Properties

Label 190.4.a.h.1.2
Level $190$
Weight $4$
Character 190.1
Self dual yes
Analytic conductor $11.210$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [190,4,Mod(1,190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("190.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2103629011\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.5468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 23x - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.20569\) of defining polynomial
Character \(\chi\) \(=\) 190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -0.794314 q^{3} +4.00000 q^{4} -5.00000 q^{5} -1.58863 q^{6} -22.9577 q^{7} +8.00000 q^{8} -26.3691 q^{9} -10.0000 q^{10} +53.3074 q^{11} -3.17726 q^{12} -73.3488 q^{13} -45.9154 q^{14} +3.97157 q^{15} +16.0000 q^{16} -139.402 q^{17} -52.7381 q^{18} -19.0000 q^{19} -20.0000 q^{20} +18.2356 q^{21} +106.615 q^{22} +99.1611 q^{23} -6.35452 q^{24} +25.0000 q^{25} -146.698 q^{26} +42.3918 q^{27} -91.8308 q^{28} +170.693 q^{29} +7.94314 q^{30} -274.774 q^{31} +32.0000 q^{32} -42.3428 q^{33} -278.804 q^{34} +114.788 q^{35} -105.476 q^{36} -47.0653 q^{37} -38.0000 q^{38} +58.2620 q^{39} -40.0000 q^{40} +62.0699 q^{41} +36.4713 q^{42} -224.192 q^{43} +213.230 q^{44} +131.845 q^{45} +198.322 q^{46} -376.852 q^{47} -12.7090 q^{48} +184.056 q^{49} +50.0000 q^{50} +110.729 q^{51} -293.395 q^{52} +551.425 q^{53} +84.7836 q^{54} -266.537 q^{55} -183.662 q^{56} +15.0920 q^{57} +341.386 q^{58} -100.804 q^{59} +15.8863 q^{60} +533.726 q^{61} -549.549 q^{62} +605.373 q^{63} +64.0000 q^{64} +366.744 q^{65} -84.6856 q^{66} +327.968 q^{67} -557.608 q^{68} -78.7651 q^{69} +229.577 q^{70} -344.315 q^{71} -210.953 q^{72} +543.970 q^{73} -94.1306 q^{74} -19.8579 q^{75} -76.0000 q^{76} -1223.81 q^{77} +116.524 q^{78} +130.821 q^{79} -80.0000 q^{80} +678.292 q^{81} +124.140 q^{82} +944.539 q^{83} +72.9425 q^{84} +697.009 q^{85} -448.385 q^{86} -135.584 q^{87} +426.459 q^{88} -717.584 q^{89} +263.691 q^{90} +1683.92 q^{91} +396.644 q^{92} +218.257 q^{93} -753.704 q^{94} +95.0000 q^{95} -25.4181 q^{96} -190.085 q^{97} +368.111 q^{98} -1405.67 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 9 q^{3} + 12 q^{4} - 15 q^{5} - 18 q^{6} - 11 q^{7} + 24 q^{8} - 8 q^{9} - 30 q^{10} - 68 q^{11} - 36 q^{12} - 121 q^{13} - 22 q^{14} + 45 q^{15} + 48 q^{16} - 103 q^{17} - 16 q^{18} - 57 q^{19}+ \cdots - 2164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −0.794314 −0.152866 −0.0764329 0.997075i \(-0.524353\pi\)
−0.0764329 + 0.997075i \(0.524353\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −1.58863 −0.108093
\(7\) −22.9577 −1.23960 −0.619799 0.784760i \(-0.712786\pi\)
−0.619799 + 0.784760i \(0.712786\pi\)
\(8\) 8.00000 0.353553
\(9\) −26.3691 −0.976632
\(10\) −10.0000 −0.316228
\(11\) 53.3074 1.46116 0.730581 0.682826i \(-0.239249\pi\)
0.730581 + 0.682826i \(0.239249\pi\)
\(12\) −3.17726 −0.0764329
\(13\) −73.3488 −1.56487 −0.782435 0.622732i \(-0.786023\pi\)
−0.782435 + 0.622732i \(0.786023\pi\)
\(14\) −45.9154 −0.876529
\(15\) 3.97157 0.0683637
\(16\) 16.0000 0.250000
\(17\) −139.402 −1.98882 −0.994410 0.105592i \(-0.966326\pi\)
−0.994410 + 0.105592i \(0.966326\pi\)
\(18\) −52.7381 −0.690583
\(19\) −19.0000 −0.229416
\(20\) −20.0000 −0.223607
\(21\) 18.2356 0.189492
\(22\) 106.615 1.03320
\(23\) 99.1611 0.898979 0.449489 0.893286i \(-0.351606\pi\)
0.449489 + 0.893286i \(0.351606\pi\)
\(24\) −6.35452 −0.0540463
\(25\) 25.0000 0.200000
\(26\) −146.698 −1.10653
\(27\) 42.3918 0.302160
\(28\) −91.8308 −0.619799
\(29\) 170.693 1.09300 0.546498 0.837461i \(-0.315961\pi\)
0.546498 + 0.837461i \(0.315961\pi\)
\(30\) 7.94314 0.0483404
\(31\) −274.774 −1.59197 −0.795983 0.605319i \(-0.793045\pi\)
−0.795983 + 0.605319i \(0.793045\pi\)
\(32\) 32.0000 0.176777
\(33\) −42.3428 −0.223362
\(34\) −278.804 −1.40631
\(35\) 114.788 0.554365
\(36\) −105.476 −0.488316
\(37\) −47.0653 −0.209121 −0.104561 0.994519i \(-0.533344\pi\)
−0.104561 + 0.994519i \(0.533344\pi\)
\(38\) −38.0000 −0.162221
\(39\) 58.2620 0.239215
\(40\) −40.0000 −0.158114
\(41\) 62.0699 0.236431 0.118216 0.992988i \(-0.462283\pi\)
0.118216 + 0.992988i \(0.462283\pi\)
\(42\) 36.4713 0.133991
\(43\) −224.192 −0.795093 −0.397547 0.917582i \(-0.630138\pi\)
−0.397547 + 0.917582i \(0.630138\pi\)
\(44\) 213.230 0.730581
\(45\) 131.845 0.436763
\(46\) 198.322 0.635674
\(47\) −376.852 −1.16956 −0.584782 0.811190i \(-0.698820\pi\)
−0.584782 + 0.811190i \(0.698820\pi\)
\(48\) −12.7090 −0.0382165
\(49\) 184.056 0.536606
\(50\) 50.0000 0.141421
\(51\) 110.729 0.304023
\(52\) −293.395 −0.782435
\(53\) 551.425 1.42913 0.714567 0.699567i \(-0.246624\pi\)
0.714567 + 0.699567i \(0.246624\pi\)
\(54\) 84.7836 0.213659
\(55\) −266.537 −0.653451
\(56\) −183.662 −0.438264
\(57\) 15.0920 0.0350698
\(58\) 341.386 0.772864
\(59\) −100.804 −0.222433 −0.111217 0.993796i \(-0.535475\pi\)
−0.111217 + 0.993796i \(0.535475\pi\)
\(60\) 15.8863 0.0341819
\(61\) 533.726 1.12027 0.560136 0.828401i \(-0.310749\pi\)
0.560136 + 0.828401i \(0.310749\pi\)
\(62\) −549.549 −1.12569
\(63\) 605.373 1.21063
\(64\) 64.0000 0.125000
\(65\) 366.744 0.699831
\(66\) −84.6856 −0.157941
\(67\) 327.968 0.598025 0.299012 0.954249i \(-0.403343\pi\)
0.299012 + 0.954249i \(0.403343\pi\)
\(68\) −557.608 −0.994410
\(69\) −78.7651 −0.137423
\(70\) 229.577 0.391996
\(71\) −344.315 −0.575531 −0.287765 0.957701i \(-0.592912\pi\)
−0.287765 + 0.957701i \(0.592912\pi\)
\(72\) −210.953 −0.345292
\(73\) 543.970 0.872149 0.436074 0.899911i \(-0.356368\pi\)
0.436074 + 0.899911i \(0.356368\pi\)
\(74\) −94.1306 −0.147871
\(75\) −19.8579 −0.0305732
\(76\) −76.0000 −0.114708
\(77\) −1223.81 −1.81125
\(78\) 116.524 0.169151
\(79\) 130.821 0.186310 0.0931548 0.995652i \(-0.470305\pi\)
0.0931548 + 0.995652i \(0.470305\pi\)
\(80\) −80.0000 −0.111803
\(81\) 678.292 0.930442
\(82\) 124.140 0.167182
\(83\) 944.539 1.24912 0.624558 0.780979i \(-0.285279\pi\)
0.624558 + 0.780979i \(0.285279\pi\)
\(84\) 72.9425 0.0947462
\(85\) 697.009 0.889427
\(86\) −448.385 −0.562216
\(87\) −135.584 −0.167082
\(88\) 426.459 0.516599
\(89\) −717.584 −0.854648 −0.427324 0.904098i \(-0.640544\pi\)
−0.427324 + 0.904098i \(0.640544\pi\)
\(90\) 263.691 0.308838
\(91\) 1683.92 1.93981
\(92\) 396.644 0.449489
\(93\) 218.257 0.243357
\(94\) −753.704 −0.827007
\(95\) 95.0000 0.102598
\(96\) −25.4181 −0.0270231
\(97\) −190.085 −0.198971 −0.0994856 0.995039i \(-0.531720\pi\)
−0.0994856 + 0.995039i \(0.531720\pi\)
\(98\) 368.111 0.379437
\(99\) −1405.67 −1.42702
\(100\) 100.000 0.100000
\(101\) −583.088 −0.574450 −0.287225 0.957863i \(-0.592733\pi\)
−0.287225 + 0.957863i \(0.592733\pi\)
\(102\) 221.458 0.214976
\(103\) −1794.19 −1.71638 −0.858189 0.513333i \(-0.828410\pi\)
−0.858189 + 0.513333i \(0.828410\pi\)
\(104\) −586.791 −0.553265
\(105\) −91.1781 −0.0847436
\(106\) 1102.85 1.01055
\(107\) 258.601 0.233644 0.116822 0.993153i \(-0.462729\pi\)
0.116822 + 0.993153i \(0.462729\pi\)
\(108\) 169.567 0.151080
\(109\) −562.480 −0.494273 −0.247137 0.968981i \(-0.579490\pi\)
−0.247137 + 0.968981i \(0.579490\pi\)
\(110\) −533.074 −0.462060
\(111\) 37.3847 0.0319675
\(112\) −367.323 −0.309900
\(113\) −706.717 −0.588340 −0.294170 0.955753i \(-0.595043\pi\)
−0.294170 + 0.955753i \(0.595043\pi\)
\(114\) 30.1839 0.0247981
\(115\) −495.805 −0.402036
\(116\) 682.771 0.546498
\(117\) 1934.14 1.52830
\(118\) −201.608 −0.157284
\(119\) 3200.35 2.46534
\(120\) 31.7726 0.0241702
\(121\) 1510.68 1.13499
\(122\) 1067.45 0.792151
\(123\) −49.3030 −0.0361423
\(124\) −1099.10 −0.795983
\(125\) −125.000 −0.0894427
\(126\) 1210.75 0.856046
\(127\) −2640.33 −1.84481 −0.922407 0.386219i \(-0.873781\pi\)
−0.922407 + 0.386219i \(0.873781\pi\)
\(128\) 128.000 0.0883883
\(129\) 178.079 0.121543
\(130\) 733.488 0.494855
\(131\) 360.905 0.240705 0.120353 0.992731i \(-0.461597\pi\)
0.120353 + 0.992731i \(0.461597\pi\)
\(132\) −169.371 −0.111681
\(133\) 436.196 0.284383
\(134\) 655.936 0.422867
\(135\) −211.959 −0.135130
\(136\) −1115.22 −0.703154
\(137\) 49.7951 0.0310532 0.0155266 0.999879i \(-0.495058\pi\)
0.0155266 + 0.999879i \(0.495058\pi\)
\(138\) −157.530 −0.0971729
\(139\) 2216.11 1.35229 0.676144 0.736769i \(-0.263650\pi\)
0.676144 + 0.736769i \(0.263650\pi\)
\(140\) 459.154 0.277183
\(141\) 299.339 0.178787
\(142\) −688.630 −0.406962
\(143\) −3910.03 −2.28653
\(144\) −421.905 −0.244158
\(145\) −853.464 −0.488802
\(146\) 1087.94 0.616702
\(147\) −146.198 −0.0820287
\(148\) −188.261 −0.104561
\(149\) −3381.39 −1.85916 −0.929579 0.368624i \(-0.879829\pi\)
−0.929579 + 0.368624i \(0.879829\pi\)
\(150\) −39.7157 −0.0216185
\(151\) −653.981 −0.352452 −0.176226 0.984350i \(-0.556389\pi\)
−0.176226 + 0.984350i \(0.556389\pi\)
\(152\) −152.000 −0.0811107
\(153\) 3675.90 1.94234
\(154\) −2447.63 −1.28075
\(155\) 1373.87 0.711949
\(156\) 233.048 0.119608
\(157\) −2927.57 −1.48819 −0.744093 0.668076i \(-0.767118\pi\)
−0.744093 + 0.668076i \(0.767118\pi\)
\(158\) 261.641 0.131741
\(159\) −438.005 −0.218466
\(160\) −160.000 −0.0790569
\(161\) −2276.51 −1.11437
\(162\) 1356.58 0.657922
\(163\) −991.454 −0.476421 −0.238211 0.971214i \(-0.576561\pi\)
−0.238211 + 0.971214i \(0.576561\pi\)
\(164\) 248.280 0.118216
\(165\) 211.714 0.0998904
\(166\) 1889.08 0.883258
\(167\) −3679.78 −1.70509 −0.852545 0.522653i \(-0.824942\pi\)
−0.852545 + 0.522653i \(0.824942\pi\)
\(168\) 145.885 0.0669957
\(169\) 3183.05 1.44882
\(170\) 1394.02 0.628920
\(171\) 501.012 0.224055
\(172\) −896.770 −0.397547
\(173\) 2017.51 0.886638 0.443319 0.896364i \(-0.353801\pi\)
0.443319 + 0.896364i \(0.353801\pi\)
\(174\) −271.168 −0.118145
\(175\) −573.942 −0.247920
\(176\) 852.918 0.365290
\(177\) 80.0700 0.0340024
\(178\) −1435.17 −0.604328
\(179\) −3045.55 −1.27170 −0.635852 0.771811i \(-0.719351\pi\)
−0.635852 + 0.771811i \(0.719351\pi\)
\(180\) 527.381 0.218382
\(181\) 2374.04 0.974924 0.487462 0.873144i \(-0.337923\pi\)
0.487462 + 0.873144i \(0.337923\pi\)
\(182\) 3367.84 1.37165
\(183\) −423.946 −0.171251
\(184\) 793.289 0.317837
\(185\) 235.327 0.0935219
\(186\) 436.514 0.172080
\(187\) −7431.15 −2.90599
\(188\) −1507.41 −0.584782
\(189\) −973.218 −0.374557
\(190\) 190.000 0.0725476
\(191\) −1777.35 −0.673324 −0.336662 0.941626i \(-0.609298\pi\)
−0.336662 + 0.941626i \(0.609298\pi\)
\(192\) −50.8361 −0.0191082
\(193\) −2180.19 −0.813128 −0.406564 0.913622i \(-0.633273\pi\)
−0.406564 + 0.913622i \(0.633273\pi\)
\(194\) −380.170 −0.140694
\(195\) −291.310 −0.106980
\(196\) 736.223 0.268303
\(197\) −2601.13 −0.940724 −0.470362 0.882473i \(-0.655877\pi\)
−0.470362 + 0.882473i \(0.655877\pi\)
\(198\) −2811.33 −1.00905
\(199\) 412.217 0.146841 0.0734204 0.997301i \(-0.476609\pi\)
0.0734204 + 0.997301i \(0.476609\pi\)
\(200\) 200.000 0.0707107
\(201\) −260.510 −0.0914175
\(202\) −1166.18 −0.406198
\(203\) −3918.71 −1.35488
\(204\) 442.916 0.152011
\(205\) −310.349 −0.105735
\(206\) −3588.38 −1.21366
\(207\) −2614.78 −0.877972
\(208\) −1173.58 −0.391217
\(209\) −1012.84 −0.335214
\(210\) −182.356 −0.0599228
\(211\) −1123.55 −0.366579 −0.183289 0.983059i \(-0.558675\pi\)
−0.183289 + 0.983059i \(0.558675\pi\)
\(212\) 2205.70 0.714567
\(213\) 273.494 0.0879790
\(214\) 517.201 0.165211
\(215\) 1120.96 0.355577
\(216\) 339.135 0.106830
\(217\) 6308.18 1.97340
\(218\) −1124.96 −0.349504
\(219\) −432.083 −0.133322
\(220\) −1066.15 −0.326726
\(221\) 10225.0 3.11224
\(222\) 74.7693 0.0226045
\(223\) 6066.46 1.82170 0.910852 0.412732i \(-0.135426\pi\)
0.910852 + 0.412732i \(0.135426\pi\)
\(224\) −734.646 −0.219132
\(225\) −659.227 −0.195326
\(226\) −1413.43 −0.416019
\(227\) 2994.36 0.875518 0.437759 0.899092i \(-0.355772\pi\)
0.437759 + 0.899092i \(0.355772\pi\)
\(228\) 60.3679 0.0175349
\(229\) −1510.63 −0.435917 −0.217959 0.975958i \(-0.569940\pi\)
−0.217959 + 0.975958i \(0.569940\pi\)
\(230\) −991.611 −0.284282
\(231\) 972.094 0.276879
\(232\) 1365.54 0.386432
\(233\) −5805.95 −1.63245 −0.816223 0.577736i \(-0.803936\pi\)
−0.816223 + 0.577736i \(0.803936\pi\)
\(234\) 3868.28 1.08067
\(235\) 1884.26 0.523045
\(236\) −403.216 −0.111217
\(237\) −103.913 −0.0284804
\(238\) 6400.69 1.74326
\(239\) −722.022 −0.195413 −0.0977066 0.995215i \(-0.531151\pi\)
−0.0977066 + 0.995215i \(0.531151\pi\)
\(240\) 63.5452 0.0170909
\(241\) 5771.57 1.54265 0.771327 0.636439i \(-0.219593\pi\)
0.771327 + 0.636439i \(0.219593\pi\)
\(242\) 3021.35 0.802562
\(243\) −1683.36 −0.444392
\(244\) 2134.90 0.560136
\(245\) −920.278 −0.239977
\(246\) −98.6060 −0.0255565
\(247\) 1393.63 0.359006
\(248\) −2198.19 −0.562845
\(249\) −750.261 −0.190947
\(250\) −250.000 −0.0632456
\(251\) 727.300 0.182895 0.0914477 0.995810i \(-0.470851\pi\)
0.0914477 + 0.995810i \(0.470851\pi\)
\(252\) 2421.49 0.605316
\(253\) 5286.02 1.31355
\(254\) −5280.66 −1.30448
\(255\) −553.645 −0.135963
\(256\) 256.000 0.0625000
\(257\) 2137.23 0.518743 0.259371 0.965778i \(-0.416485\pi\)
0.259371 + 0.965778i \(0.416485\pi\)
\(258\) 356.159 0.0859436
\(259\) 1080.51 0.259227
\(260\) 1466.98 0.349916
\(261\) −4501.01 −1.06745
\(262\) 721.809 0.170204
\(263\) 2997.82 0.702865 0.351433 0.936213i \(-0.385695\pi\)
0.351433 + 0.936213i \(0.385695\pi\)
\(264\) −338.743 −0.0789703
\(265\) −2757.13 −0.639128
\(266\) 872.392 0.201089
\(267\) 569.987 0.130647
\(268\) 1311.87 0.299012
\(269\) 2601.91 0.589743 0.294872 0.955537i \(-0.404723\pi\)
0.294872 + 0.955537i \(0.404723\pi\)
\(270\) −423.918 −0.0955513
\(271\) −766.382 −0.171787 −0.0858937 0.996304i \(-0.527375\pi\)
−0.0858937 + 0.996304i \(0.527375\pi\)
\(272\) −2230.43 −0.497205
\(273\) −1337.56 −0.296531
\(274\) 99.5903 0.0219579
\(275\) 1332.68 0.292232
\(276\) −315.060 −0.0687116
\(277\) −5989.96 −1.29928 −0.649642 0.760240i \(-0.725081\pi\)
−0.649642 + 0.760240i \(0.725081\pi\)
\(278\) 4432.22 0.956212
\(279\) 7245.54 1.55476
\(280\) 918.308 0.195998
\(281\) −1442.46 −0.306228 −0.153114 0.988209i \(-0.548930\pi\)
−0.153114 + 0.988209i \(0.548930\pi\)
\(282\) 598.678 0.126421
\(283\) −3000.34 −0.630217 −0.315109 0.949056i \(-0.602041\pi\)
−0.315109 + 0.949056i \(0.602041\pi\)
\(284\) −1377.26 −0.287765
\(285\) −75.4599 −0.0156837
\(286\) −7820.07 −1.61682
\(287\) −1424.98 −0.293080
\(288\) −843.810 −0.172646
\(289\) 14519.9 2.95540
\(290\) −1706.93 −0.345636
\(291\) 150.987 0.0304159
\(292\) 2175.88 0.436074
\(293\) 750.895 0.149719 0.0748597 0.997194i \(-0.476149\pi\)
0.0748597 + 0.997194i \(0.476149\pi\)
\(294\) −292.396 −0.0580030
\(295\) 504.019 0.0994751
\(296\) −376.523 −0.0739356
\(297\) 2259.80 0.441504
\(298\) −6762.79 −1.31462
\(299\) −7273.35 −1.40679
\(300\) −79.4314 −0.0152866
\(301\) 5146.94 0.985597
\(302\) −1307.96 −0.249221
\(303\) 463.155 0.0878138
\(304\) −304.000 −0.0573539
\(305\) −2668.63 −0.501001
\(306\) 7351.79 1.37344
\(307\) −339.570 −0.0631279 −0.0315640 0.999502i \(-0.510049\pi\)
−0.0315640 + 0.999502i \(0.510049\pi\)
\(308\) −4895.26 −0.905627
\(309\) 1425.15 0.262376
\(310\) 2747.74 0.503424
\(311\) 9239.59 1.68466 0.842330 0.538963i \(-0.181184\pi\)
0.842330 + 0.538963i \(0.181184\pi\)
\(312\) 466.096 0.0845754
\(313\) −713.175 −0.128789 −0.0643946 0.997925i \(-0.520512\pi\)
−0.0643946 + 0.997925i \(0.520512\pi\)
\(314\) −5855.13 −1.05231
\(315\) −3026.86 −0.541411
\(316\) 523.282 0.0931548
\(317\) 1145.46 0.202951 0.101475 0.994838i \(-0.467644\pi\)
0.101475 + 0.994838i \(0.467644\pi\)
\(318\) −876.010 −0.154479
\(319\) 9099.19 1.59704
\(320\) −320.000 −0.0559017
\(321\) −205.410 −0.0357161
\(322\) −4553.02 −0.787981
\(323\) 2648.64 0.456266
\(324\) 2713.17 0.465221
\(325\) −1833.72 −0.312974
\(326\) −1982.91 −0.336881
\(327\) 446.786 0.0755575
\(328\) 496.559 0.0835911
\(329\) 8651.66 1.44979
\(330\) 423.428 0.0706332
\(331\) −1030.08 −0.171052 −0.0855261 0.996336i \(-0.527257\pi\)
−0.0855261 + 0.996336i \(0.527257\pi\)
\(332\) 3778.15 0.624558
\(333\) 1241.07 0.204235
\(334\) −7359.57 −1.20568
\(335\) −1639.84 −0.267445
\(336\) 291.770 0.0473731
\(337\) 7214.68 1.16620 0.583099 0.812401i \(-0.301840\pi\)
0.583099 + 0.812401i \(0.301840\pi\)
\(338\) 6366.11 1.02447
\(339\) 561.356 0.0899371
\(340\) 2788.04 0.444713
\(341\) −14647.5 −2.32612
\(342\) 1002.02 0.158431
\(343\) 3648.99 0.574423
\(344\) −1793.54 −0.281108
\(345\) 393.825 0.0614575
\(346\) 4035.02 0.626948
\(347\) −1463.81 −0.226459 −0.113229 0.993569i \(-0.536120\pi\)
−0.113229 + 0.993569i \(0.536120\pi\)
\(348\) −542.335 −0.0835409
\(349\) −10644.8 −1.63267 −0.816336 0.577578i \(-0.803998\pi\)
−0.816336 + 0.577578i \(0.803998\pi\)
\(350\) −1147.88 −0.175306
\(351\) −3109.39 −0.472840
\(352\) 1705.84 0.258299
\(353\) −3372.46 −0.508492 −0.254246 0.967140i \(-0.581827\pi\)
−0.254246 + 0.967140i \(0.581827\pi\)
\(354\) 160.140 0.0240433
\(355\) 1721.58 0.257385
\(356\) −2870.33 −0.427324
\(357\) −2542.08 −0.376866
\(358\) −6091.10 −0.899230
\(359\) −10388.6 −1.52728 −0.763638 0.645645i \(-0.776589\pi\)
−0.763638 + 0.645645i \(0.776589\pi\)
\(360\) 1054.76 0.154419
\(361\) 361.000 0.0526316
\(362\) 4748.08 0.689375
\(363\) −1199.95 −0.173502
\(364\) 6735.68 0.969906
\(365\) −2719.85 −0.390037
\(366\) −847.892 −0.121093
\(367\) −430.531 −0.0612358 −0.0306179 0.999531i \(-0.509748\pi\)
−0.0306179 + 0.999531i \(0.509748\pi\)
\(368\) 1586.58 0.224745
\(369\) −1636.72 −0.230906
\(370\) 470.653 0.0661300
\(371\) −12659.4 −1.77155
\(372\) 873.029 0.121679
\(373\) −375.132 −0.0520740 −0.0260370 0.999661i \(-0.508289\pi\)
−0.0260370 + 0.999661i \(0.508289\pi\)
\(374\) −14862.3 −2.05484
\(375\) 99.2893 0.0136727
\(376\) −3014.82 −0.413504
\(377\) −12520.1 −1.71040
\(378\) −1946.44 −0.264852
\(379\) 2575.31 0.349036 0.174518 0.984654i \(-0.444163\pi\)
0.174518 + 0.984654i \(0.444163\pi\)
\(380\) 380.000 0.0512989
\(381\) 2097.25 0.282009
\(382\) −3554.71 −0.476112
\(383\) 9007.80 1.20177 0.600884 0.799336i \(-0.294815\pi\)
0.600884 + 0.799336i \(0.294815\pi\)
\(384\) −101.672 −0.0135116
\(385\) 6119.07 0.810018
\(386\) −4360.39 −0.574968
\(387\) 5911.74 0.776514
\(388\) −760.340 −0.0994856
\(389\) 3716.86 0.484453 0.242227 0.970220i \(-0.422122\pi\)
0.242227 + 0.970220i \(0.422122\pi\)
\(390\) −582.620 −0.0756465
\(391\) −13823.2 −1.78791
\(392\) 1472.45 0.189719
\(393\) −286.672 −0.0367956
\(394\) −5202.26 −0.665193
\(395\) −654.103 −0.0833202
\(396\) −5622.66 −0.713509
\(397\) 14192.2 1.79418 0.897088 0.441851i \(-0.145678\pi\)
0.897088 + 0.441851i \(0.145678\pi\)
\(398\) 824.435 0.103832
\(399\) −346.477 −0.0434725
\(400\) 400.000 0.0500000
\(401\) −9736.11 −1.21246 −0.606232 0.795288i \(-0.707320\pi\)
−0.606232 + 0.795288i \(0.707320\pi\)
\(402\) −521.019 −0.0646420
\(403\) 20154.4 2.49122
\(404\) −2332.35 −0.287225
\(405\) −3391.46 −0.416106
\(406\) −7837.43 −0.958042
\(407\) −2508.93 −0.305560
\(408\) 885.831 0.107488
\(409\) 15847.0 1.91585 0.957925 0.287020i \(-0.0926646\pi\)
0.957925 + 0.287020i \(0.0926646\pi\)
\(410\) −620.699 −0.0747662
\(411\) −39.5530 −0.00474697
\(412\) −7176.77 −0.858189
\(413\) 2314.22 0.275728
\(414\) −5229.57 −0.620820
\(415\) −4722.69 −0.558621
\(416\) −2347.16 −0.276633
\(417\) −1760.29 −0.206719
\(418\) −2025.68 −0.237032
\(419\) −15104.2 −1.76107 −0.880536 0.473979i \(-0.842817\pi\)
−0.880536 + 0.473979i \(0.842817\pi\)
\(420\) −364.713 −0.0423718
\(421\) 1317.72 0.152546 0.0762729 0.997087i \(-0.475698\pi\)
0.0762729 + 0.997087i \(0.475698\pi\)
\(422\) −2247.09 −0.259210
\(423\) 9937.24 1.14223
\(424\) 4411.40 0.505275
\(425\) −3485.05 −0.397764
\(426\) 546.989 0.0622106
\(427\) −12253.1 −1.38869
\(428\) 1034.40 0.116822
\(429\) 3105.80 0.349532
\(430\) 2241.92 0.251431
\(431\) −16162.6 −1.80632 −0.903159 0.429306i \(-0.858758\pi\)
−0.903159 + 0.429306i \(0.858758\pi\)
\(432\) 678.269 0.0755399
\(433\) 10551.5 1.17107 0.585536 0.810647i \(-0.300884\pi\)
0.585536 + 0.810647i \(0.300884\pi\)
\(434\) 12616.4 1.39540
\(435\) 677.919 0.0747212
\(436\) −2249.92 −0.247137
\(437\) −1884.06 −0.206240
\(438\) −864.166 −0.0942727
\(439\) −12039.2 −1.30889 −0.654443 0.756112i \(-0.727097\pi\)
−0.654443 + 0.756112i \(0.727097\pi\)
\(440\) −2132.30 −0.231030
\(441\) −4853.38 −0.524066
\(442\) 20449.9 2.20069
\(443\) 4159.65 0.446120 0.223060 0.974805i \(-0.428395\pi\)
0.223060 + 0.974805i \(0.428395\pi\)
\(444\) 149.539 0.0159838
\(445\) 3587.92 0.382210
\(446\) 12132.9 1.28814
\(447\) 2685.89 0.284202
\(448\) −1469.29 −0.154950
\(449\) 14827.6 1.55848 0.779242 0.626724i \(-0.215605\pi\)
0.779242 + 0.626724i \(0.215605\pi\)
\(450\) −1318.45 −0.138117
\(451\) 3308.78 0.345465
\(452\) −2826.87 −0.294170
\(453\) 519.466 0.0538778
\(454\) 5988.72 0.619085
\(455\) −8419.60 −0.867510
\(456\) 120.736 0.0123991
\(457\) 14972.2 1.53254 0.766270 0.642518i \(-0.222110\pi\)
0.766270 + 0.642518i \(0.222110\pi\)
\(458\) −3021.26 −0.308240
\(459\) −5909.50 −0.600941
\(460\) −1983.22 −0.201018
\(461\) −6764.28 −0.683392 −0.341696 0.939810i \(-0.611001\pi\)
−0.341696 + 0.939810i \(0.611001\pi\)
\(462\) 1944.19 0.195783
\(463\) −12092.4 −1.21378 −0.606890 0.794786i \(-0.707583\pi\)
−0.606890 + 0.794786i \(0.707583\pi\)
\(464\) 2731.09 0.273249
\(465\) −1091.29 −0.108833
\(466\) −11611.9 −1.15431
\(467\) 3436.72 0.340541 0.170270 0.985397i \(-0.445536\pi\)
0.170270 + 0.985397i \(0.445536\pi\)
\(468\) 7736.56 0.764151
\(469\) −7529.38 −0.741311
\(470\) 3768.52 0.369849
\(471\) 2325.41 0.227493
\(472\) −806.431 −0.0786419
\(473\) −11951.1 −1.16176
\(474\) −207.825 −0.0201387
\(475\) −475.000 −0.0458831
\(476\) 12801.4 1.23267
\(477\) −14540.6 −1.39574
\(478\) −1444.04 −0.138178
\(479\) 13749.1 1.31151 0.655756 0.754973i \(-0.272350\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(480\) 127.090 0.0120851
\(481\) 3452.19 0.327248
\(482\) 11543.1 1.09082
\(483\) 1808.26 0.170350
\(484\) 6042.71 0.567497
\(485\) 950.425 0.0889827
\(486\) −3366.71 −0.314233
\(487\) 6265.57 0.582999 0.291499 0.956571i \(-0.405846\pi\)
0.291499 + 0.956571i \(0.405846\pi\)
\(488\) 4269.80 0.396076
\(489\) 787.526 0.0728285
\(490\) −1840.56 −0.169690
\(491\) −184.155 −0.0169263 −0.00846314 0.999964i \(-0.502694\pi\)
−0.00846314 + 0.999964i \(0.502694\pi\)
\(492\) −197.212 −0.0180711
\(493\) −23794.9 −2.17377
\(494\) 2787.26 0.253855
\(495\) 7028.33 0.638182
\(496\) −4396.39 −0.397991
\(497\) 7904.68 0.713427
\(498\) −1500.52 −0.135020
\(499\) 670.487 0.0601506 0.0300753 0.999548i \(-0.490425\pi\)
0.0300753 + 0.999548i \(0.490425\pi\)
\(500\) −500.000 −0.0447214
\(501\) 2922.91 0.260650
\(502\) 1454.60 0.129327
\(503\) −8875.83 −0.786786 −0.393393 0.919370i \(-0.628699\pi\)
−0.393393 + 0.919370i \(0.628699\pi\)
\(504\) 4842.98 0.428023
\(505\) 2915.44 0.256902
\(506\) 10572.0 0.928823
\(507\) −2528.34 −0.221475
\(508\) −10561.3 −0.922407
\(509\) 12882.1 1.12179 0.560893 0.827888i \(-0.310458\pi\)
0.560893 + 0.827888i \(0.310458\pi\)
\(510\) −1107.29 −0.0961404
\(511\) −12488.3 −1.08111
\(512\) 512.000 0.0441942
\(513\) −805.445 −0.0693202
\(514\) 4274.47 0.366807
\(515\) 8970.96 0.767588
\(516\) 712.317 0.0607713
\(517\) −20089.0 −1.70892
\(518\) 2161.02 0.183301
\(519\) −1602.54 −0.135537
\(520\) 2933.95 0.247428
\(521\) 11785.0 0.990996 0.495498 0.868609i \(-0.334986\pi\)
0.495498 + 0.868609i \(0.334986\pi\)
\(522\) −9002.02 −0.754804
\(523\) 51.4550 0.00430204 0.00215102 0.999998i \(-0.499315\pi\)
0.00215102 + 0.999998i \(0.499315\pi\)
\(524\) 1443.62 0.120353
\(525\) 455.891 0.0378985
\(526\) 5995.64 0.497001
\(527\) 38304.1 3.16613
\(528\) −677.485 −0.0558404
\(529\) −2334.08 −0.191837
\(530\) −5514.25 −0.451932
\(531\) 2658.10 0.217235
\(532\) 1744.78 0.142192
\(533\) −4552.75 −0.369984
\(534\) 1139.97 0.0923811
\(535\) −1293.00 −0.104489
\(536\) 2623.74 0.211434
\(537\) 2419.12 0.194400
\(538\) 5203.81 0.417012
\(539\) 9811.53 0.784067
\(540\) −847.836 −0.0675649
\(541\) 4414.29 0.350804 0.175402 0.984497i \(-0.443877\pi\)
0.175402 + 0.984497i \(0.443877\pi\)
\(542\) −1532.76 −0.121472
\(543\) −1885.74 −0.149033
\(544\) −4460.86 −0.351577
\(545\) 2812.40 0.221046
\(546\) −2675.12 −0.209679
\(547\) 11425.2 0.893067 0.446533 0.894767i \(-0.352658\pi\)
0.446533 + 0.894767i \(0.352658\pi\)
\(548\) 199.181 0.0155266
\(549\) −14073.8 −1.09409
\(550\) 2665.37 0.206639
\(551\) −3243.16 −0.250750
\(552\) −630.121 −0.0485864
\(553\) −3003.34 −0.230949
\(554\) −11979.9 −0.918732
\(555\) −186.923 −0.0142963
\(556\) 8864.44 0.676144
\(557\) 19442.2 1.47898 0.739491 0.673166i \(-0.235066\pi\)
0.739491 + 0.673166i \(0.235066\pi\)
\(558\) 14491.1 1.09938
\(559\) 16444.3 1.24422
\(560\) 1836.62 0.138591
\(561\) 5902.67 0.444226
\(562\) −2884.93 −0.216536
\(563\) −9459.96 −0.708153 −0.354076 0.935217i \(-0.615205\pi\)
−0.354076 + 0.935217i \(0.615205\pi\)
\(564\) 1197.36 0.0893933
\(565\) 3533.59 0.263114
\(566\) −6000.67 −0.445631
\(567\) −15572.0 −1.15338
\(568\) −2754.52 −0.203481
\(569\) −19606.0 −1.44451 −0.722256 0.691626i \(-0.756895\pi\)
−0.722256 + 0.691626i \(0.756895\pi\)
\(570\) −150.920 −0.0110901
\(571\) 5156.19 0.377898 0.188949 0.981987i \(-0.439492\pi\)
0.188949 + 0.981987i \(0.439492\pi\)
\(572\) −15640.1 −1.14326
\(573\) 1411.78 0.102928
\(574\) −2849.96 −0.207239
\(575\) 2479.03 0.179796
\(576\) −1687.62 −0.122079
\(577\) −17093.9 −1.23332 −0.616662 0.787228i \(-0.711515\pi\)
−0.616662 + 0.787228i \(0.711515\pi\)
\(578\) 29039.8 2.08978
\(579\) 1731.76 0.124300
\(580\) −3413.86 −0.244401
\(581\) −21684.4 −1.54840
\(582\) 301.975 0.0215073
\(583\) 29395.0 2.08820
\(584\) 4351.76 0.308351
\(585\) −9670.70 −0.683477
\(586\) 1501.79 0.105868
\(587\) −10003.2 −0.703366 −0.351683 0.936119i \(-0.614390\pi\)
−0.351683 + 0.936119i \(0.614390\pi\)
\(588\) −584.792 −0.0410143
\(589\) 5220.71 0.365222
\(590\) 1008.04 0.0703395
\(591\) 2066.11 0.143805
\(592\) −753.045 −0.0522803
\(593\) −5615.44 −0.388868 −0.194434 0.980916i \(-0.562287\pi\)
−0.194434 + 0.980916i \(0.562287\pi\)
\(594\) 4519.59 0.312191
\(595\) −16001.7 −1.10253
\(596\) −13525.6 −0.929579
\(597\) −327.430 −0.0224470
\(598\) −14546.7 −0.994747
\(599\) −2294.71 −0.156526 −0.0782631 0.996933i \(-0.524937\pi\)
−0.0782631 + 0.996933i \(0.524937\pi\)
\(600\) −158.863 −0.0108093
\(601\) −11049.3 −0.749935 −0.374967 0.927038i \(-0.622346\pi\)
−0.374967 + 0.927038i \(0.622346\pi\)
\(602\) 10293.9 0.696922
\(603\) −8648.20 −0.584050
\(604\) −2615.92 −0.176226
\(605\) −7553.38 −0.507585
\(606\) 926.311 0.0620937
\(607\) 3081.49 0.206053 0.103026 0.994679i \(-0.467147\pi\)
0.103026 + 0.994679i \(0.467147\pi\)
\(608\) −608.000 −0.0405554
\(609\) 3112.69 0.207114
\(610\) −5337.26 −0.354261
\(611\) 27641.7 1.83022
\(612\) 14703.6 0.971172
\(613\) −8913.61 −0.587304 −0.293652 0.955912i \(-0.594871\pi\)
−0.293652 + 0.955912i \(0.594871\pi\)
\(614\) −679.140 −0.0446382
\(615\) 246.515 0.0161633
\(616\) −9790.52 −0.640375
\(617\) 17711.0 1.15562 0.577811 0.816170i \(-0.303907\pi\)
0.577811 + 0.816170i \(0.303907\pi\)
\(618\) 2850.31 0.185528
\(619\) −9489.11 −0.616154 −0.308077 0.951361i \(-0.599685\pi\)
−0.308077 + 0.951361i \(0.599685\pi\)
\(620\) 5495.49 0.355974
\(621\) 4203.62 0.271635
\(622\) 18479.2 1.19123
\(623\) 16474.1 1.05942
\(624\) 932.193 0.0598038
\(625\) 625.000 0.0400000
\(626\) −1426.35 −0.0910677
\(627\) 804.514 0.0512427
\(628\) −11710.3 −0.744093
\(629\) 6560.99 0.415905
\(630\) −6053.73 −0.382835
\(631\) −8443.93 −0.532722 −0.266361 0.963873i \(-0.585821\pi\)
−0.266361 + 0.963873i \(0.585821\pi\)
\(632\) 1046.56 0.0658704
\(633\) 892.449 0.0560374
\(634\) 2290.92 0.143508
\(635\) 13201.7 0.825026
\(636\) −1752.02 −0.109233
\(637\) −13500.3 −0.839718
\(638\) 18198.4 1.12928
\(639\) 9079.27 0.562082
\(640\) −640.000 −0.0395285
\(641\) 2397.17 0.147711 0.0738554 0.997269i \(-0.476470\pi\)
0.0738554 + 0.997269i \(0.476470\pi\)
\(642\) −410.820 −0.0252551
\(643\) −19474.3 −1.19439 −0.597193 0.802097i \(-0.703718\pi\)
−0.597193 + 0.802097i \(0.703718\pi\)
\(644\) −9106.04 −0.557187
\(645\) −890.396 −0.0543555
\(646\) 5297.27 0.322629
\(647\) −27920.1 −1.69652 −0.848262 0.529577i \(-0.822351\pi\)
−0.848262 + 0.529577i \(0.822351\pi\)
\(648\) 5426.34 0.328961
\(649\) −5373.59 −0.325011
\(650\) −3667.44 −0.221306
\(651\) −5010.68 −0.301665
\(652\) −3965.81 −0.238211
\(653\) −465.094 −0.0278722 −0.0139361 0.999903i \(-0.504436\pi\)
−0.0139361 + 0.999903i \(0.504436\pi\)
\(654\) 893.572 0.0534272
\(655\) −1804.52 −0.107647
\(656\) 993.118 0.0591079
\(657\) −14344.0 −0.851768
\(658\) 17303.3 1.02516
\(659\) 8363.60 0.494385 0.247192 0.968966i \(-0.420492\pi\)
0.247192 + 0.968966i \(0.420492\pi\)
\(660\) 846.856 0.0499452
\(661\) 27046.1 1.59149 0.795743 0.605635i \(-0.207081\pi\)
0.795743 + 0.605635i \(0.207081\pi\)
\(662\) −2060.16 −0.120952
\(663\) −8121.84 −0.475756
\(664\) 7556.31 0.441629
\(665\) −2180.98 −0.127180
\(666\) 2482.14 0.144416
\(667\) 16926.1 0.982580
\(668\) −14719.1 −0.852545
\(669\) −4818.68 −0.278477
\(670\) −3279.68 −0.189112
\(671\) 28451.5 1.63690
\(672\) 583.540 0.0334978
\(673\) −3938.39 −0.225578 −0.112789 0.993619i \(-0.535978\pi\)
−0.112789 + 0.993619i \(0.535978\pi\)
\(674\) 14429.4 0.824626
\(675\) 1059.80 0.0604319
\(676\) 12732.2 0.724409
\(677\) −7796.77 −0.442621 −0.221310 0.975203i \(-0.571033\pi\)
−0.221310 + 0.975203i \(0.571033\pi\)
\(678\) 1122.71 0.0635951
\(679\) 4363.91 0.246645
\(680\) 5576.08 0.314460
\(681\) −2378.46 −0.133837
\(682\) −29295.0 −1.64481
\(683\) 21022.7 1.17776 0.588880 0.808221i \(-0.299569\pi\)
0.588880 + 0.808221i \(0.299569\pi\)
\(684\) 2004.05 0.112027
\(685\) −248.976 −0.0138874
\(686\) 7297.99 0.406179
\(687\) 1199.91 0.0666369
\(688\) −3587.08 −0.198773
\(689\) −40446.4 −2.23641
\(690\) 787.651 0.0434570
\(691\) −4955.79 −0.272832 −0.136416 0.990652i \(-0.543558\pi\)
−0.136416 + 0.990652i \(0.543558\pi\)
\(692\) 8070.03 0.443319
\(693\) 32270.8 1.76893
\(694\) −2927.61 −0.160131
\(695\) −11080.6 −0.604762
\(696\) −1084.67 −0.0590723
\(697\) −8652.66 −0.470219
\(698\) −21289.6 −1.15447
\(699\) 4611.75 0.249545
\(700\) −2295.77 −0.123960
\(701\) −34916.0 −1.88126 −0.940628 0.339440i \(-0.889762\pi\)
−0.940628 + 0.339440i \(0.889762\pi\)
\(702\) −6218.78 −0.334349
\(703\) 894.241 0.0479757
\(704\) 3411.67 0.182645
\(705\) −1496.70 −0.0799558
\(706\) −6744.91 −0.359558
\(707\) 13386.4 0.712088
\(708\) 320.280 0.0170012
\(709\) −21741.3 −1.15164 −0.575820 0.817576i \(-0.695317\pi\)
−0.575820 + 0.817576i \(0.695317\pi\)
\(710\) 3443.15 0.181999
\(711\) −3449.62 −0.181956
\(712\) −5740.67 −0.302164
\(713\) −27246.9 −1.43114
\(714\) −5084.16 −0.266485
\(715\) 19550.2 1.02257
\(716\) −12182.2 −0.635852
\(717\) 573.513 0.0298720
\(718\) −20777.3 −1.07995
\(719\) −22241.1 −1.15362 −0.576810 0.816879i \(-0.695703\pi\)
−0.576810 + 0.816879i \(0.695703\pi\)
\(720\) 2109.53 0.109191
\(721\) 41190.5 2.12762
\(722\) 722.000 0.0372161
\(723\) −4584.44 −0.235819
\(724\) 9496.17 0.487462
\(725\) 4267.32 0.218599
\(726\) −2399.90 −0.122684
\(727\) 2988.44 0.152456 0.0762278 0.997090i \(-0.475712\pi\)
0.0762278 + 0.997090i \(0.475712\pi\)
\(728\) 13471.4 0.685827
\(729\) −16976.8 −0.862510
\(730\) −5439.70 −0.275798
\(731\) 31252.8 1.58130
\(732\) −1695.78 −0.0856256
\(733\) −12240.9 −0.616816 −0.308408 0.951254i \(-0.599796\pi\)
−0.308408 + 0.951254i \(0.599796\pi\)
\(734\) −861.062 −0.0433003
\(735\) 730.990 0.0366843
\(736\) 3173.15 0.158919
\(737\) 17483.1 0.873811
\(738\) −3273.45 −0.163276
\(739\) 19051.6 0.948340 0.474170 0.880433i \(-0.342748\pi\)
0.474170 + 0.880433i \(0.342748\pi\)
\(740\) 941.306 0.0467610
\(741\) −1106.98 −0.0548797
\(742\) −25318.9 −1.25268
\(743\) −21009.1 −1.03735 −0.518673 0.854973i \(-0.673574\pi\)
−0.518673 + 0.854973i \(0.673574\pi\)
\(744\) 1746.06 0.0860398
\(745\) 16907.0 0.831441
\(746\) −750.264 −0.0368219
\(747\) −24906.6 −1.21993
\(748\) −29724.6 −1.45299
\(749\) −5936.87 −0.289624
\(750\) 198.579 0.00966809
\(751\) −17060.4 −0.828951 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(752\) −6029.63 −0.292391
\(753\) −577.705 −0.0279585
\(754\) −25040.2 −1.20943
\(755\) 3269.90 0.157621
\(756\) −3892.87 −0.187278
\(757\) 21029.9 1.00970 0.504850 0.863207i \(-0.331548\pi\)
0.504850 + 0.863207i \(0.331548\pi\)
\(758\) 5150.61 0.246806
\(759\) −4198.76 −0.200798
\(760\) 760.000 0.0362738
\(761\) 25781.2 1.22808 0.614040 0.789275i \(-0.289543\pi\)
0.614040 + 0.789275i \(0.289543\pi\)
\(762\) 4194.50 0.199411
\(763\) 12913.2 0.612701
\(764\) −7109.42 −0.336662
\(765\) −18379.5 −0.868643
\(766\) 18015.6 0.849778
\(767\) 7393.85 0.348079
\(768\) −203.344 −0.00955412
\(769\) −26905.2 −1.26167 −0.630835 0.775917i \(-0.717288\pi\)
−0.630835 + 0.775917i \(0.717288\pi\)
\(770\) 12238.1 0.572769
\(771\) −1697.63 −0.0792981
\(772\) −8720.77 −0.406564
\(773\) −10683.7 −0.497111 −0.248556 0.968618i \(-0.579956\pi\)
−0.248556 + 0.968618i \(0.579956\pi\)
\(774\) 11823.5 0.549078
\(775\) −6869.36 −0.318393
\(776\) −1520.68 −0.0703470
\(777\) −858.266 −0.0396269
\(778\) 7433.72 0.342560
\(779\) −1179.33 −0.0542411
\(780\) −1165.24 −0.0534901
\(781\) −18354.5 −0.840943
\(782\) −27646.5 −1.26424
\(783\) 7235.98 0.330259
\(784\) 2944.89 0.134151
\(785\) 14637.8 0.665537
\(786\) −573.343 −0.0260184
\(787\) 6017.52 0.272556 0.136278 0.990671i \(-0.456486\pi\)
0.136278 + 0.990671i \(0.456486\pi\)
\(788\) −10404.5 −0.470362
\(789\) −2381.21 −0.107444
\(790\) −1308.21 −0.0589163
\(791\) 16224.6 0.729305
\(792\) −11245.3 −0.504527
\(793\) −39148.1 −1.75308
\(794\) 28384.5 1.26867
\(795\) 2190.02 0.0977008
\(796\) 1648.87 0.0734204
\(797\) 36703.4 1.63124 0.815621 0.578587i \(-0.196396\pi\)
0.815621 + 0.578587i \(0.196396\pi\)
\(798\) −692.954 −0.0307397
\(799\) 52533.9 2.32605
\(800\) 800.000 0.0353553
\(801\) 18922.0 0.834677
\(802\) −19472.2 −0.857341
\(803\) 28997.6 1.27435
\(804\) −1042.04 −0.0457088
\(805\) 11382.5 0.498363
\(806\) 40308.8 1.76156
\(807\) −2066.73 −0.0901516
\(808\) −4664.71 −0.203099
\(809\) 3237.98 0.140718 0.0703592 0.997522i \(-0.477585\pi\)
0.0703592 + 0.997522i \(0.477585\pi\)
\(810\) −6782.92 −0.294232
\(811\) −25947.0 −1.12346 −0.561728 0.827322i \(-0.689863\pi\)
−0.561728 + 0.827322i \(0.689863\pi\)
\(812\) −15674.9 −0.677438
\(813\) 608.748 0.0262604
\(814\) −5017.86 −0.216064
\(815\) 4957.27 0.213062
\(816\) 1771.66 0.0760056
\(817\) 4259.66 0.182407
\(818\) 31693.9 1.35471
\(819\) −44403.4 −1.89448
\(820\) −1241.40 −0.0528677
\(821\) 11190.8 0.475713 0.237856 0.971300i \(-0.423555\pi\)
0.237856 + 0.971300i \(0.423555\pi\)
\(822\) −79.1060 −0.00335662
\(823\) 14476.1 0.613129 0.306564 0.951850i \(-0.400821\pi\)
0.306564 + 0.951850i \(0.400821\pi\)
\(824\) −14353.5 −0.606832
\(825\) −1058.57 −0.0446724
\(826\) 4628.45 0.194969
\(827\) −21055.8 −0.885349 −0.442674 0.896682i \(-0.645970\pi\)
−0.442674 + 0.896682i \(0.645970\pi\)
\(828\) −10459.1 −0.438986
\(829\) 11156.5 0.467407 0.233704 0.972308i \(-0.424915\pi\)
0.233704 + 0.972308i \(0.424915\pi\)
\(830\) −9445.39 −0.395005
\(831\) 4757.91 0.198616
\(832\) −4694.33 −0.195609
\(833\) −25657.7 −1.06721
\(834\) −3520.58 −0.146172
\(835\) 18398.9 0.762540
\(836\) −4051.36 −0.167607
\(837\) −11648.2 −0.481028
\(838\) −30208.4 −1.24527
\(839\) −39171.2 −1.61185 −0.805923 0.592021i \(-0.798330\pi\)
−0.805923 + 0.592021i \(0.798330\pi\)
\(840\) −729.425 −0.0299614
\(841\) 4747.05 0.194639
\(842\) 2635.44 0.107866
\(843\) 1145.77 0.0468118
\(844\) −4494.18 −0.183289
\(845\) −15915.3 −0.647931
\(846\) 19874.5 0.807682
\(847\) −34681.7 −1.40694
\(848\) 8822.80 0.357283
\(849\) 2383.21 0.0963388
\(850\) −6970.09 −0.281261
\(851\) −4667.05 −0.187996
\(852\) 1093.98 0.0439895
\(853\) −30337.0 −1.21773 −0.608863 0.793275i \(-0.708374\pi\)
−0.608863 + 0.793275i \(0.708374\pi\)
\(854\) −24506.2 −0.981950
\(855\) −2505.06 −0.100200
\(856\) 2068.80 0.0826055
\(857\) 22146.0 0.882724 0.441362 0.897329i \(-0.354496\pi\)
0.441362 + 0.897329i \(0.354496\pi\)
\(858\) 6211.59 0.247157
\(859\) 35168.0 1.39687 0.698437 0.715671i \(-0.253879\pi\)
0.698437 + 0.715671i \(0.253879\pi\)
\(860\) 4483.85 0.177788
\(861\) 1131.88 0.0448020
\(862\) −32325.1 −1.27726
\(863\) 3982.75 0.157097 0.0785483 0.996910i \(-0.474972\pi\)
0.0785483 + 0.996910i \(0.474972\pi\)
\(864\) 1356.54 0.0534148
\(865\) −10087.5 −0.396516
\(866\) 21103.0 0.828073
\(867\) −11533.4 −0.451780
\(868\) 25232.7 0.986699
\(869\) 6973.70 0.272229
\(870\) 1355.84 0.0528359
\(871\) −24056.1 −0.935831
\(872\) −4499.84 −0.174752
\(873\) 5012.36 0.194322
\(874\) −3768.12 −0.145834
\(875\) 2869.71 0.110873
\(876\) −1728.33 −0.0666609
\(877\) 22118.0 0.851621 0.425810 0.904812i \(-0.359989\pi\)
0.425810 + 0.904812i \(0.359989\pi\)
\(878\) −24078.4 −0.925522
\(879\) −596.447 −0.0228870
\(880\) −4264.59 −0.163363
\(881\) 44513.2 1.70225 0.851127 0.524959i \(-0.175919\pi\)
0.851127 + 0.524959i \(0.175919\pi\)
\(882\) −9706.75 −0.370571
\(883\) −14433.7 −0.550093 −0.275047 0.961431i \(-0.588693\pi\)
−0.275047 + 0.961431i \(0.588693\pi\)
\(884\) 40899.9 1.55612
\(885\) −400.350 −0.0152063
\(886\) 8319.30 0.315454
\(887\) 19559.0 0.740392 0.370196 0.928954i \(-0.379291\pi\)
0.370196 + 0.928954i \(0.379291\pi\)
\(888\) 299.077 0.0113022
\(889\) 60615.9 2.28683
\(890\) 7175.84 0.270264
\(891\) 36158.0 1.35953
\(892\) 24265.8 0.910852
\(893\) 7160.19 0.268317
\(894\) 5371.78 0.200961
\(895\) 15227.7 0.568723
\(896\) −2938.58 −0.109566
\(897\) 5777.33 0.215049
\(898\) 29655.3 1.10201
\(899\) −46902.0 −1.74001
\(900\) −2636.91 −0.0976632
\(901\) −76869.7 −2.84229
\(902\) 6617.57 0.244280
\(903\) −4088.29 −0.150664
\(904\) −5653.74 −0.208009
\(905\) −11870.2 −0.435999
\(906\) 1038.93 0.0380974
\(907\) −23674.9 −0.866715 −0.433358 0.901222i \(-0.642671\pi\)
−0.433358 + 0.901222i \(0.642671\pi\)
\(908\) 11977.4 0.437759
\(909\) 15375.5 0.561026
\(910\) −16839.2 −0.613422
\(911\) −6452.53 −0.234667 −0.117334 0.993093i \(-0.537435\pi\)
−0.117334 + 0.993093i \(0.537435\pi\)
\(912\) 241.472 0.00876746
\(913\) 50350.9 1.82516
\(914\) 29944.4 1.08367
\(915\) 2119.73 0.0765859
\(916\) −6042.51 −0.217959
\(917\) −8285.54 −0.298378
\(918\) −11819.0 −0.424929
\(919\) −5928.94 −0.212816 −0.106408 0.994323i \(-0.533935\pi\)
−0.106408 + 0.994323i \(0.533935\pi\)
\(920\) −3966.44 −0.142141
\(921\) 269.725 0.00965010
\(922\) −13528.6 −0.483231
\(923\) 25255.1 0.900631
\(924\) 3888.37 0.138440
\(925\) −1176.63 −0.0418243
\(926\) −24184.8 −0.858273
\(927\) 47311.2 1.67627
\(928\) 5462.17 0.193216
\(929\) 39057.4 1.37937 0.689684 0.724111i \(-0.257750\pi\)
0.689684 + 0.724111i \(0.257750\pi\)
\(930\) −2182.57 −0.0769563
\(931\) −3497.06 −0.123106
\(932\) −23223.8 −0.816223
\(933\) −7339.14 −0.257527
\(934\) 6873.44 0.240799
\(935\) 37155.7 1.29960
\(936\) 15473.1 0.540336
\(937\) 11163.3 0.389208 0.194604 0.980882i \(-0.437658\pi\)
0.194604 + 0.980882i \(0.437658\pi\)
\(938\) −15058.8 −0.524186
\(939\) 566.485 0.0196875
\(940\) 7537.04 0.261523
\(941\) 7071.91 0.244992 0.122496 0.992469i \(-0.460910\pi\)
0.122496 + 0.992469i \(0.460910\pi\)
\(942\) 4650.82 0.160862
\(943\) 6154.92 0.212547
\(944\) −1612.86 −0.0556083
\(945\) 4866.09 0.167507
\(946\) −23902.2 −0.821488
\(947\) 11977.8 0.411010 0.205505 0.978656i \(-0.434116\pi\)
0.205505 + 0.978656i \(0.434116\pi\)
\(948\) −415.651 −0.0142402
\(949\) −39899.6 −1.36480
\(950\) −950.000 −0.0324443
\(951\) −909.854 −0.0310242
\(952\) 25602.8 0.871629
\(953\) 10362.5 0.352228 0.176114 0.984370i \(-0.443647\pi\)
0.176114 + 0.984370i \(0.443647\pi\)
\(954\) −29081.1 −0.986935
\(955\) 8886.77 0.301120
\(956\) −2888.09 −0.0977066
\(957\) −7227.62 −0.244133
\(958\) 27498.3 0.927378
\(959\) −1143.18 −0.0384935
\(960\) 254.181 0.00854546
\(961\) 45709.9 1.53435
\(962\) 6904.37 0.231399
\(963\) −6819.05 −0.228184
\(964\) 23086.3 0.771327
\(965\) 10901.0 0.363642
\(966\) 3616.53 0.120455
\(967\) −47698.3 −1.58622 −0.793110 0.609079i \(-0.791539\pi\)
−0.793110 + 0.609079i \(0.791539\pi\)
\(968\) 12085.4 0.401281
\(969\) −2103.85 −0.0697476
\(970\) 1900.85 0.0629202
\(971\) 1174.76 0.0388259 0.0194130 0.999812i \(-0.493820\pi\)
0.0194130 + 0.999812i \(0.493820\pi\)
\(972\) −6733.43 −0.222196
\(973\) −50876.8 −1.67630
\(974\) 12531.1 0.412242
\(975\) 1456.55 0.0478430
\(976\) 8539.61 0.280068
\(977\) 58282.8 1.90853 0.954264 0.298964i \(-0.0966411\pi\)
0.954264 + 0.298964i \(0.0966411\pi\)
\(978\) 1575.05 0.0514976
\(979\) −38252.5 −1.24878
\(980\) −3681.11 −0.119989
\(981\) 14832.1 0.482723
\(982\) −368.310 −0.0119687
\(983\) 49969.4 1.62134 0.810669 0.585504i \(-0.199103\pi\)
0.810669 + 0.585504i \(0.199103\pi\)
\(984\) −394.424 −0.0127782
\(985\) 13005.6 0.420705
\(986\) −47589.8 −1.53709
\(987\) −6872.14 −0.221624
\(988\) 5574.51 0.179503
\(989\) −22231.2 −0.714772
\(990\) 14056.7 0.451263
\(991\) −3449.31 −0.110566 −0.0552830 0.998471i \(-0.517606\pi\)
−0.0552830 + 0.998471i \(0.517606\pi\)
\(992\) −8792.78 −0.281422
\(993\) 818.207 0.0261481
\(994\) 15809.4 0.504469
\(995\) −2061.09 −0.0656692
\(996\) −3001.04 −0.0954736
\(997\) −49274.3 −1.56523 −0.782614 0.622508i \(-0.786114\pi\)
−0.782614 + 0.622508i \(0.786114\pi\)
\(998\) 1340.97 0.0425329
\(999\) −1995.18 −0.0631880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 190.4.a.h.1.2 3
3.2 odd 2 1710.4.a.x.1.1 3
4.3 odd 2 1520.4.a.p.1.2 3
5.2 odd 4 950.4.b.j.799.5 6
5.3 odd 4 950.4.b.j.799.2 6
5.4 even 2 950.4.a.m.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.4.a.h.1.2 3 1.1 even 1 trivial
950.4.a.m.1.2 3 5.4 even 2
950.4.b.j.799.2 6 5.3 odd 4
950.4.b.j.799.5 6 5.2 odd 4
1520.4.a.p.1.2 3 4.3 odd 2
1710.4.a.x.1.1 3 3.2 odd 2