635i 0.717770 + 0.396285i
\(853\) −818.451 −0.959497 −0.479748 0.877406i \(-0.659272\pi\)
−0.479748 + 0.877406i \(0.659272\pi\)
\(854\) 239.643i 0.280613i
\(855\) 125.718 79.1488i 0.147039 0.0925717i
\(856\) −770.408 −0.900009
\(857\) 128.481i 0.149919i −0.997187 0.0749597i \(-0.976117\pi\)
0.997187 0.0749597i \(-0.0238828\pi\)
\(858\) 0.702036 1.27156i 0.000818224 0.00148201i
\(859\) −1622.62 −1.88897 −0.944484 0.328558i \(-0.893438\pi\)
−0.944484 + 0.328558i \(0.893438\pi\)
\(860\) 245.906i 0.285937i
\(861\) 583.798 + 322.318i 0.678047 + 0.374353i
\(862\) −170.022 −0.197241
\(863\) 320.079i 0.370892i 0.982655 + 0.185446i \(0.0593729\pi\)
−0.982655 + 0.185446i \(0.940627\pi\)
\(864\) −48.6508 846.322i −0.0563088 0.979540i
\(865\) −568.854 −0.657635
\(866\) 71.0217i 0.0820112i
\(867\) 418.687 758.347i 0.482915 0.874679i
\(868\) 1140.86 1.31435
\(869\) 15.6778i 0.0180412i
\(870\) 216.942 + 119.775i 0.249359 + 0.137672i
\(871\) 3.19564 0.00366894
\(872\) 1002.30i 1.14942i
\(873\) −687.431 1091.90i −0.787436 1.25075i
\(874\) −170.141 −0.194670
\(875\) 63.8984i 0.0730268i
\(876\) −436.310 + 790.265i −0.498070 + 0.902129i
\(877\) 1031.81 1.17652 0.588260 0.808672i \(-0.299813\pi\)
0.588260 + 0.808672i \(0.299813\pi\)
\(878\) 421.566i 0.480144i
\(879\) 764.405 + 422.032i 0.869631 + 0.480128i
\(880\) 2.78620 0.00316613
\(881\) 1422.50i 1.61464i 0.590116 + 0.807318i \(0.299082\pi\)
−0.590116 + 0.807318i \(0.700918\pi\)
\(882\) −105.595 + 66.4797i −0.119722 + 0.0753738i
\(883\) 977.285 1.10678 0.553389 0.832923i \(-0.313334\pi\)
0.553389 + 0.832923i \(0.313334\pi\)
\(884\) 5.91411i 0.00669017i
\(885\) 188.057 340.619i 0.212494 0.384880i
\(886\) −638.896 −0.721102
\(887\) 797.224i 0.898786i −0.893334 0.449393i \(-0.851640\pi\)
0.893334 0.449393i \(-0.148360\pi\)
\(888\) −264.572 146.071i −0.297941 0.164495i
\(889\) −1006.77 −1.13247
\(890\) 73.3129i 0.0823740i
\(891\) −11.5565 5.54024i −0.0129702 0.00621800i
\(892\) 768.855 0.861945
\(893\) 79.3099i 0.0888129i
\(894\) 66.4507 120.359i 0.0743297 0.134629i
\(895\) −191.519 −0.213987
\(896\) 741.312i 0.827358i
\(897\) 257.158 + 141.979i 0.286687 + 0.158282i
\(898\) 711.325 0.792122
\(899\) 2649.22i 2.94685i
\(900\) 78.6309 + 124.896i 0.0873676 + 0.138773i
\(901\) −17.9810 −0.0199567
\(902\) 5.22278i 0.00579022i
\(903\) −277.877 + 503.304i −0.307727 + 0.557369i
\(904\) 858.677 0.949864
\(905\) 604.975i 0.668480i
\(906\) 23.0500 + 12.7260i 0.0254415 + 0.0140464i
\(907\) −653.403 −0.720401 −0.360200 0.932875i \(-0.617292\pi\)
−0.360200 + 0.932875i \(0.617292\pi\)
\(908\) 359.646i 0.396086i
\(909\) 905.958 570.366i 0.996654 0.627465i
\(910\) −39.1065 −0.0429741
\(911\) 1649.26i 1.81038i 0.425002 + 0.905192i \(0.360273\pi\)
−0.425002 + 0.905192i \(0.639727\pi\)
\(912\) −84.2950 + 152.679i −0.0924287 + 0.167411i
\(913\) 1.12625 0.00123357
\(914\) 431.988i 0.472634i
\(915\) 290.138 + 160.187i 0.317090 + 0.175067i
\(916\) 241.014 0.263116
\(917\) 39.6578i 0.0432474i
\(918\) −11.4416 + 0.657722i −0.0124636 + 0.000716472i
\(919\) 757.286 0.824032 0.412016 0.911177i \(-0.364825\pi\)
0.412016 + 0.911177i \(0.364825\pi\)
\(920\) 375.179i 0.407803i
\(921\) 190.912 345.789i 0.207288 0.375450i
\(922\) −446.318 −0.484075
\(923\) 255.986i 0.277342i
\(924\) 7.78895 + 4.30032i 0.00842959 + 0.00465402i
\(925\) 81.5262 0.0881364
\(926\) 677.807i 0.731973i
\(927\) 60.9705 + 96.8444i 0.0657718 + 0.104471i
\(928\) −1366.61 −1.47264
\(929\) 492.309i 0.529935i −0.964257 0.264967i \(-0.914639\pi\)
0.964257 0.264967i \(-0.0853612\pi\)
\(930\) 167.483 303.354i 0.180090 0.326187i
\(931\) 120.591 0.129528
\(932\) 107.226i 0.115049i
\(933\) 194.225 + 107.232i 0.208172 + 0.114933i
\(934\) −289.016 −0.309439
\(935\) 0.176943i 0.000189243i
\(936\) −169.662 + 106.815i −0.181263 + 0.114118i
\(937\) 895.346 0.955546 0.477773 0.878483i \(-0.341444\pi\)
0.477773 + 0.878483i \(0.341444\pi\)
\(938\) 4.29911i 0.00458327i
\(939\) 353.740 640.711i 0.376720 0.682333i
\(940\) 78.7909 0.0838201
\(941\) 963.944i 1.02438i −0.858872 0.512191i \(-0.828834\pi\)
0.858872 0.512191i \(-0.171166\pi\)
\(942\) 252.042 + 139.154i 0.267560 + 0.147721i
\(943\) 1056.25 1.12009
\(944\) 456.774i 0.483870i
\(945\) 19.8026 + 344.483i 0.0209551 + 0.364532i
\(946\) 4.50267 0.00475969
\(947\) 1726.05i 1.82265i −0.411691 0.911324i \(-0.635062\pi\)
0.411691 0.911324i \(-0.364938\pi\)
\(948\) −471.220 + 853.496i −0.497067 + 0.900312i
\(949\) 330.799 0.348577
\(950\) 31.3254i 0.0329741i
\(951\) −660.857 364.863i −0.694908 0.383662i
\(952\) 17.6599 0.0185504
\(953\) 716.413i 0.751745i 0.926671 + 0.375873i \(0.122657\pi\)
−0.926671 + 0.375873i \(0.877343\pi\)
\(954\) −146.310 232.397i −0.153365 0.243603i
\(955\) −813.212 −0.851531
\(956\) 996.487i 1.04235i
\(957\) −9.98590 + 18.0869i −0.0104346 + 0.0188996i
\(958\) 131.719 0.137494
\(959\) 1339.95i 1.39724i
\(960\) −28.5065 15.7386i −0.0296943 0.0163944i
\(961\) 2743.45 2.85479
\(962\) 49.8948i 0.0518657i
\(963\) 949.717 597.915i 0.986207 0.620888i
\(964\) 734.142 0.761558
\(965\) 648.087i 0.671593i
\(966\) 191.004 345.956i 0.197727 0.358132i
\(967\) 252.597 0.261218 0.130609 0.991434i \(-0.458307\pi\)
0.130609 + 0.991434i \(0.458307\pi\)
\(968\) 747.422i 0.772130i
\(969\) 9.69617 + 5.35331i 0.0100064 + 0.00552457i
\(970\) 272.071 0.280485
\(971\) 476.368i 0.490596i −0.969448 0.245298i \(-0.921114\pi\)
0.969448 0.245298i \(-0.0788858\pi\)
\(972\) 462.613 + 648.958i 0.475939 + 0.667652i
\(973\) 1378.01 1.41625
\(974\) 588.500i 0.604209i
\(975\) 26.1402 47.3465i 0.0268105 0.0485605i
\(976\) −389.078 −0.398646
\(977\) 232.241i 0.237709i 0.992912 + 0.118854i \(0.0379222\pi\)
−0.992912 + 0.118854i \(0.962078\pi\)
\(978\) −113.135 62.4623i −0.115680 0.0638674i
\(979\) 6.11226 0.00624337
\(980\) 119.802i 0.122247i
\(981\) −777.883 1235.58i −0.792949 1.25951i
\(982\) 144.396 0.147043
\(983\) 774.697i 0.788094i 0.919090 + 0.394047i \(0.128925\pi\)
−0.919090 + 0.394047i \(0.871075\pi\)
\(984\) −348.433 + 631.099i −0.354099 + 0.641361i
\(985\) 36.3684 0.0369222
\(986\) 18.4755i 0.0187378i
\(987\) 161.264 + 89.0349i 0.163388 + 0.0902076i
\(988\) 87.2924 0.0883526
\(989\) 910.611i 0.920739i
\(990\) 2.28691 1.43977i 0.00231001 0.00145432i
\(991\) −829.027 −0.836556 −0.418278 0.908319i \(-0.637366\pi\)
−0.418278 + 0.908319i \(0.637366\pi\)
\(992\) 1910.95i 1.92637i
\(993\) 442.099 800.752i 0.445216 0.806396i
\(994\) −344.379 −0.346458
\(995\) 7.24285i 0.00727925i
\(996\) −61.3129 33.8512i −0.0615592 0.0339871i
\(997\) −1721.22 −1.72640 −0.863199 0.504864i \(-0.831543\pi\)
−0.863199 + 0.504864i \(0.831543\pi\)
\(998\) 406.294i 0.407108i
\(999\) 439.516 25.2656i 0.439956 0.0252909i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.3.d.a.131.18 yes 32
3.2 odd 2 inner 195.3.d.a.131.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.3.d.a.131.15 32 3.2 odd 2 inner
195.3.d.a.131.18 yes 32 1.1 even 1 trivial