Properties

Label 950.4.b.j.799.2
Level $950$
Weight $4$
Character 950.799
Analytic conductor $56.052$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,4,Mod(799,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 950.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-24,0,-36,0,0,16,0,-136] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.0518145055\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.119596096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2x^{3} + 121x^{2} - 264x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.2
Root \(2.25895 - 2.25895i\) of defining polynomial
Character \(\chi\) \(=\) 950.799
Dual form 950.4.b.j.799.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -0.794314i q^{3} -4.00000 q^{4} -1.58863 q^{6} +22.9577i q^{7} +8.00000i q^{8} +26.3691 q^{9} +53.3074 q^{11} +3.17726i q^{12} -73.3488i q^{13} +45.9154 q^{14} +16.0000 q^{16} +139.402i q^{17} -52.7381i q^{18} +19.0000 q^{19} +18.2356 q^{21} -106.615i q^{22} +99.1611i q^{23} +6.35452 q^{24} -146.698 q^{26} -42.3918i q^{27} -91.8308i q^{28} -170.693 q^{29} -274.774 q^{31} -32.0000i q^{32} -42.3428i q^{33} +278.804 q^{34} -105.476 q^{36} +47.0653i q^{37} -38.0000i q^{38} -58.2620 q^{39} +62.0699 q^{41} -36.4713i q^{42} -224.192i q^{43} -213.230 q^{44} +198.322 q^{46} +376.852i q^{47} -12.7090i q^{48} -184.056 q^{49} +110.729 q^{51} +293.395i q^{52} +551.425i q^{53} -84.7836 q^{54} -183.662 q^{56} -15.0920i q^{57} +341.386i q^{58} +100.804 q^{59} +533.726 q^{61} +549.549i q^{62} +605.373i q^{63} -64.0000 q^{64} -84.6856 q^{66} -327.968i q^{67} -557.608i q^{68} +78.7651 q^{69} -344.315 q^{71} +210.953i q^{72} +543.970i q^{73} +94.1306 q^{74} -76.0000 q^{76} +1223.81i q^{77} +116.524i q^{78} -130.821 q^{79} +678.292 q^{81} -124.140i q^{82} +944.539i q^{83} -72.9425 q^{84} -448.385 q^{86} +135.584i q^{87} +426.459i q^{88} +717.584 q^{89} +1683.92 q^{91} -396.644i q^{92} +218.257i q^{93} +753.704 q^{94} -25.4181 q^{96} +190.085i q^{97} +368.111i q^{98} +1405.67 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{4} - 36 q^{6} + 16 q^{9} - 136 q^{11} + 44 q^{14} + 96 q^{16} + 114 q^{19} - 542 q^{21} + 144 q^{24} - 484 q^{26} - 182 q^{29} - 308 q^{31} + 412 q^{34} - 64 q^{36} - 922 q^{39} + 564 q^{41}+ \cdots + 4328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 0.794314i − 0.152866i −0.997075 0.0764329i \(-0.975647\pi\)
0.997075 0.0764329i \(-0.0243531\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −1.58863 −0.108093
\(7\) 22.9577i 1.23960i 0.784760 + 0.619799i \(0.212786\pi\)
−0.784760 + 0.619799i \(0.787214\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 26.3691 0.976632
\(10\) 0 0
\(11\) 53.3074 1.46116 0.730581 0.682826i \(-0.239249\pi\)
0.730581 + 0.682826i \(0.239249\pi\)
\(12\) 3.17726i 0.0764329i
\(13\) − 73.3488i − 1.56487i −0.622732 0.782435i \(-0.713977\pi\)
0.622732 0.782435i \(-0.286023\pi\)
\(14\) 45.9154 0.876529
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 139.402i 1.98882i 0.105592 + 0.994410i \(0.466326\pi\)
−0.105592 + 0.994410i \(0.533674\pi\)
\(18\) − 52.7381i − 0.690583i
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 18.2356 0.189492
\(22\) − 106.615i − 1.03320i
\(23\) 99.1611i 0.898979i 0.893286 + 0.449489i \(0.148394\pi\)
−0.893286 + 0.449489i \(0.851606\pi\)
\(24\) 6.35452 0.0540463
\(25\) 0 0
\(26\) −146.698 −1.10653
\(27\) − 42.3918i − 0.302160i
\(28\) − 91.8308i − 0.619799i
\(29\) −170.693 −1.09300 −0.546498 0.837461i \(-0.684039\pi\)
−0.546498 + 0.837461i \(0.684039\pi\)
\(30\) 0 0
\(31\) −274.774 −1.59197 −0.795983 0.605319i \(-0.793045\pi\)
−0.795983 + 0.605319i \(0.793045\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 42.3428i − 0.223362i
\(34\) 278.804 1.40631
\(35\) 0 0
\(36\) −105.476 −0.488316
\(37\) 47.0653i 0.209121i 0.994519 + 0.104561i \(0.0333437\pi\)
−0.994519 + 0.104561i \(0.966656\pi\)
\(38\) − 38.0000i − 0.162221i
\(39\) −58.2620 −0.239215
\(40\) 0 0
\(41\) 62.0699 0.236431 0.118216 0.992988i \(-0.462283\pi\)
0.118216 + 0.992988i \(0.462283\pi\)
\(42\) − 36.4713i − 0.133991i
\(43\) − 224.192i − 0.795093i −0.917582 0.397547i \(-0.869862\pi\)
0.917582 0.397547i \(-0.130138\pi\)
\(44\) −213.230 −0.730581
\(45\) 0 0
\(46\) 198.322 0.635674
\(47\) 376.852i 1.16956i 0.811190 + 0.584782i \(0.198820\pi\)
−0.811190 + 0.584782i \(0.801180\pi\)
\(48\) − 12.7090i − 0.0382165i
\(49\) −184.056 −0.536606
\(50\) 0 0
\(51\) 110.729 0.304023
\(52\) 293.395i 0.782435i
\(53\) 551.425i 1.42913i 0.699567 + 0.714567i \(0.253376\pi\)
−0.699567 + 0.714567i \(0.746624\pi\)
\(54\) −84.7836 −0.213659
\(55\) 0 0
\(56\) −183.662 −0.438264
\(57\) − 15.0920i − 0.0350698i
\(58\) 341.386i 0.772864i
\(59\) 100.804 0.222433 0.111217 0.993796i \(-0.464525\pi\)
0.111217 + 0.993796i \(0.464525\pi\)
\(60\) 0 0
\(61\) 533.726 1.12027 0.560136 0.828401i \(-0.310749\pi\)
0.560136 + 0.828401i \(0.310749\pi\)
\(62\) 549.549i 1.12569i
\(63\) 605.373i 1.21063i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −84.6856 −0.157941
\(67\) − 327.968i − 0.598025i −0.954249 0.299012i \(-0.903343\pi\)
0.954249 0.299012i \(-0.0966571\pi\)
\(68\) − 557.608i − 0.994410i
\(69\) 78.7651 0.137423
\(70\) 0 0
\(71\) −344.315 −0.575531 −0.287765 0.957701i \(-0.592912\pi\)
−0.287765 + 0.957701i \(0.592912\pi\)
\(72\) 210.953i 0.345292i
\(73\) 543.970i 0.872149i 0.899911 + 0.436074i \(0.143632\pi\)
−0.899911 + 0.436074i \(0.856368\pi\)
\(74\) 94.1306 0.147871
\(75\) 0 0
\(76\) −76.0000 −0.114708
\(77\) 1223.81i 1.81125i
\(78\) 116.524i 0.169151i
\(79\) −130.821 −0.186310 −0.0931548 0.995652i \(-0.529695\pi\)
−0.0931548 + 0.995652i \(0.529695\pi\)
\(80\) 0 0
\(81\) 678.292 0.930442
\(82\) − 124.140i − 0.167182i
\(83\) 944.539i 1.24912i 0.780979 + 0.624558i \(0.214721\pi\)
−0.780979 + 0.624558i \(0.785279\pi\)
\(84\) −72.9425 −0.0947462
\(85\) 0 0
\(86\) −448.385 −0.562216
\(87\) 135.584i 0.167082i
\(88\) 426.459i 0.516599i
\(89\) 717.584 0.854648 0.427324 0.904098i \(-0.359456\pi\)
0.427324 + 0.904098i \(0.359456\pi\)
\(90\) 0 0
\(91\) 1683.92 1.93981
\(92\) − 396.644i − 0.449489i
\(93\) 218.257i 0.243357i
\(94\) 753.704 0.827007
\(95\) 0 0
\(96\) −25.4181 −0.0270231
\(97\) 190.085i 0.198971i 0.995039 + 0.0994856i \(0.0317197\pi\)
−0.995039 + 0.0994856i \(0.968280\pi\)
\(98\) 368.111i 0.379437i
\(99\) 1405.67 1.42702
\(100\) 0 0
\(101\) −583.088 −0.574450 −0.287225 0.957863i \(-0.592733\pi\)
−0.287225 + 0.957863i \(0.592733\pi\)
\(102\) − 221.458i − 0.214976i
\(103\) − 1794.19i − 1.71638i −0.513333 0.858189i \(-0.671590\pi\)
0.513333 0.858189i \(-0.328410\pi\)
\(104\) 586.791 0.553265
\(105\) 0 0
\(106\) 1102.85 1.01055
\(107\) − 258.601i − 0.233644i −0.993153 0.116822i \(-0.962729\pi\)
0.993153 0.116822i \(-0.0372706\pi\)
\(108\) 169.567i 0.151080i
\(109\) 562.480 0.494273 0.247137 0.968981i \(-0.420510\pi\)
0.247137 + 0.968981i \(0.420510\pi\)
\(110\) 0 0
\(111\) 37.3847 0.0319675
\(112\) 367.323i 0.309900i
\(113\) − 706.717i − 0.588340i −0.955753 0.294170i \(-0.904957\pi\)
0.955753 0.294170i \(-0.0950431\pi\)
\(114\) −30.1839 −0.0247981
\(115\) 0 0
\(116\) 682.771 0.546498
\(117\) − 1934.14i − 1.52830i
\(118\) − 201.608i − 0.157284i
\(119\) −3200.35 −2.46534
\(120\) 0 0
\(121\) 1510.68 1.13499
\(122\) − 1067.45i − 0.792151i
\(123\) − 49.3030i − 0.0361423i
\(124\) 1099.10 0.795983
\(125\) 0 0
\(126\) 1210.75 0.856046
\(127\) 2640.33i 1.84481i 0.386219 + 0.922407i \(0.373781\pi\)
−0.386219 + 0.922407i \(0.626219\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −178.079 −0.121543
\(130\) 0 0
\(131\) 360.905 0.240705 0.120353 0.992731i \(-0.461597\pi\)
0.120353 + 0.992731i \(0.461597\pi\)
\(132\) 169.371i 0.111681i
\(133\) 436.196i 0.284383i
\(134\) −655.936 −0.422867
\(135\) 0 0
\(136\) −1115.22 −0.703154
\(137\) − 49.7951i − 0.0310532i −0.999879 0.0155266i \(-0.995058\pi\)
0.999879 0.0155266i \(-0.00494247\pi\)
\(138\) − 157.530i − 0.0971729i
\(139\) −2216.11 −1.35229 −0.676144 0.736769i \(-0.736350\pi\)
−0.676144 + 0.736769i \(0.736350\pi\)
\(140\) 0 0
\(141\) 299.339 0.178787
\(142\) 688.630i 0.406962i
\(143\) − 3910.03i − 2.28653i
\(144\) 421.905 0.244158
\(145\) 0 0
\(146\) 1087.94 0.616702
\(147\) 146.198i 0.0820287i
\(148\) − 188.261i − 0.104561i
\(149\) 3381.39 1.85916 0.929579 0.368624i \(-0.120171\pi\)
0.929579 + 0.368624i \(0.120171\pi\)
\(150\) 0 0
\(151\) −653.981 −0.352452 −0.176226 0.984350i \(-0.556389\pi\)
−0.176226 + 0.984350i \(0.556389\pi\)
\(152\) 152.000i 0.0811107i
\(153\) 3675.90i 1.94234i
\(154\) 2447.63 1.28075
\(155\) 0 0
\(156\) 233.048 0.119608
\(157\) 2927.57i 1.48819i 0.668076 + 0.744093i \(0.267118\pi\)
−0.668076 + 0.744093i \(0.732882\pi\)
\(158\) 261.641i 0.131741i
\(159\) 438.005 0.218466
\(160\) 0 0
\(161\) −2276.51 −1.11437
\(162\) − 1356.58i − 0.657922i
\(163\) − 991.454i − 0.476421i −0.971214 0.238211i \(-0.923439\pi\)
0.971214 0.238211i \(-0.0765608\pi\)
\(164\) −248.280 −0.118216
\(165\) 0 0
\(166\) 1889.08 0.883258
\(167\) 3679.78i 1.70509i 0.522653 + 0.852545i \(0.324942\pi\)
−0.522653 + 0.852545i \(0.675058\pi\)
\(168\) 145.885i 0.0669957i
\(169\) −3183.05 −1.44882
\(170\) 0 0
\(171\) 501.012 0.224055
\(172\) 896.770i 0.397547i
\(173\) 2017.51i 0.886638i 0.896364 + 0.443319i \(0.146199\pi\)
−0.896364 + 0.443319i \(0.853801\pi\)
\(174\) 271.168 0.118145
\(175\) 0 0
\(176\) 852.918 0.365290
\(177\) − 80.0700i − 0.0340024i
\(178\) − 1435.17i − 0.604328i
\(179\) 3045.55 1.27170 0.635852 0.771811i \(-0.280649\pi\)
0.635852 + 0.771811i \(0.280649\pi\)
\(180\) 0 0
\(181\) 2374.04 0.974924 0.487462 0.873144i \(-0.337923\pi\)
0.487462 + 0.873144i \(0.337923\pi\)
\(182\) − 3367.84i − 1.37165i
\(183\) − 423.946i − 0.171251i
\(184\) −793.289 −0.317837
\(185\) 0 0
\(186\) 436.514 0.172080
\(187\) 7431.15i 2.90599i
\(188\) − 1507.41i − 0.584782i
\(189\) 973.218 0.374557
\(190\) 0 0
\(191\) −1777.35 −0.673324 −0.336662 0.941626i \(-0.609298\pi\)
−0.336662 + 0.941626i \(0.609298\pi\)
\(192\) 50.8361i 0.0191082i
\(193\) − 2180.19i − 0.813128i −0.913622 0.406564i \(-0.866727\pi\)
0.913622 0.406564i \(-0.133273\pi\)
\(194\) 380.170 0.140694
\(195\) 0 0
\(196\) 736.223 0.268303
\(197\) 2601.13i 0.940724i 0.882473 + 0.470362i \(0.155877\pi\)
−0.882473 + 0.470362i \(0.844123\pi\)
\(198\) − 2811.33i − 1.00905i
\(199\) −412.217 −0.146841 −0.0734204 0.997301i \(-0.523391\pi\)
−0.0734204 + 0.997301i \(0.523391\pi\)
\(200\) 0 0
\(201\) −260.510 −0.0914175
\(202\) 1166.18i 0.406198i
\(203\) − 3918.71i − 1.35488i
\(204\) −442.916 −0.152011
\(205\) 0 0
\(206\) −3588.38 −1.21366
\(207\) 2614.78i 0.877972i
\(208\) − 1173.58i − 0.391217i
\(209\) 1012.84 0.335214
\(210\) 0 0
\(211\) −1123.55 −0.366579 −0.183289 0.983059i \(-0.558675\pi\)
−0.183289 + 0.983059i \(0.558675\pi\)
\(212\) − 2205.70i − 0.714567i
\(213\) 273.494i 0.0879790i
\(214\) −517.201 −0.165211
\(215\) 0 0
\(216\) 339.135 0.106830
\(217\) − 6308.18i − 1.97340i
\(218\) − 1124.96i − 0.349504i
\(219\) 432.083 0.133322
\(220\) 0 0
\(221\) 10225.0 3.11224
\(222\) − 74.7693i − 0.0226045i
\(223\) 6066.46i 1.82170i 0.412732 + 0.910852i \(0.364574\pi\)
−0.412732 + 0.910852i \(0.635426\pi\)
\(224\) 734.646 0.219132
\(225\) 0 0
\(226\) −1413.43 −0.416019
\(227\) − 2994.36i − 0.875518i −0.899092 0.437759i \(-0.855772\pi\)
0.899092 0.437759i \(-0.144228\pi\)
\(228\) 60.3679i 0.0175349i
\(229\) 1510.63 0.435917 0.217959 0.975958i \(-0.430060\pi\)
0.217959 + 0.975958i \(0.430060\pi\)
\(230\) 0 0
\(231\) 972.094 0.276879
\(232\) − 1365.54i − 0.386432i
\(233\) − 5805.95i − 1.63245i −0.577736 0.816223i \(-0.696064\pi\)
0.577736 0.816223i \(-0.303936\pi\)
\(234\) −3868.28 −1.08067
\(235\) 0 0
\(236\) −403.216 −0.111217
\(237\) 103.913i 0.0284804i
\(238\) 6400.69i 1.74326i
\(239\) 722.022 0.195413 0.0977066 0.995215i \(-0.468849\pi\)
0.0977066 + 0.995215i \(0.468849\pi\)
\(240\) 0 0
\(241\) 5771.57 1.54265 0.771327 0.636439i \(-0.219593\pi\)
0.771327 + 0.636439i \(0.219593\pi\)
\(242\) − 3021.35i − 0.802562i
\(243\) − 1683.36i − 0.444392i
\(244\) −2134.90 −0.560136
\(245\) 0 0
\(246\) −98.6060 −0.0255565
\(247\) − 1393.63i − 0.359006i
\(248\) − 2198.19i − 0.562845i
\(249\) 750.261 0.190947
\(250\) 0 0
\(251\) 727.300 0.182895 0.0914477 0.995810i \(-0.470851\pi\)
0.0914477 + 0.995810i \(0.470851\pi\)
\(252\) − 2421.49i − 0.605316i
\(253\) 5286.02i 1.31355i
\(254\) 5280.66 1.30448
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 2137.23i − 0.518743i −0.965778 0.259371i \(-0.916485\pi\)
0.965778 0.259371i \(-0.0835154\pi\)
\(258\) 356.159i 0.0859436i
\(259\) −1080.51 −0.259227
\(260\) 0 0
\(261\) −4501.01 −1.06745
\(262\) − 721.809i − 0.170204i
\(263\) 2997.82i 0.702865i 0.936213 + 0.351433i \(0.114305\pi\)
−0.936213 + 0.351433i \(0.885695\pi\)
\(264\) 338.743 0.0789703
\(265\) 0 0
\(266\) 872.392 0.201089
\(267\) − 569.987i − 0.130647i
\(268\) 1311.87i 0.299012i
\(269\) −2601.91 −0.589743 −0.294872 0.955537i \(-0.595277\pi\)
−0.294872 + 0.955537i \(0.595277\pi\)
\(270\) 0 0
\(271\) −766.382 −0.171787 −0.0858937 0.996304i \(-0.527375\pi\)
−0.0858937 + 0.996304i \(0.527375\pi\)
\(272\) 2230.43i 0.497205i
\(273\) − 1337.56i − 0.296531i
\(274\) −99.5903 −0.0219579
\(275\) 0 0
\(276\) −315.060 −0.0687116
\(277\) 5989.96i 1.29928i 0.760240 + 0.649642i \(0.225081\pi\)
−0.760240 + 0.649642i \(0.774919\pi\)
\(278\) 4432.22i 0.956212i
\(279\) −7245.54 −1.55476
\(280\) 0 0
\(281\) −1442.46 −0.306228 −0.153114 0.988209i \(-0.548930\pi\)
−0.153114 + 0.988209i \(0.548930\pi\)
\(282\) − 598.678i − 0.126421i
\(283\) − 3000.34i − 0.630217i −0.949056 0.315109i \(-0.897959\pi\)
0.949056 0.315109i \(-0.102041\pi\)
\(284\) 1377.26 0.287765
\(285\) 0 0
\(286\) −7820.07 −1.61682
\(287\) 1424.98i 0.293080i
\(288\) − 843.810i − 0.172646i
\(289\) −14519.9 −2.95540
\(290\) 0 0
\(291\) 150.987 0.0304159
\(292\) − 2175.88i − 0.436074i
\(293\) 750.895i 0.149719i 0.997194 + 0.0748597i \(0.0238509\pi\)
−0.997194 + 0.0748597i \(0.976149\pi\)
\(294\) 292.396 0.0580030
\(295\) 0 0
\(296\) −376.523 −0.0739356
\(297\) − 2259.80i − 0.441504i
\(298\) − 6762.79i − 1.31462i
\(299\) 7273.35 1.40679
\(300\) 0 0
\(301\) 5146.94 0.985597
\(302\) 1307.96i 0.249221i
\(303\) 463.155i 0.0878138i
\(304\) 304.000 0.0573539
\(305\) 0 0
\(306\) 7351.79 1.37344
\(307\) 339.570i 0.0631279i 0.999502 + 0.0315640i \(0.0100488\pi\)
−0.999502 + 0.0315640i \(0.989951\pi\)
\(308\) − 4895.26i − 0.905627i
\(309\) −1425.15 −0.262376
\(310\) 0 0
\(311\) 9239.59 1.68466 0.842330 0.538963i \(-0.181184\pi\)
0.842330 + 0.538963i \(0.181184\pi\)
\(312\) − 466.096i − 0.0845754i
\(313\) − 713.175i − 0.128789i −0.997925 0.0643946i \(-0.979488\pi\)
0.997925 0.0643946i \(-0.0205116\pi\)
\(314\) 5855.13 1.05231
\(315\) 0 0
\(316\) 523.282 0.0931548
\(317\) − 1145.46i − 0.202951i −0.994838 0.101475i \(-0.967644\pi\)
0.994838 0.101475i \(-0.0323563\pi\)
\(318\) − 876.010i − 0.154479i
\(319\) −9099.19 −1.59704
\(320\) 0 0
\(321\) −205.410 −0.0357161
\(322\) 4553.02i 0.787981i
\(323\) 2648.64i 0.456266i
\(324\) −2713.17 −0.465221
\(325\) 0 0
\(326\) −1982.91 −0.336881
\(327\) − 446.786i − 0.0755575i
\(328\) 496.559i 0.0835911i
\(329\) −8651.66 −1.44979
\(330\) 0 0
\(331\) −1030.08 −0.171052 −0.0855261 0.996336i \(-0.527257\pi\)
−0.0855261 + 0.996336i \(0.527257\pi\)
\(332\) − 3778.15i − 0.624558i
\(333\) 1241.07i 0.204235i
\(334\) 7359.57 1.20568
\(335\) 0 0
\(336\) 291.770 0.0473731
\(337\) − 7214.68i − 1.16620i −0.812401 0.583099i \(-0.801840\pi\)
0.812401 0.583099i \(-0.198160\pi\)
\(338\) 6366.11i 1.02447i
\(339\) −561.356 −0.0899371
\(340\) 0 0
\(341\) −14647.5 −2.32612
\(342\) − 1002.02i − 0.158431i
\(343\) 3648.99i 0.574423i
\(344\) 1793.54 0.281108
\(345\) 0 0
\(346\) 4035.02 0.626948
\(347\) 1463.81i 0.226459i 0.993569 + 0.113229i \(0.0361195\pi\)
−0.993569 + 0.113229i \(0.963880\pi\)
\(348\) − 542.335i − 0.0835409i
\(349\) 10644.8 1.63267 0.816336 0.577578i \(-0.196002\pi\)
0.816336 + 0.577578i \(0.196002\pi\)
\(350\) 0 0
\(351\) −3109.39 −0.472840
\(352\) − 1705.84i − 0.258299i
\(353\) − 3372.46i − 0.508492i −0.967140 0.254246i \(-0.918173\pi\)
0.967140 0.254246i \(-0.0818273\pi\)
\(354\) −160.140 −0.0240433
\(355\) 0 0
\(356\) −2870.33 −0.427324
\(357\) 2542.08i 0.376866i
\(358\) − 6091.10i − 0.899230i
\(359\) 10388.6 1.52728 0.763638 0.645645i \(-0.223411\pi\)
0.763638 + 0.645645i \(0.223411\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) − 4748.08i − 0.689375i
\(363\) − 1199.95i − 0.173502i
\(364\) −6735.68 −0.969906
\(365\) 0 0
\(366\) −847.892 −0.121093
\(367\) 430.531i 0.0612358i 0.999531 + 0.0306179i \(0.00974751\pi\)
−0.999531 + 0.0306179i \(0.990252\pi\)
\(368\) 1586.58i 0.224745i
\(369\) 1636.72 0.230906
\(370\) 0 0
\(371\) −12659.4 −1.77155
\(372\) − 873.029i − 0.121679i
\(373\) − 375.132i − 0.0520740i −0.999661 0.0260370i \(-0.991711\pi\)
0.999661 0.0260370i \(-0.00828878\pi\)
\(374\) 14862.3 2.05484
\(375\) 0 0
\(376\) −3014.82 −0.413504
\(377\) 12520.1i 1.71040i
\(378\) − 1946.44i − 0.264852i
\(379\) −2575.31 −0.349036 −0.174518 0.984654i \(-0.555837\pi\)
−0.174518 + 0.984654i \(0.555837\pi\)
\(380\) 0 0
\(381\) 2097.25 0.282009
\(382\) 3554.71i 0.476112i
\(383\) 9007.80i 1.20177i 0.799336 + 0.600884i \(0.205185\pi\)
−0.799336 + 0.600884i \(0.794815\pi\)
\(384\) 101.672 0.0135116
\(385\) 0 0
\(386\) −4360.39 −0.574968
\(387\) − 5911.74i − 0.776514i
\(388\) − 760.340i − 0.0994856i
\(389\) −3716.86 −0.484453 −0.242227 0.970220i \(-0.577878\pi\)
−0.242227 + 0.970220i \(0.577878\pi\)
\(390\) 0 0
\(391\) −13823.2 −1.78791
\(392\) − 1472.45i − 0.189719i
\(393\) − 286.672i − 0.0367956i
\(394\) 5202.26 0.665193
\(395\) 0 0
\(396\) −5622.66 −0.713509
\(397\) − 14192.2i − 1.79418i −0.441851 0.897088i \(-0.645678\pi\)
0.441851 0.897088i \(-0.354322\pi\)
\(398\) 824.435i 0.103832i
\(399\) 346.477 0.0434725
\(400\) 0 0
\(401\) −9736.11 −1.21246 −0.606232 0.795288i \(-0.707320\pi\)
−0.606232 + 0.795288i \(0.707320\pi\)
\(402\) 521.019i 0.0646420i
\(403\) 20154.4i 2.49122i
\(404\) 2332.35 0.287225
\(405\) 0 0
\(406\) −7837.43 −0.958042
\(407\) 2508.93i 0.305560i
\(408\) 885.831i 0.107488i
\(409\) −15847.0 −1.91585 −0.957925 0.287020i \(-0.907335\pi\)
−0.957925 + 0.287020i \(0.907335\pi\)
\(410\) 0 0
\(411\) −39.5530 −0.00474697
\(412\) 7176.77i 0.858189i
\(413\) 2314.22i 0.275728i
\(414\) 5229.57 0.620820
\(415\) 0 0
\(416\) −2347.16 −0.276633
\(417\) 1760.29i 0.206719i
\(418\) − 2025.68i − 0.237032i
\(419\) 15104.2 1.76107 0.880536 0.473979i \(-0.157183\pi\)
0.880536 + 0.473979i \(0.157183\pi\)
\(420\) 0 0
\(421\) 1317.72 0.152546 0.0762729 0.997087i \(-0.475698\pi\)
0.0762729 + 0.997087i \(0.475698\pi\)
\(422\) 2247.09i 0.259210i
\(423\) 9937.24i 1.14223i
\(424\) −4411.40 −0.505275
\(425\) 0 0
\(426\) 546.989 0.0622106
\(427\) 12253.1i 1.38869i
\(428\) 1034.40i 0.116822i
\(429\) −3105.80 −0.349532
\(430\) 0 0
\(431\) −16162.6 −1.80632 −0.903159 0.429306i \(-0.858758\pi\)
−0.903159 + 0.429306i \(0.858758\pi\)
\(432\) − 678.269i − 0.0755399i
\(433\) 10551.5i 1.17107i 0.810647 + 0.585536i \(0.199116\pi\)
−0.810647 + 0.585536i \(0.800884\pi\)
\(434\) −12616.4 −1.39540
\(435\) 0 0
\(436\) −2249.92 −0.247137
\(437\) 1884.06i 0.206240i
\(438\) − 864.166i − 0.0942727i
\(439\) 12039.2 1.30889 0.654443 0.756112i \(-0.272903\pi\)
0.654443 + 0.756112i \(0.272903\pi\)
\(440\) 0 0
\(441\) −4853.38 −0.524066
\(442\) − 20449.9i − 2.20069i
\(443\) 4159.65i 0.446120i 0.974805 + 0.223060i \(0.0716045\pi\)
−0.974805 + 0.223060i \(0.928395\pi\)
\(444\) −149.539 −0.0159838
\(445\) 0 0
\(446\) 12132.9 1.28814
\(447\) − 2685.89i − 0.284202i
\(448\) − 1469.29i − 0.154950i
\(449\) −14827.6 −1.55848 −0.779242 0.626724i \(-0.784395\pi\)
−0.779242 + 0.626724i \(0.784395\pi\)
\(450\) 0 0
\(451\) 3308.78 0.345465
\(452\) 2826.87i 0.294170i
\(453\) 519.466i 0.0538778i
\(454\) −5988.72 −0.619085
\(455\) 0 0
\(456\) 120.736 0.0123991
\(457\) − 14972.2i − 1.53254i −0.642518 0.766270i \(-0.722110\pi\)
0.642518 0.766270i \(-0.277890\pi\)
\(458\) − 3021.26i − 0.308240i
\(459\) 5909.50 0.600941
\(460\) 0 0
\(461\) −6764.28 −0.683392 −0.341696 0.939810i \(-0.611001\pi\)
−0.341696 + 0.939810i \(0.611001\pi\)
\(462\) − 1944.19i − 0.195783i
\(463\) − 12092.4i − 1.21378i −0.794786 0.606890i \(-0.792417\pi\)
0.794786 0.606890i \(-0.207583\pi\)
\(464\) −2731.09 −0.273249
\(465\) 0 0
\(466\) −11611.9 −1.15431
\(467\) − 3436.72i − 0.340541i −0.985397 0.170270i \(-0.945536\pi\)
0.985397 0.170270i \(-0.0544641\pi\)
\(468\) 7736.56i 0.764151i
\(469\) 7529.38 0.741311
\(470\) 0 0
\(471\) 2325.41 0.227493
\(472\) 806.431i 0.0786419i
\(473\) − 11951.1i − 1.16176i
\(474\) 207.825 0.0201387
\(475\) 0 0
\(476\) 12801.4 1.23267
\(477\) 14540.6i 1.39574i
\(478\) − 1444.04i − 0.138178i
\(479\) −13749.1 −1.31151 −0.655756 0.754973i \(-0.727650\pi\)
−0.655756 + 0.754973i \(0.727650\pi\)
\(480\) 0 0
\(481\) 3452.19 0.327248
\(482\) − 11543.1i − 1.09082i
\(483\) 1808.26i 0.170350i
\(484\) −6042.71 −0.567497
\(485\) 0 0
\(486\) −3366.71 −0.314233
\(487\) − 6265.57i − 0.582999i −0.956571 0.291499i \(-0.905846\pi\)
0.956571 0.291499i \(-0.0941541\pi\)
\(488\) 4269.80i 0.396076i
\(489\) −787.526 −0.0728285
\(490\) 0 0
\(491\) −184.155 −0.0169263 −0.00846314 0.999964i \(-0.502694\pi\)
−0.00846314 + 0.999964i \(0.502694\pi\)
\(492\) 197.212i 0.0180711i
\(493\) − 23794.9i − 2.17377i
\(494\) −2787.26 −0.253855
\(495\) 0 0
\(496\) −4396.39 −0.397991
\(497\) − 7904.68i − 0.713427i
\(498\) − 1500.52i − 0.135020i
\(499\) −670.487 −0.0601506 −0.0300753 0.999548i \(-0.509575\pi\)
−0.0300753 + 0.999548i \(0.509575\pi\)
\(500\) 0 0
\(501\) 2922.91 0.260650
\(502\) − 1454.60i − 0.129327i
\(503\) − 8875.83i − 0.786786i −0.919370 0.393393i \(-0.871301\pi\)
0.919370 0.393393i \(-0.128699\pi\)
\(504\) −4842.98 −0.428023
\(505\) 0 0
\(506\) 10572.0 0.928823
\(507\) 2528.34i 0.221475i
\(508\) − 10561.3i − 0.922407i
\(509\) −12882.1 −1.12179 −0.560893 0.827888i \(-0.689542\pi\)
−0.560893 + 0.827888i \(0.689542\pi\)
\(510\) 0 0
\(511\) −12488.3 −1.08111
\(512\) − 512.000i − 0.0441942i
\(513\) − 805.445i − 0.0693202i
\(514\) −4274.47 −0.366807
\(515\) 0 0
\(516\) 712.317 0.0607713
\(517\) 20089.0i 1.70892i
\(518\) 2161.02i 0.183301i
\(519\) 1602.54 0.135537
\(520\) 0 0
\(521\) 11785.0 0.990996 0.495498 0.868609i \(-0.334986\pi\)
0.495498 + 0.868609i \(0.334986\pi\)
\(522\) 9002.02i 0.754804i
\(523\) 51.4550i 0.00430204i 0.999998 + 0.00215102i \(0.000684692\pi\)
−0.999998 + 0.00215102i \(0.999315\pi\)
\(524\) −1443.62 −0.120353
\(525\) 0 0
\(526\) 5995.64 0.497001
\(527\) − 38304.1i − 3.16613i
\(528\) − 677.485i − 0.0558404i
\(529\) 2334.08 0.191837
\(530\) 0 0
\(531\) 2658.10 0.217235
\(532\) − 1744.78i − 0.142192i
\(533\) − 4552.75i − 0.369984i
\(534\) −1139.97 −0.0923811
\(535\) 0 0
\(536\) 2623.74 0.211434
\(537\) − 2419.12i − 0.194400i
\(538\) 5203.81i 0.417012i
\(539\) −9811.53 −0.784067
\(540\) 0 0
\(541\) 4414.29 0.350804 0.175402 0.984497i \(-0.443877\pi\)
0.175402 + 0.984497i \(0.443877\pi\)
\(542\) 1532.76i 0.121472i
\(543\) − 1885.74i − 0.149033i
\(544\) 4460.86 0.351577
\(545\) 0 0
\(546\) −2675.12 −0.209679
\(547\) − 11425.2i − 0.893067i −0.894767 0.446533i \(-0.852658\pi\)
0.894767 0.446533i \(-0.147342\pi\)
\(548\) 199.181i 0.0155266i
\(549\) 14073.8 1.09409
\(550\) 0 0
\(551\) −3243.16 −0.250750
\(552\) 630.121i 0.0485864i
\(553\) − 3003.34i − 0.230949i
\(554\) 11979.9 0.918732
\(555\) 0 0
\(556\) 8864.44 0.676144
\(557\) − 19442.2i − 1.47898i −0.673166 0.739491i \(-0.735066\pi\)
0.673166 0.739491i \(-0.264934\pi\)
\(558\) 14491.1i 1.09938i
\(559\) −16444.3 −1.24422
\(560\) 0 0
\(561\) 5902.67 0.444226
\(562\) 2884.93i 0.216536i
\(563\) − 9459.96i − 0.708153i −0.935217 0.354076i \(-0.884795\pi\)
0.935217 0.354076i \(-0.115205\pi\)
\(564\) −1197.36 −0.0893933
\(565\) 0 0
\(566\) −6000.67 −0.445631
\(567\) 15572.0i 1.15338i
\(568\) − 2754.52i − 0.203481i
\(569\) 19606.0 1.44451 0.722256 0.691626i \(-0.243105\pi\)
0.722256 + 0.691626i \(0.243105\pi\)
\(570\) 0 0
\(571\) 5156.19 0.377898 0.188949 0.981987i \(-0.439492\pi\)
0.188949 + 0.981987i \(0.439492\pi\)
\(572\) 15640.1i 1.14326i
\(573\) 1411.78i 0.102928i
\(574\) 2849.96 0.207239
\(575\) 0 0
\(576\) −1687.62 −0.122079
\(577\) 17093.9i 1.23332i 0.787228 + 0.616662i \(0.211515\pi\)
−0.787228 + 0.616662i \(0.788485\pi\)
\(578\) 29039.8i 2.08978i
\(579\) −1731.76 −0.124300
\(580\) 0 0
\(581\) −21684.4 −1.54840
\(582\) − 301.975i − 0.0215073i
\(583\) 29395.0i 2.08820i
\(584\) −4351.76 −0.308351
\(585\) 0 0
\(586\) 1501.79 0.105868
\(587\) 10003.2i 0.703366i 0.936119 + 0.351683i \(0.114390\pi\)
−0.936119 + 0.351683i \(0.885610\pi\)
\(588\) − 584.792i − 0.0410143i
\(589\) −5220.71 −0.365222
\(590\) 0 0
\(591\) 2066.11 0.143805
\(592\) 753.045i 0.0522803i
\(593\) − 5615.44i − 0.388868i −0.980916 0.194434i \(-0.937713\pi\)
0.980916 0.194434i \(-0.0622870\pi\)
\(594\) −4519.59 −0.312191
\(595\) 0 0
\(596\) −13525.6 −0.929579
\(597\) 327.430i 0.0224470i
\(598\) − 14546.7i − 0.994747i
\(599\) 2294.71 0.156526 0.0782631 0.996933i \(-0.475063\pi\)
0.0782631 + 0.996933i \(0.475063\pi\)
\(600\) 0 0
\(601\) −11049.3 −0.749935 −0.374967 0.927038i \(-0.622346\pi\)
−0.374967 + 0.927038i \(0.622346\pi\)
\(602\) − 10293.9i − 0.696922i
\(603\) − 8648.20i − 0.584050i
\(604\) 2615.92 0.176226
\(605\) 0 0
\(606\) 926.311 0.0620937
\(607\) − 3081.49i − 0.206053i −0.994679 0.103026i \(-0.967147\pi\)
0.994679 0.103026i \(-0.0328526\pi\)
\(608\) − 608.000i − 0.0405554i
\(609\) −3112.69 −0.207114
\(610\) 0 0
\(611\) 27641.7 1.83022
\(612\) − 14703.6i − 0.971172i
\(613\) − 8913.61i − 0.587304i −0.955912 0.293652i \(-0.905129\pi\)
0.955912 0.293652i \(-0.0948707\pi\)
\(614\) 679.140 0.0446382
\(615\) 0 0
\(616\) −9790.52 −0.640375
\(617\) − 17711.0i − 1.15562i −0.816170 0.577811i \(-0.803907\pi\)
0.816170 0.577811i \(-0.196093\pi\)
\(618\) 2850.31i 0.185528i
\(619\) 9489.11 0.616154 0.308077 0.951361i \(-0.400315\pi\)
0.308077 + 0.951361i \(0.400315\pi\)
\(620\) 0 0
\(621\) 4203.62 0.271635
\(622\) − 18479.2i − 1.19123i
\(623\) 16474.1i 1.05942i
\(624\) −932.193 −0.0598038
\(625\) 0 0
\(626\) −1426.35 −0.0910677
\(627\) − 804.514i − 0.0512427i
\(628\) − 11710.3i − 0.744093i
\(629\) −6560.99 −0.415905
\(630\) 0 0
\(631\) −8443.93 −0.532722 −0.266361 0.963873i \(-0.585821\pi\)
−0.266361 + 0.963873i \(0.585821\pi\)
\(632\) − 1046.56i − 0.0658704i
\(633\) 892.449i 0.0560374i
\(634\) −2290.92 −0.143508
\(635\) 0 0
\(636\) −1752.02 −0.109233
\(637\) 13500.3i 0.839718i
\(638\) 18198.4i 1.12928i
\(639\) −9079.27 −0.562082
\(640\) 0 0
\(641\) 2397.17 0.147711 0.0738554 0.997269i \(-0.476470\pi\)
0.0738554 + 0.997269i \(0.476470\pi\)
\(642\) 410.820i 0.0252551i
\(643\) − 19474.3i − 1.19439i −0.802097 0.597193i \(-0.796282\pi\)
0.802097 0.597193i \(-0.203718\pi\)
\(644\) 9106.04 0.557187
\(645\) 0 0
\(646\) 5297.27 0.322629
\(647\) 27920.1i 1.69652i 0.529577 + 0.848262i \(0.322351\pi\)
−0.529577 + 0.848262i \(0.677649\pi\)
\(648\) 5426.34i 0.328961i
\(649\) 5373.59 0.325011
\(650\) 0 0
\(651\) −5010.68 −0.301665
\(652\) 3965.81i 0.238211i
\(653\) − 465.094i − 0.0278722i −0.999903 0.0139361i \(-0.995564\pi\)
0.999903 0.0139361i \(-0.00443614\pi\)
\(654\) −893.572 −0.0534272
\(655\) 0 0
\(656\) 993.118 0.0591079
\(657\) 14344.0i 0.851768i
\(658\) 17303.3i 1.02516i
\(659\) −8363.60 −0.494385 −0.247192 0.968966i \(-0.579508\pi\)
−0.247192 + 0.968966i \(0.579508\pi\)
\(660\) 0 0
\(661\) 27046.1 1.59149 0.795743 0.605635i \(-0.207081\pi\)
0.795743 + 0.605635i \(0.207081\pi\)
\(662\) 2060.16i 0.120952i
\(663\) − 8121.84i − 0.475756i
\(664\) −7556.31 −0.441629
\(665\) 0 0
\(666\) 2482.14 0.144416
\(667\) − 16926.1i − 0.982580i
\(668\) − 14719.1i − 0.852545i
\(669\) 4818.68 0.278477
\(670\) 0 0
\(671\) 28451.5 1.63690
\(672\) − 583.540i − 0.0334978i
\(673\) − 3938.39i − 0.225578i −0.993619 0.112789i \(-0.964022\pi\)
0.993619 0.112789i \(-0.0359784\pi\)
\(674\) −14429.4 −0.824626
\(675\) 0 0
\(676\) 12732.2 0.724409
\(677\) 7796.77i 0.442621i 0.975203 + 0.221310i \(0.0710334\pi\)
−0.975203 + 0.221310i \(0.928967\pi\)
\(678\) 1122.71i 0.0635951i
\(679\) −4363.91 −0.246645
\(680\) 0 0
\(681\) −2378.46 −0.133837
\(682\) 29295.0i 1.64481i
\(683\) 21022.7i 1.17776i 0.808221 + 0.588880i \(0.200431\pi\)
−0.808221 + 0.588880i \(0.799569\pi\)
\(684\) −2004.05 −0.112027
\(685\) 0 0
\(686\) 7297.99 0.406179
\(687\) − 1199.91i − 0.0666369i
\(688\) − 3587.08i − 0.198773i
\(689\) 40446.4 2.23641
\(690\) 0 0
\(691\) −4955.79 −0.272832 −0.136416 0.990652i \(-0.543558\pi\)
−0.136416 + 0.990652i \(0.543558\pi\)
\(692\) − 8070.03i − 0.443319i
\(693\) 32270.8i 1.76893i
\(694\) 2927.61 0.160131
\(695\) 0 0
\(696\) −1084.67 −0.0590723
\(697\) 8652.66i 0.470219i
\(698\) − 21289.6i − 1.15447i
\(699\) −4611.75 −0.249545
\(700\) 0 0
\(701\) −34916.0 −1.88126 −0.940628 0.339440i \(-0.889762\pi\)
−0.940628 + 0.339440i \(0.889762\pi\)
\(702\) 6218.78i 0.334349i
\(703\) 894.241i 0.0479757i
\(704\) −3411.67 −0.182645
\(705\) 0 0
\(706\) −6744.91 −0.359558
\(707\) − 13386.4i − 0.712088i
\(708\) 320.280i 0.0170012i
\(709\) 21741.3 1.15164 0.575820 0.817576i \(-0.304683\pi\)
0.575820 + 0.817576i \(0.304683\pi\)
\(710\) 0 0
\(711\) −3449.62 −0.181956
\(712\) 5740.67i 0.302164i
\(713\) − 27246.9i − 1.43114i
\(714\) 5084.16 0.266485
\(715\) 0 0
\(716\) −12182.2 −0.635852
\(717\) − 573.513i − 0.0298720i
\(718\) − 20777.3i − 1.07995i
\(719\) 22241.1 1.15362 0.576810 0.816879i \(-0.304297\pi\)
0.576810 + 0.816879i \(0.304297\pi\)
\(720\) 0 0
\(721\) 41190.5 2.12762
\(722\) − 722.000i − 0.0372161i
\(723\) − 4584.44i − 0.235819i
\(724\) −9496.17 −0.487462
\(725\) 0 0
\(726\) −2399.90 −0.122684
\(727\) − 2988.44i − 0.152456i −0.997090 0.0762278i \(-0.975712\pi\)
0.997090 0.0762278i \(-0.0242876\pi\)
\(728\) 13471.4i 0.685827i
\(729\) 16976.8 0.862510
\(730\) 0 0
\(731\) 31252.8 1.58130
\(732\) 1695.78i 0.0856256i
\(733\) − 12240.9i − 0.616816i −0.951254 0.308408i \(-0.900204\pi\)
0.951254 0.308408i \(-0.0997962\pi\)
\(734\) 861.062 0.0433003
\(735\) 0 0
\(736\) 3173.15 0.158919
\(737\) − 17483.1i − 0.873811i
\(738\) − 3273.45i − 0.163276i
\(739\) −19051.6 −0.948340 −0.474170 0.880433i \(-0.657252\pi\)
−0.474170 + 0.880433i \(0.657252\pi\)
\(740\) 0 0
\(741\) −1106.98 −0.0548797
\(742\) 25318.9i 1.25268i
\(743\) − 21009.1i − 1.03735i −0.854973 0.518673i \(-0.826426\pi\)
0.854973 0.518673i \(-0.173574\pi\)
\(744\) −1746.06 −0.0860398
\(745\) 0 0
\(746\) −750.264 −0.0368219
\(747\) 24906.6i 1.21993i
\(748\) − 29724.6i − 1.45299i
\(749\) 5936.87 0.289624
\(750\) 0 0
\(751\) −17060.4 −0.828951 −0.414475 0.910061i \(-0.636035\pi\)
−0.414475 + 0.910061i \(0.636035\pi\)
\(752\) 6029.63i 0.292391i
\(753\) − 577.705i − 0.0279585i
\(754\) 25040.2 1.20943
\(755\) 0 0
\(756\) −3892.87 −0.187278
\(757\) − 21029.9i − 1.00970i −0.863207 0.504850i \(-0.831548\pi\)
0.863207 0.504850i \(-0.168452\pi\)
\(758\) 5150.61i 0.246806i
\(759\) 4198.76 0.200798
\(760\) 0 0
\(761\) 25781.2 1.22808 0.614040 0.789275i \(-0.289543\pi\)
0.614040 + 0.789275i \(0.289543\pi\)
\(762\) − 4194.50i − 0.199411i
\(763\) 12913.2i 0.612701i
\(764\) 7109.42 0.336662
\(765\) 0 0
\(766\) 18015.6 0.849778
\(767\) − 7393.85i − 0.348079i
\(768\) − 203.344i − 0.00955412i
\(769\) 26905.2 1.26167 0.630835 0.775917i \(-0.282712\pi\)
0.630835 + 0.775917i \(0.282712\pi\)
\(770\) 0 0
\(771\) −1697.63 −0.0792981
\(772\) 8720.77i 0.406564i
\(773\) − 10683.7i − 0.497111i −0.968618 0.248556i \(-0.920044\pi\)
0.968618 0.248556i \(-0.0799559\pi\)
\(774\) −11823.5 −0.549078
\(775\) 0 0
\(776\) −1520.68 −0.0703470
\(777\) 858.266i 0.0396269i
\(778\) 7433.72i 0.342560i
\(779\) 1179.33 0.0542411
\(780\) 0 0
\(781\) −18354.5 −0.840943
\(782\) 27646.5i 1.26424i
\(783\) 7235.98i 0.330259i
\(784\) −2944.89 −0.134151
\(785\) 0 0
\(786\) −573.343 −0.0260184
\(787\) − 6017.52i − 0.272556i −0.990671 0.136278i \(-0.956486\pi\)
0.990671 0.136278i \(-0.0435140\pi\)
\(788\) − 10404.5i − 0.470362i
\(789\) 2381.21 0.107444
\(790\) 0 0
\(791\) 16224.6 0.729305
\(792\) 11245.3i 0.504527i
\(793\) − 39148.1i − 1.75308i
\(794\) −28384.5 −1.26867
\(795\) 0 0
\(796\) 1648.87 0.0734204
\(797\) − 36703.4i − 1.63124i −0.578587 0.815621i \(-0.696396\pi\)
0.578587 0.815621i \(-0.303604\pi\)
\(798\) − 692.954i − 0.0307397i
\(799\) −52533.9 −2.32605
\(800\) 0 0
\(801\) 18922.0 0.834677
\(802\) 19472.2i 0.857341i
\(803\) 28997.6i 1.27435i
\(804\) 1042.04 0.0457088
\(805\) 0 0
\(806\) 40308.8 1.76156
\(807\) 2066.73i 0.0901516i
\(808\) − 4664.71i − 0.203099i
\(809\) −3237.98 −0.140718 −0.0703592 0.997522i \(-0.522415\pi\)
−0.0703592 + 0.997522i \(0.522415\pi\)
\(810\) 0 0
\(811\) −25947.0 −1.12346 −0.561728 0.827322i \(-0.689863\pi\)
−0.561728 + 0.827322i \(0.689863\pi\)
\(812\) 15674.9i 0.677438i
\(813\) 608.748i 0.0262604i
\(814\) 5017.86 0.216064
\(815\) 0 0
\(816\) 1771.66 0.0760056
\(817\) − 4259.66i − 0.182407i
\(818\) 31693.9i 1.35471i
\(819\) 44403.4 1.89448
\(820\) 0 0
\(821\) 11190.8 0.475713 0.237856 0.971300i \(-0.423555\pi\)
0.237856 + 0.971300i \(0.423555\pi\)
\(822\) 79.1060i 0.00335662i
\(823\) 14476.1i 0.613129i 0.951850 + 0.306564i \(0.0991795\pi\)
−0.951850 + 0.306564i \(0.900821\pi\)
\(824\) 14353.5 0.606832
\(825\) 0 0
\(826\) 4628.45 0.194969
\(827\) 21055.8i 0.885349i 0.896682 + 0.442674i \(0.145970\pi\)
−0.896682 + 0.442674i \(0.854030\pi\)
\(828\) − 10459.1i − 0.438986i
\(829\) −11156.5 −0.467407 −0.233704 0.972308i \(-0.575085\pi\)
−0.233704 + 0.972308i \(0.575085\pi\)
\(830\) 0 0
\(831\) 4757.91 0.198616
\(832\) 4694.33i 0.195609i
\(833\) − 25657.7i − 1.06721i
\(834\) 3520.58 0.146172
\(835\) 0 0
\(836\) −4051.36 −0.167607
\(837\) 11648.2i 0.481028i
\(838\) − 30208.4i − 1.24527i
\(839\) 39171.2 1.61185 0.805923 0.592021i \(-0.201670\pi\)
0.805923 + 0.592021i \(0.201670\pi\)
\(840\) 0 0
\(841\) 4747.05 0.194639
\(842\) − 2635.44i − 0.107866i
\(843\) 1145.77i 0.0468118i
\(844\) 4494.18 0.183289
\(845\) 0 0
\(846\) 19874.5 0.807682
\(847\) 34681.7i 1.40694i
\(848\) 8822.80i 0.357283i
\(849\) −2383.21 −0.0963388
\(850\) 0 0
\(851\) −4667.05 −0.187996
\(852\) − 1093.98i − 0.0439895i
\(853\) − 30337.0i − 1.21773i −0.793275 0.608863i \(-0.791626\pi\)
0.793275 0.608863i \(-0.208374\pi\)
\(854\) 24506.2 0.981950
\(855\) 0 0
\(856\) 2068.80 0.0826055
\(857\) − 22146.0i − 0.882724i −0.897329 0.441362i \(-0.854496\pi\)
0.897329 0.441362i \(-0.145504\pi\)
\(858\) 6211.59i 0.247157i
\(859\) −35168.0 −1.39687 −0.698437 0.715671i \(-0.746121\pi\)
−0.698437 + 0.715671i \(0.746121\pi\)
\(860\) 0 0
\(861\) 1131.88 0.0448020
\(862\) 32325.1i 1.27726i
\(863\) 3982.75i 0.157097i 0.996910 + 0.0785483i \(0.0250285\pi\)
−0.996910 + 0.0785483i \(0.974972\pi\)
\(864\) −1356.54 −0.0534148
\(865\) 0 0
\(866\) 21103.0 0.828073
\(867\) 11533.4i 0.451780i
\(868\) 25232.7i 0.986699i
\(869\) −6973.70 −0.272229
\(870\) 0 0
\(871\) −24056.1 −0.935831
\(872\) 4499.84i 0.174752i
\(873\) 5012.36i 0.194322i
\(874\) 3768.12 0.145834
\(875\) 0 0
\(876\) −1728.33 −0.0666609
\(877\) − 22118.0i − 0.851621i −0.904812 0.425810i \(-0.859989\pi\)
0.904812 0.425810i \(-0.140011\pi\)
\(878\) − 24078.4i − 0.925522i
\(879\) 596.447 0.0228870
\(880\) 0 0
\(881\) 44513.2 1.70225 0.851127 0.524959i \(-0.175919\pi\)
0.851127 + 0.524959i \(0.175919\pi\)
\(882\) 9706.75i 0.370571i
\(883\) − 14433.7i − 0.550093i −0.961431 0.275047i \(-0.911307\pi\)
0.961431 0.275047i \(-0.0886933\pi\)
\(884\) −40899.9 −1.55612
\(885\) 0 0
\(886\) 8319.30 0.315454
\(887\) − 19559.0i − 0.740392i −0.928954 0.370196i \(-0.879291\pi\)
0.928954 0.370196i \(-0.120709\pi\)
\(888\) 299.077i 0.0113022i
\(889\) −60615.9 −2.28683
\(890\) 0 0
\(891\) 36158.0 1.35953
\(892\) − 24265.8i − 0.910852i
\(893\) 7160.19i 0.268317i
\(894\) −5371.78 −0.200961
\(895\) 0 0
\(896\) −2938.58 −0.109566
\(897\) − 5777.33i − 0.215049i
\(898\) 29655.3i 1.10201i
\(899\) 46902.0 1.74001
\(900\) 0 0
\(901\) −76869.7 −2.84229
\(902\) − 6617.57i − 0.244280i
\(903\) − 4088.29i − 0.150664i
\(904\) 5653.74 0.208009
\(905\) 0 0
\(906\) 1038.93 0.0380974
\(907\) 23674.9i 0.866715i 0.901222 + 0.433358i \(0.142671\pi\)
−0.901222 + 0.433358i \(0.857329\pi\)
\(908\) 11977.4i 0.437759i
\(909\) −15375.5 −0.561026
\(910\) 0 0
\(911\) −6452.53 −0.234667 −0.117334 0.993093i \(-0.537435\pi\)
−0.117334 + 0.993093i \(0.537435\pi\)
\(912\) − 241.472i − 0.00876746i
\(913\) 50350.9i 1.82516i
\(914\) −29944.4 −1.08367
\(915\) 0 0
\(916\) −6042.51 −0.217959
\(917\) 8285.54i 0.298378i
\(918\) − 11819.0i − 0.424929i
\(919\) 5928.94 0.212816 0.106408 0.994323i \(-0.466065\pi\)
0.106408 + 0.994323i \(0.466065\pi\)
\(920\) 0 0
\(921\) 269.725 0.00965010
\(922\) 13528.6i 0.483231i
\(923\) 25255.1i 0.900631i
\(924\) −3888.37 −0.138440
\(925\) 0 0
\(926\) −24184.8 −0.858273
\(927\) − 47311.2i − 1.67627i
\(928\) 5462.17i 0.193216i
\(929\) −39057.4 −1.37937 −0.689684 0.724111i \(-0.742250\pi\)
−0.689684 + 0.724111i \(0.742250\pi\)
\(930\) 0 0
\(931\) −3497.06 −0.123106
\(932\) 23223.8i 0.816223i
\(933\) − 7339.14i − 0.257527i
\(934\) −6873.44 −0.240799
\(935\) 0 0
\(936\) 15473.1 0.540336
\(937\) − 11163.3i − 0.389208i −0.980882 0.194604i \(-0.937658\pi\)
0.980882 0.194604i \(-0.0623421\pi\)
\(938\) − 15058.8i − 0.524186i
\(939\) −566.485 −0.0196875
\(940\) 0 0
\(941\) 7071.91 0.244992 0.122496 0.992469i \(-0.460910\pi\)
0.122496 + 0.992469i \(0.460910\pi\)
\(942\) − 4650.82i − 0.160862i
\(943\) 6154.92i 0.212547i
\(944\) 1612.86 0.0556083
\(945\) 0 0
\(946\) −23902.2 −0.821488
\(947\) − 11977.8i − 0.411010i −0.978656 0.205505i \(-0.934116\pi\)
0.978656 0.205505i \(-0.0658837\pi\)
\(948\) − 415.651i − 0.0142402i
\(949\) 39899.6 1.36480
\(950\) 0 0
\(951\) −909.854 −0.0310242
\(952\) − 25602.8i − 0.871629i
\(953\) 10362.5i 0.352228i 0.984370 + 0.176114i \(0.0563527\pi\)
−0.984370 + 0.176114i \(0.943647\pi\)
\(954\) 29081.1 0.986935
\(955\) 0 0
\(956\) −2888.09 −0.0977066
\(957\) 7227.62i 0.244133i
\(958\) 27498.3i 0.927378i
\(959\) 1143.18 0.0384935
\(960\) 0 0
\(961\) 45709.9 1.53435
\(962\) − 6904.37i − 0.231399i
\(963\) − 6819.05i − 0.228184i
\(964\) −23086.3 −0.771327
\(965\) 0 0
\(966\) 3616.53 0.120455
\(967\) 47698.3i 1.58622i 0.609079 + 0.793110i \(0.291539\pi\)
−0.609079 + 0.793110i \(0.708461\pi\)
\(968\) 12085.4i 0.401281i
\(969\) 2103.85 0.0697476
\(970\) 0 0
\(971\) 1174.76 0.0388259 0.0194130 0.999812i \(-0.493820\pi\)
0.0194130 + 0.999812i \(0.493820\pi\)
\(972\) 6733.43i 0.222196i
\(973\) − 50876.8i − 1.67630i
\(974\) −12531.1 −0.412242
\(975\) 0 0
\(976\) 8539.61 0.280068
\(977\) − 58282.8i − 1.90853i −0.298964 0.954264i \(-0.596641\pi\)
0.298964 0.954264i \(-0.403359\pi\)
\(978\) 1575.05i 0.0514976i
\(979\) 38252.5 1.24878
\(980\) 0 0
\(981\) 14832.1 0.482723
\(982\) 368.310i 0.0119687i
\(983\) 49969.4i 1.62134i 0.585504 + 0.810669i \(0.300897\pi\)
−0.585504 + 0.810669i \(0.699103\pi\)
\(984\) 394.424 0.0127782
\(985\) 0 0
\(986\) −47589.8 −1.53709
\(987\) 6872.14i 0.221624i
\(988\) 5574.51i 0.179503i
\(989\) 22231.2 0.714772
\(990\) 0 0
\(991\) −3449.31 −0.110566 −0.0552830 0.998471i \(-0.517606\pi\)
−0.0552830 + 0.998471i \(0.517606\pi\)
\(992\) 8792.78i 0.281422i
\(993\) 818.207i 0.0261481i
\(994\) −15809.4 −0.504469
\(995\) 0 0
\(996\) −3001.04 −0.0954736
\(997\) 49274.3i 1.56523i 0.622508 + 0.782614i \(0.286114\pi\)
−0.622508 + 0.782614i \(0.713886\pi\)
\(998\) 1340.97i 0.0425329i
\(999\) 1995.18 0.0631880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 950.4.b.j.799.2 6
5.2 odd 4 190.4.a.h.1.2 3
5.3 odd 4 950.4.a.m.1.2 3
5.4 even 2 inner 950.4.b.j.799.5 6
15.2 even 4 1710.4.a.x.1.1 3
20.7 even 4 1520.4.a.p.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.4.a.h.1.2 3 5.2 odd 4
950.4.a.m.1.2 3 5.3 odd 4
950.4.b.j.799.2 6 1.1 even 1 trivial
950.4.b.j.799.5 6 5.4 even 2 inner
1520.4.a.p.1.2 3 20.7 even 4
1710.4.a.x.1.1 3 15.2 even 4