Defining parameters
Level: | \( N \) | = | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 20 \) | ||
Newform subspaces: | \( 35 \) | ||
Sturm bound: | \(8064\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(195))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2880 | 1896 | 984 |
Cusp forms | 2496 | 1760 | 736 |
Eisenstein series | 384 | 136 | 248 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(195))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(195))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(195)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)