Properties

Label 2-195-3.2-c2-0-23
Degree $2$
Conductor $195$
Sign $0.875 + 0.483i$
Analytic cond. $5.31336$
Root an. cond. $2.30507$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.848i·2-s + (1.44 − 2.62i)3-s + 3.27·4-s − 2.23i·5-s + (2.22 + 1.23i)6-s + 5.71·7-s + 6.17i·8-s + (−4.79 − 7.61i)9-s + 1.89·10-s + 0.158i·11-s + (4.75 − 8.61i)12-s − 3.60·13-s + 4.85i·14-s + (−5.87 − 3.24i)15-s + 7.87·16-s − 0.500i·17-s + ⋯
L(s)  = 1  + 0.424i·2-s + (0.483 − 0.875i)3-s + 0.819·4-s − 0.447i·5-s + (0.371 + 0.205i)6-s + 0.816·7-s + 0.772i·8-s + (−0.532 − 0.846i)9-s + 0.189·10-s + 0.0143i·11-s + (0.396 − 0.717i)12-s − 0.277·13-s + 0.346i·14-s + (−0.391 − 0.216i)15-s + 0.492·16-s − 0.0294i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $0.875 + 0.483i$
Analytic conductor: \(5.31336\)
Root analytic conductor: \(2.30507\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{195} (131, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 195,\ (\ :1),\ 0.875 + 0.483i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.13489 - 0.550200i\)
\(L(\frac12)\) \(\approx\) \(2.13489 - 0.550200i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.44 + 2.62i)T \)
5 \( 1 + 2.23iT \)
13 \( 1 + 3.60T \)
good2 \( 1 - 0.848iT - 4T^{2} \)
7 \( 1 - 5.71T + 49T^{2} \)
11 \( 1 - 0.158iT - 121T^{2} \)
17 \( 1 + 0.500iT - 289T^{2} \)
19 \( 1 + 7.38T + 361T^{2} \)
23 \( 1 + 27.1iT - 529T^{2} \)
29 \( 1 - 43.5iT - 841T^{2} \)
31 \( 1 - 60.8T + 961T^{2} \)
37 \( 1 + 16.3T + 1.36e3T^{2} \)
41 \( 1 - 38.8iT - 1.68e3T^{2} \)
43 \( 1 + 33.5T + 1.84e3T^{2} \)
47 \( 1 - 10.7iT - 2.20e3T^{2} \)
53 \( 1 + 35.9iT - 2.80e3T^{2} \)
59 \( 1 - 58.0iT - 3.48e3T^{2} \)
61 \( 1 + 49.4T + 3.72e3T^{2} \)
67 \( 1 + 0.886T + 4.48e3T^{2} \)
71 \( 1 - 70.9iT - 5.04e3T^{2} \)
73 \( 1 + 91.7T + 5.32e3T^{2} \)
79 \( 1 + 99.0T + 6.24e3T^{2} \)
83 \( 1 + 7.11iT - 6.88e3T^{2} \)
89 \( 1 + 38.6iT - 7.92e3T^{2} \)
97 \( 1 - 143.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17634089382837172691632052814, −11.50299758960258856793822974047, −10.30723133275280055312645481070, −8.687089243886029165638835126245, −8.120338763508920782612890358461, −7.09008116380491430744286622091, −6.19150726172694594459568286209, −4.81708692432913245230989222556, −2.79879677817058305466985405247, −1.48200795594353538920033334688, 2.05056435038159901789549201568, 3.25454643518115818598827255975, 4.55370875878716002377703568285, 5.99598370346987659016462705081, 7.41664172063428962774150177938, 8.324865467413615502857751507243, 9.719805567227878054343510418384, 10.41316613416400637010867252250, 11.32580529524585472274207157060, 11.93036230020551373547313936552

Graph of the $Z$-function along the critical line