Newspace parameters
Level: | \( N \) | \(=\) | \( 195 = 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 195.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.31336515503\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 | − | 3.93415i | 2.69917 | − | 1.30938i | −11.4775 | − | 2.23607i | −5.15128 | − | 10.6189i | −7.95416 | 29.4176i | 5.57106 | − | 7.06847i | −8.79702 | ||||||||||
131.2 | − | 3.82682i | 0.963256 | + | 2.84115i | −10.6446 | 2.23607i | 10.8726 | − | 3.68621i | −0.765398 | 25.4276i | −7.14428 | + | 5.47351i | 8.55704 | |||||||||||
131.3 | − | 3.53170i | −1.92847 | − | 2.29805i | −8.47290 | 2.23607i | −8.11601 | + | 6.81077i | −3.35184 | 15.7969i | −1.56203 | + | 8.86341i | 7.89712 | |||||||||||
131.4 | − | 3.00673i | −0.102540 | + | 2.99825i | −5.04041 | − | 2.23607i | 9.01491 | + | 0.308308i | −3.51413 | 3.12822i | −8.97897 | − | 0.614878i | −6.72325 | ||||||||||
131.5 | − | 2.90487i | 2.90740 | + | 0.739629i | −4.43828 | 2.23607i | 2.14853 | − | 8.44561i | 2.78840 | 1.27314i | 7.90590 | + | 4.30079i | 6.49549 | |||||||||||
131.6 | − | 2.89144i | −2.80506 | − | 1.06378i | −4.36044 | − | 2.23607i | −3.07587 | + | 8.11067i | −8.81084 | 1.04219i | 6.73672 | + | 5.96796i | −6.46546 | ||||||||||
131.7 | − | 2.85994i | 2.93220 | + | 0.634177i | −4.17927 | − | 2.23607i | 1.81371 | − | 8.38594i | 12.7826 | 0.512712i | 8.19564 | + | 3.71907i | −6.39503 | ||||||||||
131.8 | − | 2.37720i | 0.699727 | − | 2.91726i | −1.65107 | − | 2.23607i | −6.93489 | − | 1.66339i | −2.88504 | − | 5.58388i | −8.02077 | − | 4.08256i | −5.31557 | |||||||||
131.9 | − | 1.93202i | −2.94929 | − | 0.549286i | 0.267296 | 2.23607i | −1.06123 | + | 5.69808i | 10.3382 | − | 8.24450i | 8.39657 | + | 3.24000i | 4.32013 | ||||||||||
131.10 | − | 1.62827i | −1.50101 | − | 2.59749i | 1.34874 | − | 2.23607i | −4.22942 | + | 2.44404i | 9.21760 | − | 8.70919i | −4.49395 | + | 7.79772i | −3.64092 | |||||||||
131.11 | − | 1.18601i | −0.368414 | + | 2.97729i | 2.59338 | − | 2.23607i | 3.53110 | + | 0.436942i | 8.17904 | − | 7.81981i | −8.72854 | − | 2.19375i | −2.65200 | |||||||||
131.12 | − | 1.11947i | 2.93515 | − | 0.620391i | 2.74679 | − | 2.23607i | −0.694509 | − | 3.28581i | −5.59346 | − | 7.55282i | 8.23023 | − | 3.64188i | −2.50321 | |||||||||
131.13 | − | 1.03396i | −0.423726 | − | 2.96993i | 2.93092 | 2.23607i | −3.07080 | + | 0.438118i | −13.7578 | − | 7.16632i | −8.64091 | + | 2.51687i | 2.31201 | ||||||||||
131.14 | − | 0.858859i | 2.44162 | − | 1.74313i | 3.26236 | 2.23607i | −1.49710 | − | 2.09701i | 2.16867 | − | 6.23734i | 2.92302 | − | 8.51211i | 1.92047 | ||||||||||
131.15 | − | 0.848705i | 1.45000 | + | 2.62631i | 3.27970 | 2.23607i | 2.22896 | − | 1.23062i | 5.71525 | − | 6.17832i | −4.79500 | + | 7.61630i | 1.89776 | ||||||||||
131.16 | − | 0.405877i | −2.95003 | + | 0.545292i | 3.83526 | − | 2.23607i | 0.221321 | + | 1.19735i | −4.55712 | − | 3.18015i | 8.40531 | − | 3.21725i | −0.907568 | |||||||||
131.17 | 0.405877i | −2.95003 | − | 0.545292i | 3.83526 | 2.23607i | 0.221321 | − | 1.19735i | −4.55712 | 3.18015i | 8.40531 | + | 3.21725i | −0.907568 | ||||||||||||
131.18 | 0.848705i | 1.45000 | − | 2.62631i | 3.27970 | − | 2.23607i | 2.22896 | + | 1.23062i | 5.71525 | 6.17832i | −4.79500 | − | 7.61630i | 1.89776 | |||||||||||
131.19 | 0.858859i | 2.44162 | + | 1.74313i | 3.26236 | − | 2.23607i | −1.49710 | + | 2.09701i | 2.16867 | 6.23734i | 2.92302 | + | 8.51211i | 1.92047 | |||||||||||
131.20 | 1.03396i | −0.423726 | + | 2.96993i | 2.93092 | − | 2.23607i | −3.07080 | − | 0.438118i | −13.7578 | 7.16632i | −8.64091 | − | 2.51687i | 2.31201 | |||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 195.3.d.a | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 195.3.d.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.3.d.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
195.3.d.a | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(195, [\chi])\).